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Abstract 11 

Understanding the spatial distribution of air temperature in mountainous areas is essential in 12 

hydrological modelling. In the Moroccan High-Atlas range, the meteorological stations network 13 

is sparse. In order to get additional information, we investigated the thermal infrared data 14 

supplied by the Enhanced Thematic Mapper (ETM+) sensor onboard Landsat 7 satellite. 15 

Brightness temperature derived from ETM+ images is used as a proxy of air temperature to set 16 

up a model that describes its spatial. This model accounts for sun location and topographic 17 

characteristics derived from the SRTM digital elevation model. It was evaluated on the Rheraya 18 

watershed, a 225 km² region located within the semi-arid High-Atlas mountain range, using two 19 

different sources of data. The first data set consists in in-situ air temperature collected by 20 

meteorological stations installed during the experiment at various altitudes from 1400 to 21 

3200 m. The second data set is satellite estimates of snow-covered areas (SCA) derived from 22 

MODIS images over the whole catchment at 500m spatial resolution.  23 

Key words: air temperature, Landsat ETM+, snow-covered areas, Moroccan High-Atlas. 24 
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Résumé 1 

Comprendre la distribution spatiale de la température de l'air dans les zones montagneuses 2 

est essentielle pour la modélisation hydrologique. Dans la chaîne du Haut-Atlas marocain, la 3 

faible densité du réseau de stations météorologiques rend difficile l’obtention de ce paramètre. 4 

Dans ce contexte, nous avons utilisé les données infrarouge thermique fournies par le capteur 5 

Enhanced Thematic Mapper (ETM +) à bord du satellite Landsat 7. La variation relative de la 6 

température de brillance est utilisée pour construire un modèle qui décrit celle de la 7 

température de l'air. Le modèle (MSPAT) prend en compte l’angle d’élévation solaire et les 8 

caractéristiques topographiques provenant du modèle numérique de terrain SRTM avec une 9 

résolution spatiale de 90m. MSPAT a été évalué sur le bassin versant de Rheraya, région de 225 10 

km² située dans le massif semi-aride du Haut-Atlas, en utilisant deux types de données 11 

différentes : (1)des chroniques de températures de l'air mesurées partir de stations 12 

météorologiques installées au cours de l'expérience à différentes altitudes de 1400 à 3200 m ; 13 

(2) des images de surfaces enneigées (SCA) estimées à partir d'images MODIS acquises à 500 m 14 

de résolution spatiale sur l'ensemble du bassin versant. 15 

Mots clés: température de l'air, Landsat ETM+, surface de neige, Haut-Atlas marocain. 16 

1. Introduction 17 

Air temperature is an important forcing variable for many environmental models, with a 18 

large range of applications concerning agronomy, hydrology or ecology. In snow hydrology, air 19 

temperature is obviously the main factor to partition liquid from solid precipitation (snowfall). It 20 

can be also used as the main driving variable to estimate snowmelt (Martinec, 1975; Bloschl, 21 

1991; Brubaker et al., 1996, Richard and Gratton, 2001). Therefore, it is fundamental to obtain 22 

accurate spatially-distributed temperature values for the purpose of hydrological modelling in 23 

snowy areas.  24 

Spatial interpolation is widely used to obtain air temperature estimates at any point of 25 

interest. Methods can be of deterministic or stochastic nature and differ according to data 26 

availability and scale of application, and. The most common methods are Kriging and Cokriging 27 

techniques (Matheron, 1963), Inverse-Distance Weighting (Legates and Willmont, 1990), 28 

Splining (Eckstein, 1989; Hutchinson and Gessler, 1994), and Polynomial regression (Myers, 29 

1990). Many studies were carried out to distribute air temperature based on interpolation 30 

http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Matheron%201963
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Legates%201990
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Eckstein%201989
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Hutchinson%201994
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Myers%201990
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Myers%201990
http://www.ncgia.ucsb.edu/conf/SANTA_FE_CD-ROM/sf_papers/collins_fred/collins.html#Myers%201990
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methods. Over a large study area in Japan, Ishida and Kawashima (1993) report errors between 1 

1 and 3 K for the interpolation of hourly temperature data cokriged with elevation as an external 2 

drift factor. Hudson and Wackernagel (1994) also used cokriging with elevation for predicting 3 

air temperatures in Scotland, and showed that this technique performed better than simpler 4 

interpolation algorithms. Over smaller areas in Sweden, Soderstrom and Magnusson (1995) 5 

reported interpolation errors between 0.4 K and 1.6 K. All these studies  have pointed out that 6 

the results of kriging are highly dependent on the spatial density and distribution of 7 

meteorological stations. 8 

In mountainous areas, air temperature is controlled by different factors related to location 9 

and topography (Hudson and Wackernagel, 1994). Therefore, the use of interpolation methods 10 

cited above may generate substantial errors and biases (Willmott et al., 1991; Robeson and 11 

Willmott, 1993). Conventionally, the method of altitudinal lapse rate is used to estimate 12 

temperatures at different elevations (Dunn and Colohan, 1999; Singh and Singh, 2001). More 13 

sophisticated geostatistical method such as AURELHY (Bénichou, 1987) aims at accounting for 14 

the effects of additional topographic factors (slope, aspect). However, such methods require a 15 

dense network to be calibrated. This condition is not meet in the majority of mountainous areas, 16 

especially in developing countries. Meteorological prediction may offer an alternative, but the 17 

grid of meteorological models is too coarse (1 to 10 km) for retrieving the spatial pattern of air 18 

temperature at a fine resolution over areas with a complex relief. 19 

Satellite thermal infrared data allows retrieving the spatial distribution of the surface skin 20 

temperature over extended regions. Several studies, most of them based on coarse resolution 21 

data, aimed at using this information to map air temperature at a regional scale. For instance, the 22 

daily maximum air temperature field can be retrieved with an accuracy of about 2.5 K using land 23 

surface temperatures derived from NOAA-AVHRR (Vogt et al., 1996, 1997). Due to the low 24 

spatial resolution of these data (1km), these methods appear difficult to operate in mountainous 25 

regions.  26 

In this context, the objective of this paper is to investigate thermal infrared satellite data 27 

acquired to improve the description of the spatial distribution of air temperature at a fine 28 

resolution over mountainous areas. The study area is the Rheraya watershed, High-Atlas 29 

mountain range, Morocco. The joint analysis of ETM+ images, meteorological data set and digital 30 

elevation model allowed to set up a model (MSPAT) that simulates continuous (daily time step) 31 

and spatially distributed (90 m resolution) air temperatures. MSPAT simulations are compared 32 

to the altitudinal lapse rate method (LRM). The comparative evaluation of these two models is 33 
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performed using air temperature recorded from meteorological stations and using snow cover 1 

maps derived from MODIS data at a 500m spatial resolution.  2 

2. Datasets 3 

The experiment took place within High-Atlas, a large mountain range in central Morocco 4 

(800km long and 70km wide). The highest peak is Jbel Toubkal, which culminates at 4174m 5 

above sea level. Precipitations in the mountains allow supplying several big irrigated areas in 6 

the surrounding plains (Chaponnière et al., 2005; Boudhar et al., 2007; Chehbouni et al., 2008). 7 

They are very irregular in time and space, which is typical of semi-arid areas. Snowfalls occur 8 

mainly during the winter season (November to April) in the upper parts of watersheds. The 9 

contribution of snowmelt to river flows is significant (between 20 and 45% of the total flows 10 

according to the characteristics of watershed, Boudhar et al. 2009). 11 

The experimental data set was collected over the Rehraya atlasic sub-catchment (Fig. 1). This 12 

head watershed covers a surface area of about 225 km2 and is characterized by a semi-arid and 13 

mountainous climate (precipitation of 360 mm/year at the outlet). The elevation ranges from 14 

1084 to 4167 m, and slopes are very steep, with an average grade of 19%. 15 

The experimental data set consist in climatic data, Landat ETM+ and MODIS images, and the 16 

SRTM Digital Elevation Model (DEM). 17 

2.1. Climatic data 18 

Air temperatures were recorded by the six meteorological stations located in Fig.1. Their 19 

main topographic characteristics are summarised in Table 1. These characteristics were 20 

retrieved from the DEM in the surroundings each meteorological stations. The stations are all 21 

located within or in the close vicinity of the Rheraya catchment, with a large range of altitudes 22 

(1400m to 3200m) and aspects (from 20° northern to 184° southern exposures). 23 

All these stations were equipped with HMP45C probes (Vaisala, Finland) that measure air 24 

temperature and vapour pressure on a half-hourly time step, except at the Caf station where 25 

only minimal and maximal temperatures are available. In order to have a maximal sampling, 26 

data analysis is performed for daily maximum air temperatures. As illustrated in the Fig. 2, the 27 



5 

 

altitude is a principal factor controlling air temperature variation: an average lapse rate of -0.56 1 

°C per 100 meters was observed during winter 2007/2008. 2 

2.2. Landsat ETM+  3 

The Enhanced Thematic Mapper (ETM+) sensor is operational onboard the Landsat 7 4 

satellite. ETM+ observes the Earth in seven spectral bands, amongst which one in the thermal 5 

infrared region (ETM+6: 10.40 - 12.50 µm). ETM+ images are acquired with a regular revisit 6 

time of 16 days at a spatial resolution of 30 m in the solar domain and 60 m for the thermal band 7 

(Table 2). The scene size is 170×183 km when orbiting at an altitude of 705 km. For this study, 8 

six images were available over the Rheraya sub-catchment (Table 3). 9 

2.3. MODIS data 10 

The Moderated Resolution Imaging Spectroradiometer (MODIS) is an Earth Observing 11 

System (EOS) instrument on board the Terra and Aqua platforms, launched in December 1999 12 

and May 2002, respectively. The sensor observes the earth from a sun-synchronous position 13 

near the polar orbit at an altitude of 705 km. The sensor scans ±55° from nadir in 36 spectral 14 

bands in the visible, near- and short-wave and thermal infrared parts of the electromagnetic 15 

spectrum. During each scan, 10 along-track detectors per spectral band simultaneously sample 16 

the earth. From its polar orbit, MODIS views the Earth’s entire surface ranging from every day at 17 

high latitudes to every other day at low latitudes (Justice et al., 1998). 18 

In this article, we used the datasets of the daily surface reflectance product “MOD09GHK”, 19 

which is a product computed from the MODIS Level 1B land bands 1-7. Images were ordered 20 

from September 2003 to June 2006 through the Earth Observing System (EOS) data gateway 21 

(https://wist.echo.nasa.gov). The main characteristics of MODIS images are provided in Table 4. 22 

In this study, we used surface reflectances acquired at 500m spatial resolution of 500m in the 23 

blue (band 3), the green (band 4) and the short-wave infrared (band 6) part of the 24 

electromagnetic spectrum. 25 

https://wist.echo.nasa.gov/
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2.4. Digital Elevation Model (DEM) 1 

The digital elevation model (DEM) used in this study was derived from the Shuttle Radar 2 

Topography Mission (SRTM) data, which consists of a specially modified radar system that flew 3 

onboard the Space Shuttle Endeavour during an 11-day mission in February of 2000. It is an 4 

international project led by the U.S. National Geospatial-Intelligence Agency (NGA), U.S. National 5 

Aeronautics and Space Administration (NASA), the Italian Space Agency (ASI) and the German 6 

Aerospace Center (DLR). SRTM obtained elevation data on a near-global scale to generate the 7 

most complete high resolution digital topographic database of Earth, including three resolution 8 

products, of 1 km and 90 m resolutions for the world, and a 30 m resolution for the US (USGS, 9 

2004). All SRTM data are freely available at: 10 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp.  11 

In this study, we used the STRM-DEM version 4 acquired at the full 90m spatial resolution 12 

over the area covered by landsat scenes (Latitudes 30°28’ - 32°24’ North Latitudes, longitudes 13 

9°14' and 9°9' West). Altitude and derivatives (aspect and slope) were calculated through the 14 

ENVI DEM extraction module (© 2008 ITT Visual Information Solutions). 15 

3. Methodology 16 

ETM+ brightness temperature was first calculated (§3.1), then converted as a proxy of the 17 

maximal air temperature images (§3.2). The resulting images were analysed together with 18 

derivatives of the SRTM digital elevation model for understanding the topographical factors 19 

controlling the air temperature variability (§3.3). This analysis allowed to set up the MSPAT 20 

models that simulates continuous (daily time step) and spatially distributed (90 m resolution) 21 

air temperatures (§3.4). MSPAT simulations were compared to the altitudinal lapse rate method 22 

(LRM, described in §3.5). The comparative evaluation of these two models was performed using 23 

air temperature recorded from additional meteorological stations and using snow cover maps 24 

derived from MODIS data at a 500m spatial resolution. The snow mapping method is described 25 

in section §3.6.  26 

http://srtm.csi.cgiar.org/SELECTION/inputCoord.asp
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3.1. Brightness temperature calculation 1 

The computation of brightness temperature from ETM+6 data first requires the conversion of 2 

digital numbers to radiances. For this purpose we used the following formula developed by the 3 

National Aeronautics and Space Administration (Eq. 1, after Markham and Barker 1986). 4 

    (Eq. 1) 5 

where L(λ) is the spectral radiance received by the sensor (mWcm-2sr-1m-1), Qmax is the 6 

maximum recorded (255), and Qdn is the digital number of the analysed pixel, Lmin(λ) and  Lmax(λ)  7 

are the minimum and maximum spectral radiance, detected for Qdn=0 and Qdn=255, respectively. 8 

For ETM6 with central wavelength of 11.475 mm, it has been set that Lmin(λ)=0.1238 for Qdn=0 9 

and Lmax(λ) 1.56 mWcm-2sr-1m-1 for Qdn=255 (Schneider and Mauser 1996). Thus, the above 10 

equation can be simplified into the following form: 11 

     (Eq. 2) 12 

Once the spectral radiance L(λ) is computed, the brightness temperature at the satellite level 13 

can be directly calculated either by inverting Planck’s radiance function for temperature 14 

(Sospedra et al. 1998) or by using approximation formula (Eq. 3, after Schott and Volchok, 1985, 15 

Wukelic et al., 1989, Goetz et al., 1995 : 16 
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 Where, TB is the brightness temperature and K1 and K2 are pre-launch calibration constants: 18 

K1= 607.76 mWcm-2sr-1m-1  and K2=1260.56 degK , respectively (Schneider and Mauser, 1996). 19 

3.2. Derivation of Maximal Air Temperature from ETM+ 20 

Maps of maximal air temperatures were established on the Rheraya watershed by combining 21 

ETM+ images and local measurements, with the assumption that air and brightness 22 

temperatures (Tb) are linearly related. In principle, there is a tight coupling between the surface 23 

and the air temperature under bare soil conditions. Coupling can also be strong when snowpack 24 
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is below zero degree. Under melting conditions, snow surface is close to zero degree and there is 1 

little coupling with the air above. However, Tb distributions according to slope and elevation can 2 

be used as additional information to distribute spatially the variations in available melting 3 

energy (radiative or sensible heat) in all conditions for use within empirical degree days models 4 

(Boudhar et al., submitted). It’s therefore a proxy for these variations rather than a fully 5 

deterministic variable. For each image, the brightness temperatures (Tb) of the pixels that 6 

include weather stations were extracted and compared with maximal air temperatures (Tam) 7 

obtained from the meteorological stations. It appeared that Tb was well correlated with Tam, 8 

with a correlation coefficient R² of 0.82 (Fig. 3). Tam were thus calculated for Tb using a unique 9 

regression equation (Tam = 0.7 *Tb – 3.2) that was successively applied on each image. 10 

3.3. Analysis of Maximal Air Temperature Variation  11 

Fig. 4 represents an example of the co-variation of maximal air temperature and altitude over 12 

the Rheraya watershed in 27/02/2003. Not surprisingly, the two variables were found highly 13 

correlated, with a decrease by 18 °C of air temperature associated to a 3000 m difference in 14 

elevation. This corresponds to an equivalent lapse rate value of 0.60°/100m. Not shown here, 15 

the Tam versus elevation curves extracted for the remaining images display the same pattern, 16 

with lapse rates varying between 0.43°/100m to 0.75°/100m. These values appear consistent  17 

with that of an international standard atmosphere (0.65 °C/100 m according to the International 18 

Civil Aviation Organization). 19 

Fig. 5 provides an example of air temperature variations with aspect in February 27, 2003. 20 

The aspect values are expressed in degrees, with the values 0° (or 360°), 90°, 180° and 270° 21 

corresponding to the facing North, East, South and West, respectively. A difference of 10°C in air 22 

temperature between northern and southern exposures was observed this day. The variations of 23 

air temperature with aspect followed a sinusoidal curve centred on about 140°, in coherence 24 

with the sun diurnal course (the sun azimuthal angle is 165° at the time of acquisition). 25 

A deeper investigation shows that the dependence of Tam with aspect is function of altitude, 26 

slope and sun elevation. Fig. 6 presents the amplitude of Tam variations with aspects for seven 27 

altitudinal zones from 1000 to 4200 m (with steps of 400 m), together with slopes. Variations of 28 

Tam with exposures match the altitudinal distribution of slopes, especially during the winter 29 

period when the sun elevation is low. For the ETM+ image acquired in May with a maximal sun 30 

elevation of 77°, this effect appears very limited. 31 
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3.4. Spatial distribution of Air Temperature (MSPAT model) 1 

The air temperature in any point Tam(i,j) of the Rheraya sub catchment’s was calculated from 2 

the air temperature recorded at one reference meteorological station (Tam(Iref,Jref), OukaSM and 3 

Armed stations, and topographical differences between this point and the reference station. 4 

These differences were accounted for using the MSPAT model with the altitude, exposition and 5 

slope extracted at the pixel (i,j) and at the location of the reference station (Eq. 6). The MSPAT 6 

was set up to obtain daily images of maximal air temperature at a 90m spatial resolution.  7 
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          (Eq. 6) 9 

where : 10 

G is the air temperature lapse rate calculated from the two reference meteorological stations 11 

(Armed and OukaSM) at a daily time step 12 

)(),( refji
AltAltAlt  is the difference in elevation between the reference station and 13 

the pixel where air temperature is calculated. 14 

AS(I,j) and ASref are the aspect in degree of the pixel  (i, j) and of the reference station, 15 

respectively. 16 

. For a given altitude, the model accounts for aspect, slope and sun elevation according to 17 

equations (Eq. 7 and Eq. 8). In details, the air temperature was calculated from the temperature 18 

averaged for a given altitudinal band with a correction of the effect of exposure based on a 19 

cosine function (Eq. 7). The maximal air temperature was logically supposed to be the highest 20 

when the surface is fully oriented at South (aspect of 180°). The amplitude of the cosine was 21 

adjusted as a function of the ratio of the local slope to the sun elevation (A coefficient in Eq. 8 22 

and Fig. 7). 23 
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Where Tamz is the maximal air temperature for a pixel of altitude z and aspect ASz in degree. 2 

Tamz  is the mean of maximal air temperature for the altitudinal zone z. A is a coefficients 3 

depending of date and altitudinal zone. SE and SL are the sun elevation angle and the slope, both 4 

in degree. 5 

3.5. Lapse rate method (LRM) 6 

In the lowest 10-15 km of the atmosphere, temperature declines with an increase in altitude. 7 

This decline, known as temperature lapse rate, is controlled by the balance between heat 8 

convection from the surface and radiative cooling. However, lapse rates vary with: (1) altitude, 9 

(2) season, (3) latitude, and (4) interactions between topography and weather (e.g. dry versus 10 

moist air and inversions). 11 

The lapse rate method (LRM) takes the maximum air temperature observed at a reference 12 

station and extrapolates that value over the entire basin via a functional relationship between 13 

air temperature and elevation data. This method assumes 1) a linear relationship between air 14 

temperature and elevation, and 2) horizontal gradients due to topographic and orographic 15 

effects are negligible. In this study, the temperature lapse rates (G) on a daily basis using the 16 

stations were the longest dataset is available as: 17 

1 2

1 2

Tam Tam
G

Alt Alt





 (Eq. 4) 18 

Where Tam1 and Tam2 are the values of maximum air temperature measured at the Armed 19 

station and OukaSM stations, respectively. Alt1 and Alt2 are the elevations of these two stations.  20 

Air temperature lapse rates were calculated for each study year and then applied to elevation 21 

data for Rheraya basin to determine air temperature for each pixel using air temperature 22 

measured at a reference station (Tam(Iref,Jref)) (Eq. 5). 23 

( , ) ( )
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i j ref
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where : 25 
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AltAltAlt 

is the difference in elevation between the reference station 1 

(OukaSM and Armed) and the pixel where air temperature is calculated. 2 

3.6. Estimates of snow-covered areas (SCA) 3 

Snow-covered areas were estimated using two methods: (1) Simulation of snowfall and 4 

snowmelt, (2) Mapping using MODIS images. 5 

 Simulation  6 

The snow cover fraction (SCA) was parameterized as an asymptotically function of the snow 7 

water equivalent (SWE) according to equation (Eq. 9) (Anderson, 1976).  8 

max
tanh(100 )SCA SCA SWE    (Eq. 9) 9 

Where SWE is the snow water equivalent (in mm), and SCAmax is the maximum allowed 10 

snow cover fraction, set to 0.95. 11 

SWE was calculated as the balance between the accumulations processes (snowfall) and the 12 

ablation processes (snowmelt). During precipitation events, SWE increased by the daily snowfall 13 

if the mean air temperature is below 0°C, otherwise precipitation is rain. Snowmelt was 14 

calculated with a classical temperature index described in Equation 10. 15 
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 (Eq. 10) 16 

Where Ms is the daily bulk loss of water from the snowpack (mm/day); Td is the mean daily 17 

air temperature (°C); T0 is the base temperature (0°C); and a, the degree-day factor 18 

(mm/°C/day). The later is computed as 1.1 multiplied by the ratio of snow and water densities 19 

(Martinec, 1975).  20 

Two sets of simulations were performed for years 2003/2004, 2004/2005 and 2005/2006 21 

over the entire Rheraya watershed using a 90m spatial grid, with the air temperature spatially 22 

distributed either with the MSPAT model or with the simple lapse rate method. In both case, the 23 



12 

 

precipitations are distributed using the precipitations recorded at the ARMED station and an 1 

average observed elevation gradient of 0.03 mm/100m (Boudhar et al., 2009). 2 

 Mapping 3 

To select the cloud-free data, we initially eliminated the images showing high reflectances in 4 

the blue band (on average higher than 20%) over the lower-lying areas close to the High-Atlas 5 

(approximately 5000 snow-free pixels, where the altitude is lower than 1000 meters). Indeed, 6 

these high reflectances are due to the presence of clouds on the Atlas foothills, and therefore 7 

probably on nearby Atlas summits. In a second phase, we identified clouds on the remaining 8 

images by visual examination. After this filtering phase, the number of useful images is 9 

respectively 44, 52 and 82 for the seasons 2003/2004, 2004/2005 and 2005/2006 (equivalent 10 

of 1 image per week). 11 

The snow-mapping algorithm makes use of the contrast of reflectances between a visible 12 

band (MODIS band 4, 0.545–0.565 μm) and shortwave infrared band (MODIS band 6, 1.628–13 

1.652 μm). These two bands were combined to calculate the normalized difference snow index 14 

(NDSI, Eq. 11), which is a proxy of SCA (Hall et al., 2002). 15 
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  (Eq. 11) 16 

Where B4 and B6 are the reflectances in the 4th and the 6th MODIS spectral bands. 17 

In order to reduce errors due to variations of the background reflectance, we used the 18 

Modified Normalized Difference Snow Sndex (MNDSI, Eq. 12). This approach was successfully 19 

tested by Chaponniere et al., 2005 using a snow indices specifically designed for the SPOT-20 

VEGETATION sensor. This methodology was applied for all cloud-free MODIS images acquired 21 

during three years from 2003 to 2005. 22 
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  (Eq. 12) 23 

NDSI0 is the snow index of totally snow-free surfaces (computed, for each pixel, from images 24 

acquired in summer), and NDSI100 are the snow index of pixels totally covered with snow (one 25 

single value was fixed as the maximum of NDSI on images acquired during winter). 26 
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4. Results and discussion 1 

4.1. Model evaluation at Local scale  2 

Daily maximum air temperatures modelled using MSPAT at the location of meteorological 3 

stations were evaluated against all measurements available over the Rheraya watershed, 4 

together with estimates of air temperature based on the lapse rate method (referred to as 5 

“LRM”). The evaluation was carried out using classical statistical variables (RMSE, BIAS, and R²). 6 

Fig. 8 present the scatter plots between observed and simulated air temperatures during the 7 

2007/2008 season, year with the largest number of available climatic data. Table 5 shows the 8 

statistical variables obtained by comparing the predictions and the measurements of daily 9 

maximum daily air temperature on an annual basis. Biases and RMSE were null for the Armed 10 

station which provides with the reference air temperature. Bias was also null for the OukaSM 11 

station since it was used for calculating the altitudinal lapse rate. From the statistics calculated 12 

on the remaining stations, we noted that the performance of LRM and MSPAT models were 13 

similar, with moderate to excellent correlation (R² from 0.35 to 0.94), low biases (from -0.5° to 14 

1.2°) and error varying from 1 to 3.2°. The MSPAT model performed slightly better than the LRM 15 

method for 2 stations (Caf and Neltner), whereas it is the opposite for 2 others (Imsker and 16 

Tachdert). These results shown that, at local scale, the MSPAT model did not improve the 17 

estimate of air temperature.  18 

4.2. Catchment scale  19 

The snow-covered areas derived from MODIS data and simulated with climatic data (LRM 20 

and MSPAT models) were compared for the three seasons of study (2003-2004 to 2005-2006). 21 

The time series of SCAs averaged on the whole Rheraya watershed were plotted in Fig. 9. The 22 

two simulated snow covered area compared favourably to that derived from MODIS images. 23 

However, there was a slight underestimation of SCA simulated using the LRM method during the 24 

two previous years (2003 to 2005) and a slight overestimation of SCA simulated using the 25 

MSPAT model at the begin of the last year (December 2005). The peaks of SCA were well 26 

modelled with the two methods, even thought those occurring after generalized snowfall events 27 

were clearly underestimated. This smoothing effect was due to the use of an asymptotic function 28 

between SCA and snow water equivalent.  29 
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The Fig. 10 show three examples of SCA maps simulated by the two climatic models and 1 

derived from MODIS data during a snowmelt period between 03/12/2003 and 30/12/2003. 2 

Simulated SCA appeared much more realistic when the MSPAT model was used to distribute air 3 

temperature. This was obvious on the two first dates when looking at the north-eastern and at 4 

the western part of the catchment, as well as for the last date for which the spatial extent of 5 

snowy areas simulated using the LRM data pattern appeared too limited. This qualitative 6 

comparison allowed to show that patterns of SCA were not only matching altitude variations but 7 

also exposures. This was consistent with previous studies carried out at the scale of the whole 8 

High-Atlas mountains range showing that southern facing slopes have lower SCA than northern 9 

ones (Boudhar et al., 2007). 10 

The scatter plot between SCA simulated by the two climatic models and derived from MODIS 11 

allowed to quantify the previous findings (Fig. 11). This comparison was carried out at a 12 

degraded resolution of 2km² in order to limit the impact of miss-registration between MODIS 13 

and simulated SCA images. SCA modelled with LRM model were found very under-estimated, 14 

especially during seasons 2004/2005 and 2005/2006. In contrast, SCA modelled using the 15 

MSPAT were less scattered. The statistics results for each season are summarized in Table 6. We 16 

noted a remarkable improvement of the SCA modelled with MSPAT model. This improvement 17 

was significant in the two seasons 2004/2005 and 2005/2006 with decreasing in bias by 2.9 and 18 

1.8%, respectively. Theses differences in SCA estimating between LRM and MSPAT models are 19 

due principally to the aspect effect not taken account by LRM formulation. In the later, air 20 

temperature varies only with altitude and horizontal gradients due to topographic and 21 

orographic effects are negligible.  22 

5. Conclusion 23 

This study focused on testing a method of air temperatures spatial variation, principally 24 

developed for high-relief mountain environments with scare meteorological data. The thermal 25 

infrared band of Enhanced Thematic Mapper (ETM+) images was used to calculate the 26 

brightness temperature. Brightness temperatures were compared with maximal air temperature 27 

measured in meteorological stations available, and the correlation equation obtained allowed to 28 

compute maps of a proxy of the maximal air temperature. This information was used to 29 

characterize its spatial variation according to topographic factors (elevation, aspect and slope) 30 

and solar elevation angle. From this, we set up a model to spatialise air temperature. 31 
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The results of air temperature simulation with MSPAT model was compared with lapse rate 1 

model (LRM).  The simulated air temperatures with the two models were similar at the location 2 

of available meteorological stations. Over all the study area, the models were evaluated using 3 

snow cover area (SCA) estimates.  The last are then compared with SCA product mapped from 4 

MODIS data. Results showed that MSPAT model had a considerable improvement on the 5 

modelling SCA. It is thus believed that the pseudo air temperature approximated using ETM+ 6 

brightness temperature may be useful to monitor the dynamics of snowpacks. The approach 7 

developed here may be beneficial for hydrological applications, especially snowmelt modelling 8 

at watershed scale with scare data. 9 
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