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Abstract. The objective of this study is to develop an approach for monitoring the 12 

land use over the semi-arid Tensift-Marrakech plain, a 3000 km² intensively cropped 13 

area in Morocco. In this objective, the linear unmixing method is adapted to process a 6-14 

year archive of MODIS NDVI 16-day composite data at 250 m spatial resolution. The 15 

result of the processing is a description of land use in term of fractions of three 16 

predominant classes: orchard, non-cultivated areas and annual crop. The typical 17 

signatures of land classes – endmembers – are retrieved on a yearly basis using an 18 

automated algorithm that detects the most pure pixels in the study area. The algorithm 19 

first extracts typical NDVI profiles as potential endmembers, then selects the profiles 20 

that have the best ability to reproduce the variability of MODIS NDVI time series 21 
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within all the study area. The endmembers appear stable over the 6 years of study and 1 

coherent with the vegetation seasonality of the three targeted land classes. Validation 2 

data allows to quantify the error on land class fractions to about 0.1 at 1 km resolution. 3 

Land use fraction maps are consistent in space and time: the orchard class is stable, and 4 

differences in water availability (irrigation and rainfall) partly explain a part of the inter-5 

annual variations observed for the annual crop class. The advantages and drawbacks of 6 

the approach are discussed in the conclusion. 7 

 8 
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1. Introduction 11 

 12 

Changes in Land Use and Land Cover (LULC) is a major issue in Environmental 13 

Science, interconnected with many question concerning climate change, carbon cycle 14 

and biodiversity (Aspinall and Justice 2003; Lepers et al. 2005). The monitoring of 15 

LULC is also vital for managers and policy makers to make informed decisions 16 

regarding the sustainability of agriculture and provision of safe drinking water, 17 

especially in semi-arid areas. Remote sensing is very well-suited to achieve this 18 

monitoring since it allows observations regularly distributed in space and time (Rogan 19 

and Chen 2004, Prenzel 2004). 20 

 21 

Multi-temporal images are widely investigated for mapping and monitoring land-cover 22 

and land-use changes. At the present time, time series of images can be obtained at a 23 

high spatial resolution by programming a series of SPOT or FORMOSAT-2 24 
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acquisitions. These images with both high spatial resolution (~10 m) and high temporal 1 

repetitivity (a few days) offer strong opportunities to monitor land surfaces over small 2 

areas: 25x25 km² for FORMOSAT-2, 60x60 km² for SPOT. However, constraints 3 

related to acquisition, cost and processing often prevent the use of high spatial 4 

resolution data. Multi-temporal data acquired by low or moderate spatial resolution 5 

sensors such as NOAA-AVHRR, SPOT- VEGETATION or TERRA-MODIS are thus 6 

preferred for regional and continental studies (e.g. Lambin and Ehrlich 1997, Hansen et 7 

al. 2000; Lunetta et al. 2006, Matsuoka et al. 2007; Stibig et al. 2007). Indeed, they 8 

offer a costless global coverage of the Earth on a daily basis. However, the spatial 9 

resolution of large field of views sensors – from 250m for MODIS to 1 km for 10 

VEGETATION and AVHRR – is generally much higher than the size of homogeneous 11 

areas (units) at the Earth surfaces. These sensors generally provide images with pixels 12 

that include a mixture of different units (mixed pixels). Consequently, the use of low 13 

spatial resolution data for a directly monitoring of LULC is not straightforward. 14 

Furthermore, conventional classification approaches based on signature clustering (like 15 

maximum likelihood, Richards 1999) are not suitable since they aim to identify an 16 

unique class for each pixel. 17 

 18 

For these reasons, the linear unmixing model has been developed (Adams et al. 1986, 19 

Smith et al. 1990, Elmore et al. 2000) based on the following assumption: the signature 20 

of a mixed pixel results from a linear combination of the distinctive signatures 21 

(endmembers) that are representative of the various land surfaces included in the study 22 

area. These typical signatures must describe as well as possible a pure component 23 

having meaningful features for an observer (Strahler et al. 1986). Knowing these 24 
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signatures is a prerequisite for applying the linear unmixing model (Cross et al. 1991, 1 

Quarmby et al. 1992, Foody and Cox 1994, Milton and Emery 1995). Unmixing 2 

approaches can be divided into two categories depending on how the endmembers are 3 

estimated: 4 

• Supervised approaches use the spectral signatures of endmembers as a priori 5 

information. These typical spectra can be collected at field or laboratory to define 6 

predefined library endmembers (Adams et al. 1995, Roberts et al. 1998, Smith et al. 7 

1990). They can also be derived from high spatial images using a training data set 8 

(small region where the land use is known). The use of predefined libraries may be not 9 

appropriate since differences in the acquisition conditions (e.g. sun-target-sensor 10 

geometry, atmospheric effects) may occur between endmembers and the data to be 11 

unmixed (Song and Woodcock 2003). 12 

• In unsupervised approaches (see Plaza et al. 2004 for a review), the identification of 13 

endmembers is automated. The common point in unsupervised algorithms is that they 14 

search endmembers directly from images (Atkinson et al. 1997, Elmore et al. 2000, 15 

Ridd 1995, Wessman et al. 1997). In this case, the endmembers are retrieved at the 16 

same scale and conditions than the data to be unmixed. 17 

 18 

The temporal variability of the observations is generally not considered in the above-19 

mentioned studies, though it is also an important source of information. In particular, 20 

the time courses of vegetation indices such as the Normalized Difference Vegetation 21 

Index NDVI allow to monitor the phenology of vegetation (Gutman and Ignatov 1995, 22 

Justice et al. 1998, Duchemin et al. 1999). This may be very useful for discriminating 23 
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land classes. Differences in phenology depicted by vegetation indices can be used to 1 

map land surfaces using low spatial resolution data (e.g. Kerdiles and Grondona 1995, 2 

Cardot and Faivre 2003, Ballantine et al. 2005, Knight et al. 2006). These studies 3 

showed that: 1) land use maps are more accurate when vegetation indices are used 4 

instead of reflectances; 2) the use of NDVI with a linear approximation for its 5 

combination results in minor inaccuracies; 3) linear unmixing provides satisfactory 6 

results when the number of endmembers is limited. These considerations, which are of 7 

prime importance in unmixing procedure, are accounted for in this study. 8 

 9 

In this context, the primary objective of this study is to evaluate the potential of MODIS 10 

data for monitoring the land use on the semi-arid Tensift/Marrakech plain. A secondary 11 

objective is to analyse the space-time variability of land classes in relation with water 12 

availability. The methodology is based on the unmixing of MODIS multi-temporal 13 

NDVI images. Land use maps are evaluated using ground data and high spatial 14 

resolution images, and their space-time variability is analysed together with information 15 

on irrigation water.  16 

 17 

 18 

2. Research Design 19 

 20 

The methodology is an unsupervised unmixing approach based on a statistical analysis 21 

for identifying endmembers directly from MODIS multi-temporal images at 250 spatial 22 

resolution (MOD13Q1 product, i.e. 16-day NDVI composite images by CV-MVC 23 
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algorithm, Huete et al. 2002). The algorithm first extracts typical NDVI profiles, then 1 

selects the endmembers amongst these profiles based on their ability to reproduce the 2 

space time variability of MODIS NDVI time series. The approach requires the two 3 

following assumptions: (1) pure pixels can be identified at the 250m resolution and 4 

(2) endmembers are stationary over the Tensift-Marrakech plain. 5 

 6 

The approach is set up to retrieve the fractions (surface covered by homogeneous units 7 

within each pixel) of three classes: orchard, non-cultivated areas and annual crop. These 8 

classes are predominant in the study area, they display distinct phenological features 9 

and they encompass the range of crop water needs: non-cultivated areas (no needs), 10 

annual crops (water needs ~ 400 mm/y) and orchards (water needs ~ 1000 mm/y).  11 

 12 

The algorithm is applied to a six-year archive of MODIS NDVI to obtain maps of land 13 

use fractions on a yearly basis, from agricultural season 2000-2001 to 2005-2006. The 14 

algorithm is applied on two different areas, the whole study area and a subpart of the 15 

study area where the landscape is rather regular and where more data are available for 16 

evaluation. The processing results in 12 land use maps (6 years x 2 training areas) in 17 

term of the fractions of the three predominant classes (orchard, non-cultivated areas and 18 

annual crop). 19 

 20 

MODIS estimates are quantitatively evaluated against ground truth collected on a 9 km² 21 

area and a reference land use map derived from a time series of high spatial resolution 22 

images (SPOT and Landsat). These data were collected during the 2002-2003 23 

agricultural season. The evaluation is based on classical statistical variables (correlation 24 
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R², efficiency EFF, RMSE and bias) computed between land use fractions estimated 1 

with MODIS and derived from the validation data sets at 1 km resolution. In order to 2 

test the robustness of the algorithm, the performance of the algorithm is also discussed 3 

from the results obtained with the whole MODIS data set (2000-2006 period). Here we 4 

analyse the inter-annual variability of both endmembers and land use maps using 5 

rainfall and irrigation data as an indicator of water availability and vegetation growth. 6 

 7 

3. Materials and Methods 8 

 9 

In this section, we present the study area, the ground and satellite data, and the linear 10 

unmixing algorithm. 11 

 12 

3.1. Study area and ground data 13 

 14 

The study area is the eastern part of the semi-arid Tensift plain, a 3000 km² region 15 

located in center of Morocco (figure 1). The climate of this region is arid, with annual 16 

rainfall around 250 mm/year and a very high evaporative demand around 1500mm/year 17 

(Duchemin et al. 2006, Chehbouni et al. 2007). 18 

 19 

According to the regional public agency in charge of agricultural water management 20 

(ORMVAH), there are three dominant land classes that represent more than 80% of land 21 

surfaces: (1) orchards, most of it perennial (olive and citrus trees); (2) cereal crops, 22 

mainly wheat, to less extent barley; (3) non-cultivated areas. Additional land classes 23 
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include forages (mainly alfalfa, colza and oat), vineyards, broad-leave orchards (apple, 1 

apricot and peach trees), and small vegetable crops. 2 

 3 

[Insert Figure 1 about here] 4 

 5 

The High-Atlas mountain range experiences much higher precipitations and provides 6 

irrigation water to the plain (Chaponniere et al. 2005, Chehbouni et al. 2007). There are 7 

three types of irrigation systems: the modern network connected with dams, the 8 

traditional network, and pumping stations (Duchemin et al. 2007). The main irrigated 9 

areas are supplied by dam water and managed by ORMVAH. They cover about 1200 10 

km² with three distinct sub-regions (figure 1): 11 

• The western NFIS sub-region, mainly cropped with orchards on fields of irregular 12 

size (~ 100 m²  to ~ 10 ha);  13 

• The central Haouz sub-region, mostly cropped with cereals, where the landscape 14 

appears rather uniform with relatively larger fields (3-4 ha); 15 

• The eastern Tessaout sub-region, very patchy with a mixture of various annual crops 16 

and orchards cultivated on very small fields (100 to 1000 m²). 17 

 18 

In order to evaluate land use maps, we use two sets of ground data collected during the 19 

2002-2003 agricultural season. The first one is composed of 151 individual fields spread 20 

over the study area divided as following: 11 plots of orchard on bare soil, 80 plots of 21 

orchard on annual crop, 28 plots of non-cultivated areas and 32 plots of annual crop (see 22 

Simonneaux et al. 2007). The second one exhaustively covers a 3 x 3 km² area within 23 

the Haouz sub-region during the 2002-2003 agricultural season (see Duchemin et al. 24 
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2006). It is composed of 313 plots divided as following: 5 plots of orchard, 67 plots of 1 

non-cultivated areas and 241 plots of cereal crops (wheat and barley). 2 

 3 

In order to study the space-time variability of land classes, we analyse data on dam 4 

irrigation water and precipitations. ORMVAH collects the annual amount of dam 5 

irrigation water supplied to the three sub-regions. As it is difficult to exactly know when 6 

and where irrigation occurs, we assume a uniform distribution: the amount of dam 7 

irrigation water is divided by the total area of each sub-region to provide average values 8 

in mm. Precipitations are collected from a network made of about 20 raingauges 9 

stations spread over the plain. There is a large seasonal variability of rainfall, both in 10 

terms of annual quantity and of seasonal distribution: accumulated values of 140 mm 11 

for the driest years (2000-2001 and 2004-2005) against 300 mm for the most humid 12 

years (2003-2004 and 2005-2006); early rainfall in 2003-2004 or delayed rainfall in 13 

2001-2002. 14 

 15 

3.2 Satellite data 16 

 17 

High spatial resolution data are used to produce a reference land use map in order to 18 

evaluate classification maps obtained with MODIS data. We use a SPOT5  19 

panchromatic image at 2.5m resolution acquired the 23/07/2002 and 10 cloud-free 20 

Landsat/ETM7+ and SPOT4/5 images acquired during the 2002-2003 agricultural 21 

season. The Landsat/SPOT images were collected between 07/11/2002 and 20/06/2003 22 

with a revisit time of approximately three weeks. These images were geometrically 23 

corrected using GPS ground control points and resampled to 30m. The radiometric 24 
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processing (calibration and atmospheric correction) was performed using reflectance 1 

values recorded at field (Duchemin et al. 2006, Simonneaux et al. 2007). 2 

 3 

Terra-MODIS data are freely available from the NASA website 4 

(http://delenn.gsfc.nasa.gov/). We have downloaded 16-day composite images 5 

(MOD13Q1 product) from the 2000-2001 to the 2005-2006 agricultural seasons. These 6 

images contain atmospherically corrected reflectances and NDVI at 250m spatial 7 

resolution based on the Constrained View Maximum Value Composite algorithm 8 

(Huete et al. 2002). They were resampled at 270m (9x30m) spatial resolution using the 9 

cubic convolution technique, then subset to the Tensift-Marrakech plain. They were 10 

stacked into 6 multi-temporal NDVI images (from September 2000 to August 2001, 11 

September 2001 to August 2002 etc). A total of 141 images were processed and visually 12 

examinated in order to detect eventual anomalies. Most of images are of good quality 13 

excepted three images (18/02/2001, 23/04/2001 and 01/01/2003) that were eliminated 14 

because they display geometric problems. All images are free of clouds. This is 15 

expected since the time step of compositing is rather long (16 days) and the cloudiness 16 

is low in the study area, around 30% (Hadria et al. 2006). 17 

 18 

3.3. Reference land use map (2002-2003 season) 19 

 20 

The reference land use map is derived from high spatial resolution data on the common 21 

area between the Landsat images, the SPOT ones and the study area (about 1500 km², 22 

see figure 2). The classification identifies the three predominant land classes using a 23 

two-step procedure:  24 
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1) The orchards are depicted on the 2.5m panchromatic SPOT image using the 1 

“Olicount” software (Simon et al. 1998). The software operates with a set of input 2 

parameters that essentially define the morphology of trees (shape) and their 3 

radiometry (gray level). This first class groups all the areas where trees are detected, 4 

including case of intercropping (trees + wheat or trees + alfalfa) and the natural 5 

vegetation that may also grow between the trees or in the understory. 6 

2)  To discriminate the two remaining classes, NDVI maximum values are calculated 7 

from NDVI profiles derived from time series of SPOT and Landsat images. Pixels 8 

with a maximum NDVI below 0.4, which contain sparse vegetation, are assigned to 9 

the class bare soil. The remaining pixels are supposed to include irrigated areas and 10 

are assigned to the class annual crop. The threshold value (0.4) was calibrated to 11 

obtain a maximal global accuracy of the classification. 12 

 13 

[Insert Figure 2 about here] 14 

 15 

This processing leads to the partition of the area into three classes with about 20% of 16 

orchard, 50% of bare soil and 30% of annual crop. The land use map (figure 2) shows 17 

that: the bare soil class is predominant outside irrigated areas in western and southern 18 

parts of the region; the annual crop class is mainly depicted at the eastern part of the 19 

study area within Haouz and Tessaout irrigated sub-regions as well as downstream 20 

High-Atlas wadis; orchards are spread over the plain, with the maximal density in the 21 

western NFIS irrigated sub-region. 22 

 23 
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The reference land use map is evaluated against the ground truth collected on individual 1 

fields (see §3.1). According to the confusion matrix (table 1), the overall accuracy, i.e. 2 

the number of well-classified pixels divided by the total number of pixels, is around 3 

78%, with very low omission errors for the class orchard on bare soil (about 10%) and 4 

for the class annual crop (about 3%). Two types of confusion are detected: 1) between 5 

annual crop and orchard on annual understory, and 2) between bare soil and annual 6 

crop. The causes of these confusions were discussed in Simonneaux et al. (2007) and 7 

Benhadj et al. (2007). They are related to the disparities that exist for a same land class, 8 

which causes overlapping of signatures between the three land classes. For cereals, there 9 

is a large heterogeneity in cereal crop calendar as well as irrigation and fertilisation 10 

schedules. Non irrigated areas may include a wide range of vegetation type (colza, oat, 11 

grass). Finally, there are large variations of density and age in tree plantations, which 12 

may include an understory of vegetation cultivated as forage (wheat, grass, alfalfa…). 13 

 14 

[Insert Table1 about here] 15 

 16 

The reference land use map is used for evaluating MODIS estimates for the 2002-2003 17 

agricultural season at 1 km² scale. For this purpose, a co-registration between MODIS 18 

data and the reference land use map is done using an automatic correlation algorithm 19 

(Benhadj et al. 2006). Then the reference map is up-scaled at 1 km resolution by spatial 20 

averaging to obtain the fractions covered by orchards, bare soils and annual crops. 21 

 22 

3.4 Linear unmixing of MODIS data 23 

 24 
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To predict the land use fractions of the three dominant land classes, the linear unmixing 1 

model is applied to MODIS multi-temporal NDVI images. The model calculates the 2 

NDVI of a mixed pixel as the sum of the NDVI values of the different land classes 3 

weighted by their corresponding fraction within the pixel (equation 1). We retrieve the 4 

typical NDVI time course  of each land class (endmember) using the three-step 5 

procedure which is detailed below. 6 

 7 

( ) ( ) ( )ttNDVItNDVI i
j

jiji επ +×= ∑
=

3

1
                                              (1) 8 

where iNDVI  is the NDVI of MODIS mixed pixel i at the date t, ijπ  is the fraction of 9 

class j in pixel i, jNDVI  is the endmember of class j (j = 1 to 3) and iε  is an error term 10 

of the pixel i. 11 

 12 

Step 1. An unsupervised classification “k-means” (Tou and Gonzalez 1974) is applied 13 

to MODIS multi-temporal images in order to group the pixels which have similar NDVI 14 

seasonal courses. The result is N mean NDVI profiles corresponding to N groups1 of 15 

pixels. We set N to 20, which appears as a good compromise allowing a reasonable 16 

computing time cost while keeping a sufficient level of details to describe the NDVI 17 

space-time variability within the study area. Furthermore, the grouping of pixels with 18 

the same vegetation seasonality allows the reduction of local noise due to: (1) imperfect 19 

superimposition of MODIS data before temporal compositing, (2) inaccuracy in 20 

                                                 
1 The term ‘groups’ is used to refer the classes identified by the K-means method in order to avoid 

confusion with those derived from MODIS data after unmixing. 
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atmospheric correction and, (3) the variation in sun-target-sensor geometry between 1 

successive acquisitions.  2 

 3 

Step 2. An iterative test is applied for all possible triplets of endmembers (three land 4 

classes) among the series of N mean NDVI profiles. The total number of iteration nb is 5 

3
NC . For each triplet, the land use fractions are retrieved for the remaining 17 (i.e. N-3) 6 

groups by minimizing the Root Mean Square Error (RMSE, equation 2) between the 7 

NDVI profiles observed by MODIS and those reconstructed from the endmembers. 8 

( )[ ]∑
=

×=
T

t
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T
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1

21 ε                                                (2) 9 

With 0≥ijπ  and 1
3

1

=∑
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ijπ  10 

Where T represents the number of MODIS data 11 

 12 

Step 3. We calculate an error term ( kM , equation 3), which represents the ability of the 13 

triplet number k to explain the NDVI response for the 17 groups. Finally, the triplets are 14 

sorted according to this error term: the triplet for which kM  is minimal is called triplet 15 

rank 1, the following is called triplet rank 2, etc. 16 

 17 
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Once the endmembers are identified, they are assigned to the appropriate land use class 1 

and the surface covered by a class within a pixel (land use fraction) is retrieved by 2 

minimization (equation 2). This is applied pixel by pixel using land use fractions 3 

ranging from 0 to 1 and under the constraint that the sum of fractions is equal to 1. 4 

 5 

We apply the algorithm using two different areas for the identification of endmembers. 6 

The first one is the whole study area (figure 1). The second one is the reference area 7 

(figure 2) on which the reference land use map is available (§3.3). In both case, the land 8 

use fractions maps are analysed at the scale of the whole area. MODIS estimates are 9 

evaluated against the reference land use map (see §3.3) and against the ground truth 10 

collected on the 3 x 3 km² area (see §3.1). In order to explain the difference between 11 

annual crop endmembers between the two investigated areas, we carry out a purity 12 

analysis. The pixels of each group resulting from the k-means classification are located 13 

in the reference land use map (figure 2) and their compositions are averaged. 14 

 15 

4. Results and discussion 16 

 17 

In this section, we successively present: a quantitative evaluation of the results obtained 18 

during the 2002-2003 agricultural season; a generalised analysis of inter-annual 19 

coherence and variability of the results through the 2000-2006 period; an error analysis 20 

with typical cases for which the results are not satisfactory. 21 

 22 

4.1 Typical NDVI time series and endmembers (2002-2003 agricultural season) 23 

 24 
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The NDVI profiles of the 20 groups identified with K-means classification over the two 1 

areas of interest (whole and reference areas) can be discriminated through the 2 

combination of NDVI seasonal amplitude and average value (figure 3). It appears that 3 

the K-means method groups pixels according to the density of perennial vegetation 4 

(hierarchy of rather stable NDVI profiles with average values from 0.15 to 0.55) and 5 

according to the vegetation seasonality (contrast between high NDVI values during the 6 

agricultural season and low values in summer). 7 

 8 

When looking at the endmembers (figure 3), it is noticeable that the algorithm tends to 9 

select the profiles that display extreme values and rejects intermediates ones. 10 

Furthermore, the endmembers appear descriptive of the three dominant classes: the first 11 

one, with maximum NDVI values below 0.2, corresponds to the bare soil class; the 12 

second one, with NDVI always high (between 0.45 and 0.65), appears representative of 13 

a dense perennial vegetation (orchard class); the third one, with a large NDVI 14 

amplitude, can be associated to the class annual crop. The latter displays minimum 15 

values in November (at the sowing period), then a rapid increase to maximum values 16 

mid-March when cereal reaches full development, and a final decrease until June after 17 

total senescence of plants. This analysis makes easy to label each endmember.  18 

 19 

[Insert Figure 3 about here] 20 

 21 

The case of annual crop is of particular interest since the endmembers are not the same 22 

for the two investigated areas (figure 3). In particular, there is a difference in the NDVI 23 

value at the beginning (September to November 2002, before day 90) and ending of the 24 
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season (June to August 2003, after day 280). The level is around 0.25 for the 1 

endmember extracted on the whole area, while it is only 0.18 for the endmember 2 

extracted on the reference area. This last endmember appears to be more characteristics 3 

of annual crop, for which minimal NDVI values are close to those of bare soil (~0.15) 4 

out of the agricultural season. 5 

 6 

In order to explain the difference between annual crop endmembers, their purity are 7 

analysed (table2). The endmembers display a high proportion of either bare soil or 8 

annual crop or orchard for the two areas comparing to the remaining 17 NDVI profiles 9 

non selected as endmembers. One exception is detected for the class annual crop when 10 

the whole area is considered (72% of annual crop in group 3 that is selected as 11 

endmember against 88% in group 20, see the main left column of table 2). The 12 

difference of endmembers purity between the two areas is small for the bare soil and 13 

orchards classes, but large for annual crop (purity of 88% for the reference area against 14 

72% for the whole area, compare group 3 in the two main columns of table 2). This 15 

difference is due to significant presence of orchard in the annual crop endmember 16 

derived over the whole area (~27%, against ~9% for the reference area). When the 17 

whole area is used, the automatic extraction algorithm selects groups that include pixels 18 

of the Tessaout sub-region, where there is a mixture of olive orchards and annual crops 19 

cultivated on very small fields. In contrast, when the identification of endmembers is 20 

restricted to the reference area, the algorithm selects pixels in the irrigated Haouz sub-21 

region where fields are mainly cropped with cereals and of larger size. Therefore, this 22 

analysis demonstrates that: (1) our working hypothesis, i.e. pure pixels may exist at the 23 

spatial resolution of 250m, is valid; (2) the automatic extraction algorithm is able to 24 
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identify the most pure areas; (3)  there is an advantage to derive the endmembers on the 1 

reference area compared to the whole area. 2 

 3 

[Insert table 2 about here] 4 

 5 

4.2 Quantitative evaluation of land use map (2002-2003 agricultural season) 6 

 7 

The comparison of land use fractions estimated with MODIS and the reference land use 8 

map (figure 4) shows the consistency of areas with low and high fractions between the 9 

two maps. This is true for the three land classes: high proportion of bare soil at South-10 

West; high proportion of annual crop near High-Atlas foothills and on the Haouz and 11 

Tessaout irrigated areas in the eastern part; high proportion of orchard near the Tensift 12 

river at North and within the NFIS irrigated area at West. Average land use fractions 13 

derived from reference and estimated maps display an overall agreement (table 3), 14 

which denotes the global ability of the algorithm to describe the study area using three 15 

dominant land classes. However, the algorithm slightly underestimates the orchard and 16 

the annual crop fractions at the benefit of bare soil fractions when the whole area is 17 

considered. This underestimation is attenuated when the reference area is used to derive 18 

the endmembers. 19 

 20 

[Insert Figure 4 about here] 21 

 22 

[Insert Table 3 about here] 23 

 24 
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The quantitative comparison of MODIS and the reference land use map (table 4 and 1 

figure 5) shows that the two land use fractions always well correlate (R² around 0.8 with 2 

a minimal value of 0.68), and the efficiency is generally largely positive (>0.65). When 3 

the reference area is used to derive the endmembers, the method gives more accurate 4 

estimates of bare soil and orchard fractions (lower RMSE and bias, larger efficiency). 5 

For both areas, the estimates of orchard fractions appear less accurate than for the two 6 

other classes (efficiency of 0.65-0.7 instead of 0.80). This is likely due to the fact that 7 

the orchard class is rather heterogeneous because trees are of different nature, age and 8 

spacing, with possible case of inter-cropping. In contrast, the endmember associated to 9 

this class is representative of dense perennial vegetation (mainly old olive and citrus 10 

tree with low spacing between crown). Despite this limitation, we consider that land use 11 

fractions are correctly estimated, though the study area is only described by three typical 12 

NDVI profiles. 13 

 14 

[Insert Table 4 about here] 15 

 16 

[Insert Figure 5 about here] 17 

 18 

Finally, the comparison of MODIS land use fractions and the ground truth available 19 

over the 9 km² area shows a global agreement of land use fractions for all classes (figure 20 

6), with few orchards (less than 2% of the 9 km², see table 5). For the two others 21 

classes, we obtain accurate results, with R² larger than 0.85 and RMSE lower than 0.1. 22 

The accuracy of estimates is improved when the endmembers are derived on the 23 

reference area (RMSE of 0.07 against 0.09 in figure 6). 24 
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 1 

[Insert Table 5 about here] 2 

 3 

[Insert Figure 6 about here] 4 

 5 

All the results presented in this section, obtained for the 2002-2003 agricultural season, 6 

confirm the capacity of the linear unmixing model to describe the land use of the study 7 

area on the basis of three NDVI profiles associated to the predominant classes (orchard, 8 

annual crop, bare soil) and automatically extracted from MODIS multi-temporal 9 

images. 10 

 11 

4.3 Generalised analysis of endmembers (2000-2006 period) 12 

 13 

The algorithm is applied to the 2000-2006 period using successively each MODIS 14 

multi-temporal NDVI images. The endmembers expected for the orchard and the bare 15 

soil classes are always selected (figure 7a and 7b, respectively), the first ones with 16 

rather high NDVI values (>0.4) and low seasonal amplitudes (~ 0.2), the second ones 17 

with the lowest values (six-year maximum of 0.22). 18 

 19 

[Insert Figure 7 about here] 20 

 21 

For the bare soil and orchard classes, there is a general stability of the endmembers from 22 

one year to the other (figure 7). In contrast, the NDVI profiles with the highest 23 

amplitudes (annual crop endmembers, figure 8) display a higher variability. When the 24 
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whole area is used to retrieve the endmembers, the NDVI profiles display rather high 1 

value (>0.23) at the beginning and the end of the agricultural season for all years except 2 

2005-2006 (figure 8-top). A detailed investigation of the groups of pixels resulting from 3 

the k-mean classification shows that the annual crop endmember mainly include pixels 4 

of the Tessaout region for the first 5 years (2000-2005), while it includes those of the 5 

Haouz region for the last year (2005-2006). The selection of pixels in the Tessaout 6 

region results in a significant proportion of trees included in the annual crop class, as 7 

discussed in section §4.1 for the 2002-2003 season. This problem disappears when the 8 

endmembers are extracted on the reference area. In this case (figure 8-bottom), the 9 

seasonality of the annual crop endmember is generally consistent with the phenology of 10 

cereal crops (growing season from December to April, and NDVI values below 0.2 11 

outside), but two exceptions can be noticed: 12 

• For the 2001-2002 season, the increase of NDVI is delayed and largely reduced 13 

(peak of NDVI around 0.4 after April, figure 8-bottom-left). This year is characterised 14 

by a shortage in irrigation water after the severe drought that occurs during the 1999-15 

2001 period. In this case, the NDVI pattern matches the 2001-2002 seasonal distribution 16 

of rainfall, with most of precipitations recorded in March and April. Therefore, the 17 

2001-2002 annual crop endmember appears not suitable for the retrieval of annual crop 18 

fractions. The analysis of other NDVI profiles for this year shows that no profile is 19 

representative of the phenology of cereal crop. As an alternative, we replace the 2001-20 

2002 annual crop endmember by the average NDVI profile of the endmember identified 21 

on the four ‘normal’ years (2000-2001, 2002-2003, 2004-2005 and 2005-2006). 22 

• For the 2003-2004 season, the NDVI display an early NDVI from 0.2 to 0.4 23 

between November and December (“03-04 (rank 1)” profile in figure-bottom-right). 24 
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This pattern also appears coherent with the seasonal distribution of rainfall. Heavy 1 

rainfall at the very beginning of the season resulted in an early sowing or growth of 2 

natural vegetation. Here the analysis of other NDVI profiles allows to identify a 3 

substitute to represent the phenology of cereal crops. This endmember (“03-04 (rank 2)” 4 

profile in figure 8-bottom-right) is similar to the ones observed for the ‘normal’ years, 5 

and results in a low unmixing error (second rank in the minimisation process). 6 

 7 

[insert Figure 8 about here] 8 

 9 

4.4 Spatio-temporal variability of land use maps (2000-2006 period) 10 

 11 

A visual examination of land use fractions maps (figure 9) shows that the algorithm 12 

always detects the same region with low or high proportion of each class. Orchard 13 

fractions appear especially stable during the six years, in coherence with the duration of 14 

tree plantations. On the contrary, there are some compensations in the fractions of the 15 

two other classes (bare soil and annual crop). In particular, there is a high proportion of 16 

bare soil and a low proportion of annual crop for the 2001-2002 agricultural season 17 

compared to others. These compensations are analysed on what follows. 18 

 19 

[Insert Figure 9 about here] 20 

 21 

Land use statistics are calculated for the six years of study by averaging fractions over 22 

each of the three irrigated sub-regions (table 6). One can see that the proportion of 23 

orchard is quite stable, around 37% for NFIS, 18% for Haouz and 32% for Tessaout. 24 



 23

These values appear coherent with the qualitative knowledge of the study area (§3.1). 1 

Except for the 2001-2002 season, bare soil fractions are rather stable, between 50 and 2 

56% for the NFIS sub-region, 35 and 46% for the Haouz and between 16 and 21% for 3 

the Tessaout. The variation of annual crop fractions around its average value is of the 4 

same order. The 2001-2002 season is very particular with an important reduction of 5 

annual crop fractions, by a factor 2.5 within NFIS (4% in 2001-2002 against 10% the 6 

other years) and Tessaout (20% against 45-50%) and a factor 5 within Haouz (8% 7 

against 40%).  8 

 9 

[Insert Table 6 about here] 10 

 11 

The anomaly detected in annual crop fractions for the 2001-2002 agricultural season 12 

appears as an indicator of the water shortage experienced this year. We illustrate this for 13 

the Haouz sub-region, where the anomaly is of maximal amplitude (figure 10). The 14 

limitation of irrigation water during the driest year (annual average of 30 mm in 2001-15 

2002 instead of 130 mm for the other years) results in a large decrease of annual crop 16 

fractions (by about 30%) and a large increase of non-cultivated areas (by about 30%). 17 

The orchard fractions appear stable despite the shortage of irrigation water, consistent 18 

with the fact that orchards are irrigated in priority. 19 

 20 

[Insert Figure 10 about here] 21 

 22 

4.5 Error and limitation analysis 23 

 24 
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In order to identify the limitations of the approach, we calculate the relative error 1 

(RRMSE, equation 4) between MODIS observations ( ( )obstNDVI ) and the NDVI 2 

reconstructed from the linear combination of the endmembers associated to their land 3 

use fractions ( ( )simtNDVI ). This criteria allows us to quantify the ability of the three 4 

endmembers to reproduce MODIS NDVI space-time patterns over the study area. Maps 5 

of RRMSE are computed for each season and averaged over the six seasons (figure 11). 6 

 7 
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[Insert figure11 about here] 10 

 11 

It can be seen that the MODIS NDVI time courses are generally well reproduced (figure 12 

11). The histogram associated to the spatial variation of RRMSE displays a peak 13 

centred around a value of 10%, with 90% of pixels have a value of RRMSE lower to 14 

20%. This confirms the efficiency of the algorithm to recover NDVI space time 15 

variations, but some anomalous pixels display high errors (RRMSE>40%). These pixels 16 

are mainly located in the NFIS irrigated sub-region at the western part of the study area. 17 

There are two main cases where the capacity of the algorithm to fit MODIS 18 

observations is low: 19 

• In case 1, the NDVI time course displays two peaks at the middle (January) and at 20 

the end (April) of the agricultural season; this indicates successive cropping of 21 

vegetables with a short growing period; 22 
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• In case 2, the NDVI time course displays an inverse pattern than the one of annual 1 

crop, with a large growing period between April and January; such pattern is consistent 2 

with the phenology of deciduous tree crops (apricot, apple, peach trees) and vineyards. 3 

The two previous confusions concern a small part of the study area (0.2% with 4 

RRMSE>40%). Further investigations would be necessary to analyse the performance 5 

of the algorithm using more endmembers and more NDVI profiles as an input of the 6 

minimisation procedure (N>20 in equation 3). However, this may result in larger 7 

computation time and additional compensations/overlaps between land use classes. 8 

 9 

5. Conclusion 10 

 11 

In this study, we investigate the potential of time series of MODIS data (MOD13Q1 12 

product, i.e. 16-day NDVI composite images by CVMVC algorithm, Huete et al. 2002) 13 

to monitor the land-use of the Tensift plain, a semi-arid region located in the 14 

surrounding of the Marrakech city. MODIS data offers a costless coverage of the Earth 15 

with a high temporal resolution, but its spatial resolution (250m) is large compared to 16 

the average field size in the study site. Thus, we develop an approach based on the 17 

linear unmixing of multi-temporal MODIS data. In this approach, the identification of 18 

endmembers - key point in linear unmixing - is performed on an annual basis following 19 

a two-step procedure: 1) pixels are grouped according to the vegetation seasonality; 20 

(2) the set of groups that displays the best ability to explain all NDVI time courses are 21 

automatically extracted using a statistical analysis. Some advantages can be mentioned 22 

here. Firstly, there is no need of extra information such as a training set where the land 23 

use is known. Secondly, there are no substantial differences in the acquisition conditions 24 
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between endmembers and the data that are unmixed. Thirdly, the regional conditions on 1 

which the vegetation growth (e.g. dry or humid year) are integrated to the endmembers.  2 

 3 

This procedure provides a continuous description of the land use in term of fractions of 4 

three classes (orchard, annual crop, non-cultivated areas) and on an annual basis 5 

(September to August, i.e. the agricultural season). These three classes are the most 6 

important for agricultural water management because they are predominant and they 7 

corresponds to very different water needs. The use of these three broad categories also 8 

facilitate the analysis of the inter-annual variability of MODIS estimates of land use 9 

fractions as well as its evaluation against additional data sets (ground truth and high 10 

spatial resolution images). 11 

 12 

The analysis of typical NDVI profiles firstly demonstrates that our working assumption, 13 

i.e. quite pure pixels exist at the spatial resolution of 250m, is valid. Secondly, the 14 

algorithm is able to identify the most pure areas associated to each of the three classes 15 

of interest. The NDVI profiles retained as endmembers match with phenological 16 

features of non-cultivated areas (flat profiles with low values on the bare soil class), 17 

dense perennial vegetation (flat profiles with rather high values on the orchard class) 18 

and cereals (largest NDVI seasonality on the annual crop class). Thirdly, the algorithm 19 

is robust since the endmembers generally slightly differ between years. The inter-annual 20 

stability of endmembers is particularly true for orchards and bare soils, while the 21 

endmembers associated to the annual crop class display a larger inter-annual variability, 22 

in relation with changes in water availability (dam irrigation water, seasonal amount and 23 

distribution of rainfall). 24 
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Maps of land use fractions are in coherence with the qualitative knowledge of the study 1 

area, in particular for the three main irrigated sub-regions (NFIS, Haouz and Tessaout). 2 

Using both high spatial resolution data and ground truth, we quantify the error in land 3 

use fractions to around 0.1 at 1km spatial resolution (2002-2003 season). The analysis 4 

of land use maps derived for the six successive agricultural seasons (2000-2001 to 5 

2005-2006) also confirms the performance of the approach. The orchard class is 6 

logically the most stable, with fractions around 37%, 18% and 32% for the NFIS, Haouz 7 

and Tessaout sub-regions, respectively. The compensations observed between the 8 

fractions of bare soil and annual crop show a high degree of space-time coherence with 9 

irrigation statistics. In particular, the algorithm retrieves a large reduction of annual 10 

crops after the severe drought that occurs at the beginning of the period of study. These 11 

results are promising in the perspective of the regional monitoring of water resources in 12 

the semi-arid Tensift/Marrakech plain. 13 

 14 

Finally, the examination of some anomalous NDVI profiles, i.e. which are not well 15 

reproduced by the linear unmixing model, denotes the incapacity of the algorithm to 16 

describe the phenology of particular crop types (e.g. vineyards, vegetable crops). 17 

Inclusion of other land use components would provide additional information and 18 

possibly more accurate results. Further tests should be performed to identify the optimal 19 

number of both the endmembers and the groups of pixels used as endmembers potential 20 

candidates. In this perspective, the availability of time series of images with both high 21 

spatial resolution and high temporal repetitivity (e.g. FORMOSAT-2, GMES-Sentinel, 22 

RapidEye or Venµs) would offer additional opportunities. 23 

 24 
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FIGURE CAPTIONS 1 
 2 
Figure 1. Delimitation of the whole study area (in red) and its three main irrigated sub-3 
regions – NFIS (in yellow), Haouz (in black) and Tessaout (in cyan) – on a Landsat7 4 
image. The white square represents the coverage of Landsat and SPOT4/5 images. 5 
 6 
Figure 2. Land use map derived from high spatial resolution data on the reference area 7 
(2002-2003 season, 30m spatial resolution). 8 
 9 
Figure 3. 2002-2003 NDVI profiles averaged over the 20 groups of pixels resulting 10 
from the k-means classification (gray lines) on the whole area (a) and on the reference 11 
area (b). Bold lines with symbols highlight the NDVI endmembers associated to orchard 12 
( ), bare soil ( ), and annual crop ( ). The first day is September the 1st, 2002. 13 
 14 
Figure 4. 2002-2003 land use fraction maps derived on each class from the reference 15 
land use map (left) and from linear unmixing of MODIS data with the endmembers 16 
extracted on the whole area (middle) and on the reference area (right). 17 
 18 
Figure 5. Estimated versus reference land use fractions (2002-2003 season, 1km spatial 19 
resolution): orchard (a), bare soil (b), annual crop (c). Estimates are provided by the 20 
linear unmixing model with the endmembers extracted on the whole area (1, at top) and 21 
on the reference area (2, at bottom). Black lines are X=Y lines; gray lines are regression 22 
lines. 23 
 24 
Figure 6. Estimated versus observed land use fractions (3 km x 3 km R3 irrigated area, 25 
2002-2003 season, 1km spatial resolution). Estimates are provided by the linear 26 
unmixing model with the endmembers extracted on the whole area (a) and on the 27 
reference area (b). Black lines are X=Y lines. 28 
 29 
Figure 7. Estimated endmembers through the six-year period of study (2000-2001 to 30 
2005-2006 agricultural seasons) on orchard (a) and bare soil (b) classes. The 31 
endmembers are extracted on the whole area (top figures) and on the reference area 32 
(bottom figures). On all X-axis, the first day is 1st September. 33 
 34 
Figure 8. Same as Figure 7 for the annual crop class: (a) 2000-2001 to 2002-2003 35 
seasons, (b) 2003-2004 to 2005-2006 seasons. The endmembers are extracted on the 36 
whole area (top figures) and on the reference area (bottom figures). In figure a (bottom), 37 
the “4 year average” represents the average of the 2000-2001, 2002-2003, 2004-2005 38 
and 2005-2006 annual crop endmembers. In figure b (bottom), “03-04 (rank1)” and 39 
“03-04 (rank2)” correspond to the endmembers linked to the 1st and the 2nd ranks in the 40 
minimisation procedure, respectively. 41 
 42 
Figure 9. Maps of land use fractions derived from linear unmixing of MODIS data for 43 
the six years of study (2000-2001 to 2005-2006 agricultural seasons): orchard (left), 44 
bare soil (middle) and annual crop (right). 45 
 46 



 34

Figure 10. Estimated land use fractions averaged over Haouz irrigated sub-region for 1 
the six years of study (2000-2001 to 2005-2006 agricultural seasons), together with the 2 
annual average of irrigation. 3 
 4 
Figure 11. Left: map of the relative root mean square error (RRMSE) maps, averaged 5 
for the six years of study. Right: histogram associated to the spatial variation of 6 
RRMSE. 7 
 8 



 35

 1 
Figure 1 2 

 3 
 4 
 5 

 6 
 7 
 8 
 9 



 36

 1 
Figure 2 2 

 3 

 4 

 5 
 Orchard  Bare soil  Annual crop 6 



 37

 1 

Figure 3 2 
 3 
 4 

 5 

(a) (b) 



 38

Figure 4 1 
 2 

 3 

             4 
 5 

 6 

A
nu

ua
l c

ro
p 

   
   

   
  B

ar
e 

so
il 

   
   

   
   

   
 O

rc
ha

rd
 



 39

 1 
Figure 5 2 

 3 
 4 

 5 
 6 

 7 

8 

(1) 

(2) 



 40

 1 
 2 

Figure 6 3 
 4 
 5 

 6 

 7 

(a) (b) 



 41

 1 
Figure 7 2 

 3 
 4 
 5 

 6 

 7 
 8 

(a) (b) 



 42

 1 

Figure 8 2 

 3 
 4 

 5 
 6 

 7 
 8 

(a) (b) 



 43

 1 
 2 

 3 
Figure 9 4 

 5 
 6 

 7 

 8 

 9 

 10 

 11 

 12 

 13 

Orchard          Bare soil            Annual crop 

20
05

-2
00

6 
   

   
20

04
-2

00
5 

 
20

03
-2

00
4 

   
   

  2
00

2-
20

03
   

   
   

   
 2

00
1-

20
02

   
   

  2
00

0-
20

01
 



 44

Figure 10 1 
 2 
 3 
 4 

5 



 45

Figure 11 1 
 2 

 3 

    4 



 46

 1 
 2 
 3 
Table 1. Confusion matrix of the 2002-2003 reference land use map (in pixels) 4 
 5 
  Field observations  

  
Orchard on 
annual 
understory 

 Orchard on bare 
soil 

Bare 
soil 

Annual 
crop  total Commission 

error (%) 

          
Orchard 369  237 0 17  623 2.7 
         
Bare soil 0  3 279 0  282 1.1 
         
Annual 
crop 162  24 165 499  850 41.3 

         

O
ut

pu
t 

cl
as

si
fic

at
io

n 

total 531  264 444 516  1755  
          

 Omission 
error (%) 30.5  10.2 37.2 3.3    

          
  Overall Accuracy =77.6%    
 6 

 7 
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Table 2. Reference land use fractions (%) averaged over the 20 groups of pixels resulting 1 
from the k-means classification of 2002-2003 MODIS data; gray colors highlight the 2 
composition of the groups selected as endmembers; numbers in bold indicates the 3 
highest purity for each of the three classes of interest. 4 
 5 

 Whole area Reference area 

Group Orchard Bare soil 
Annual 

crop 
Orchard Bare soil 

Annual 
crop 

1 70 3.4 26.6 71.1 3.7 25.2 
2 1.8 97.4 0.8 1.4 98.2 0.4 
3 26.6 1.3 72.1 8.8 2.9 88.3 
4 3.9 91.9 4.3 19.4 16.2 64.4 
5 57.2 12.5 30.3 54.0 9.2 36.8 
6 27.3 6.4 66.3 3.1 88.6 8.3 
7 3.8 73.5 22.7 29.4 57.6 13.0 
8 27.4 59.0 13.7 40.2 20.9 38.9 
9 50.1 19.8 30.1 4.3 93.1 2.5 
10 26.6 24.1 49.3 55.3 25.5 19.3 
11 55.4 26.5 18.1 3.5 10.7 85.8 
12 16.9 51.4 31.7 53.5 3.4 43.1 
13 41.4 41.2 17.4 65.5 12.3 22.2 
14 43.8 5.4 50.7 2.9 67.0 30.1 
15 64.0 9.1 26.9 24.8 41.5 33.7 
16 4.0 31.8 64.2 16.9 76.1 7.0 
17 15.5 77.2 7.3 33.7 4.4 62.0 
18 7.3 22.4 70.2 5.6 39.8 54.6 
19 52.9 1.8 45.4 15.4 65.0 19.5 
20 6.1 5.7 88.2 41.9 41.9 16.1 

 6 
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Table 3. Reference and estimated land use fractions (%) averaged over the reference area 1 
(2002-2003 season). 2 
 3 

 Orchard  Bare soil  Annual crop 

land use fractions derived from high 
spatial resolution data 

22.3  50.9  26.8 

      
land use fractions derived from MODIS 

with the endmembers extracted 
on the whole area 

18.7  57.4  23.9 

      
land use fractions derived from MODIS 

with the endmembers extracted 
on the reference area 

23.1  53.1  23.7 

 4 
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 1 

Table 4. Statistical variables calculated between the estimated and the reference land 2 
use fractions (2002-2003 season, 1km spatial resolution); estimates are provided by the 3 
linear unmixing model applied with the endmembers extracted on the whole area (left 4 
part) and on the reference area (right part). 5 
 6 
 7 

  Whole area Reference area 

Land class  R²  RMSE EFF  Bias R²  RMSE  EFF  Bias 

Orchard  0.69  0.11 0.65  0.04 0.71  0.10  0.70  -0.01 
Bare soil  0.90  0.12 0.82  -0.07 0.90  0.10  0.88  -0.02 

Annual crop  0.81   0.11 0.79  0.03  0.82  0.10  0.80   0.03 
 8 
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 1 
Table 5. Observed and estimated land use fractions (%) averaged over the 3 km x 3 km 2 
R3 area (2002-2003 season). 3 
 4 

 Orchard Bare soil Annual crop 
land use fractions observed at ground 1.7 23.5 74.8 

    
land use fractions derived from MODIS 

with the endmembers extracted 
 on the whole area 

0.8 30.9 68.3 

    
land use fractions derived from MODIS 

with the endmembers extracted 
 on the reference area 

3.3 18.7 78.0 

 5 



 51

Table 6. Estimated land use fractions averaged over the three main irrigated sub-regions 1 
for the six years of study (2000-2001 to 2005-2006 agricultural seasons). 2 

 3 

Irrigated  

sub-regions 
Statistics 2000-

2001 
2001-
2002 

 2002-
2003 

2003-
2004 

 2004-
2005 

 2005-
2006 

 
Mean 

Orchard (%) 36.7 33.9  35.2 35.4  39.2  39.9  36.7 

Bare soil (%) 55.9 62.2  52.0 54.4  52.1  50.5  54.5 NFIS 

Annual crop (%) 7.3 3.7  12.7 10.0  8.5  9.4  8.6 

Orchard (%) 16.6 20.2  17.3 18.3  20.0  17.6  18.3 

Bare soil (%) 46.1 72.2  42.8 39.5  40.4  35.3  46.1 Haouz 

Annual crop (%) 37.3 7.6  39.9 42.2  39.5  47.1  35.6 

Orchard (%) 29.3 31.7  27.1 37.4  37.3  35.5  33.1 

Bare soil (%) 21.7 47.5  16.4 20.0  18.4  17.8  23.6 Tessaout 

Annual crop (%) 49.0 20.8  56.5 42.6  44.3  46.7  43.3 

 4 


