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1. Introduction 10 

The challenging task of biomass prediction in dense and heterogeneous tropical forest 11 
requires a multi-parameter and multi-scale characterization of forest canopies. Completely 12 
different forest structures may indeed present similar above ground biomass (AGB) values. 13 
This is probably one of the reasons explaining why tropical AGB still resists accurate 14 
mapping through remote sensing techniques. There is a clear need to combine optical and 15 
radar remote sensing to benefit from their complementary responses to forest 16 
characteristics. Radar and Lidar signals are rightly considered to provide adequate 17 
measurements of forest structure because of their capability of penetrating and interacting 18 
with all the vegetation strata.  19 
However, signal saturation at the lowest radar frequencies is observed at the midlevel of 20 
biomass range in tropical forests (Mougin et al. 1999; Imhoff, 1995). Polarimetric 21 
Interferometric (PolInsar) data could improve the inversion algorithm by injecting forest 22 
interferometric height into the inversion of P-band HV polarization signal. Within this 23 
framework, the TROPISAR mission, supported by the Centre National d’Etudes Spatiales 24 
(CNES) for the preparation of the European Space Agency (ESA) BIOMASS program is 25 
illustrative of both the importance of interdisciplinary research associating forest ecologists 26 
and physicists and the importance of combined measurements of forest properties.  27 
Lidar data is a useful technique to characterize the vertical profile of the vegetation cover 28 
(e.g. Zhao et al. 2009) which in combination with radar (Englhart et al. 2011) or optical (e.g. 29 
Baccini et al. 2008; Asner et al. 2011) and field plot data may allow vegetation carbon stocks 30 
to be mapped over large areas of tropical forest at different resolution scales ranging from 1 31 
hectare to 1 km². However, small-footprint Lidar data are not yet accessible over sufficient 32 
extents and with sufficient revisiting time because its operational use for tropical studies 33 
remains expensive. 34 
At the opposite, very-high (VHR) resolution imagery, i.e. approximately 1-m resolution, 35 
provided by recent satellite like Geoeye, Ikonos, Orbview or Quickbird as well as the 36 
forthcoming Pleiades becomes widely available at affordable costs, or even for free in certain 37 
regions of the world through Google Earth®. Compared to coarser resolution imagery with 38 
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 Remote Sensing of Biomass: Principles and Applications / Book 1 2 
pixel size greater than 4 meters, VHR imagery greatly improves thematic information on forest 1 
canopies. Indeed, the contrast between sunlit and shadowed trees crowns as visible on such 2 
images (Fig. 1) is potentially informative on the structure of the forest canopy while new 3 
promising methods now exist for analyzing these fine scale satellite observations (e.g. 4 
Bruniquel-Pinel & Gastellu-Etchegorry, 1998; Malhi & Roman-Cuesta, 2008; Rich et al. 2010). 5 
Besides, we believe that there is also a great potential in similarly using historical series of 6 
digitized aerial photographs that proved to be useful in the past for mapping large extents of 7 
unexplored forest (Le Touzey, 1968; Richards, 1996) for quantifying AGB changes through time.  8 
This book chapter presents the advancement of a research program undertaken by our team 9 

for estimating high biomass mangrove and terra firme forests of Amazonia using canopy 10 

grain from VHR images (Couteron et al. 2005; Proisy et al. 2007; Barbier et al., 2010; 2011). 11 

We present in a first section, the canopy grain notion and the fundamentals of the Fourier-12 

based Textural Ordination (FOTO) method we developed. We then introduce a dual 13 

experimental-theoretical approach implemented to understand how canopy structure 14 

modifies the reflectance signal and produces a given texture. We discuss, for example, the 15 

influence of varying sun-view acquisition conditions on canopy grain characteristics. A 16 

second section assesses the potential and limits of the canopy grain approach to predict 17 

forest stand structure and more specifically above ground biomass. Perspectives for a better 18 

understanding of canopy grain-AGB relationships conclude this work.  19 

 20 

 21 

Fig. 1. Differences of canopy grain perception between two 300 m square subset images of 22 
different spatial resolution over a mixed savanna forest-inhabited area, French Guiana. Left: 23 
a 2.5-m SPOT5 Fusion image acquired in October 2010. Right: a 20-cm aerial photograph 24 
acquired in July 2010 (© L’Avion Jaune).  25 

2. The canopy grain approach  26 

2.1 Notion of canopy grain 27 
The notion of canopy grain needs to be clarified. In the context of this study, it refers to the 28 
aspect of the uppermost layer of the forest, i.e. the top canopy. It emerges from the images 29 
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 Biomass Prediction in Tropical Forests: The Canopy Grain Approach 3 
as soon as the contrast between sunlit and shadowed tree crowns becomes perceptible. This 1 
property increases with the fineness of image spatial resolution (Fig. 1) that explains why, in 2 
VHR images, the tropical forest no longer appears as a continuous homogenous layer, or 3 
‘red carpet’, as it is the case on medium resolution images with pixel size greater than 5 4 
meters (Fig. 1). Intuitively, the canopy grain depends on both the spatial distribution of trees 5 
within a scene and the shapes and dimensions of their crowns. The question is then how to 6 
derive quantitative measurements of such canopy grain texture. Following Rao and Lohse 7 
(1993), who explained that repetitiveness is the most important dimension of human 8 
perception for structural textures, our idea is to measure the degree of repetitiveness 9 
expressed in canopy grain within a forest scene. Two dimensional (2D) Fourier or wavelet 10 
transforms proved to be well adapted for this purpose (e.g. Couteron, 2002; Ouma et al., 11 
2006) because they allow shifting canopy grain properties from the spatial domain to the 12 
frequency domain. Though of potential larger application, we focus in this paper on the 2D 13 
Fourier-based frequency spectra as a mean for relating tropical forest canopy grain to above-14 
ground biomass (AGB). 15 

2.2 The FOTO method  16 
2.2.1 Workflow up to forest AGB prediction 17 
The well-known Fourier transform is highly suitable for analyzing repetitiveness of canopy 18 

grain as it breaks down an intensity signal into sinusoidal components with different 19 

frequencies. We built on this principle the development of the Fourier-based Textural 20 

Ordination (FOTO) method to primarily explore the potential of digitized aerial 21 

photographs and VHR satellite images for predicting tropical forest stand structure 22 

parameters including AGB (Couteron et al., 2005; Proisy et al. 2007). We summarize, 23 

hereafter, the flow of operations that yield AGB predictions from FOTO outputs. 24 

A prerequisite of the method is to mask non-forest areas, such as clouds and their shadows, 25 

water bodies, savannas, crops and civil infrastructures areas (Fig. 2, step 1). The method 26 

then proceeds with the specification of a square window size in which 2D-Fourier spectra 27 

are computed (Fig. 2, step 2). To be clear, the window size WS is expressed in meters as: 28 

 WS = N.S  (1) 29 

where N is the number of pixels in the X or Y direction of the image and S is the pixel size 30 

in meters. WS may influence the FOTO results as discussed in the following sub-section. 31 

Using large WS also means that spatial resolution of the FOTO outputs and subsequent 32 

biomass maps will be N times coarser than the spatial resolution of the source image(s). 33 

Although the use of a sliding window is computationally intensive, it can attenuate the 34 

effects of both spatial resolution degradation and study areas fringe erosion.  35 

After windowing the forest images, Fourier radial spectra (or r-spectra) are computed and 36 
give for each window, the frequency vs. amplitude of a sinusoidal signal that fits the spatial 37 
arrangement of pixels grey levels (Fig. 2, step 3) as described in the next paragraph. The r-38 
spectra may be then stacked into a common matrix in which each row corresponds to the r-39 
spectrum of a given window, whereas each column contains amplitude values. This table is 40 
then submitted to multivariate analysis techniques (ordinations/classifications). With this 41 
approach, the study can concern as many images as necessary, providing they have the 42 
same spatial resolution. The resulting table can, for instance, be submitted to a standardized 43 
principal component analysis (PCA; Fig. 2, step 4). Window scores on the 3 most prominent  44 
 45 
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 1 
 2 

 3 
 4 

Fig. 2. Flow of operations involved in the FOTO analysis up to biomass prediction  5 
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 Biomass Prediction in Tropical Forests: The Canopy Grain Approach 5 
axes are used as texture indices (the so-called FOTO indices) that are mapped by composing 1 
red–green–blue (RGB) images expressing window scores values against first, second and 2 
third axes, respectively. Such FOTO maps have a spatial resolution equal to the window size 3 
WS. The final step (Fig. 2, step 5) is to relate ground truth forest plot biomass to FOTO 4 
indices using a linear model of the form: 5 

 
3

0 c c
1

GB  a   a  T
c

A


    (2) 6 

where a0 and ac are the coefficients of the multiple regression of AGB onto the texture indices 7 
T obtained from the first three PCA axes.  8 

2.2.1 Computing radial spectra of forest plots 9 
The computation of radial spectra has to be detailed because such frequency signatures are 10 
essential components of the canopy grain analysis. It is to note that the calculation of r-11 
spectra is also possible for any single image extract centered on one forest plot as illustrated 12 
in the numerous examples provided hereafter.  13 
Each image extract is subjected to the two dimensional discrete fast Fourier transform 14 

algorithm implemented in most of the technical computing software. Image intensity 15 

expressed in spatial XY Cartesian referential domain is transposed to the frequency domain. 16 

Power spectrum decomposing the image variance into frequency bins along the two Cartesian 17 

axes is then obtained for each square window (Fig. 2, step 3, right). This latter was 18 

demonstrated as an efficient way to quantify pattern scale and intensity (Couteron et al. 2006) 19 

from images of various vegetation types (Couteron et al. 2002; 2006). Assuming that images of 20 

tropical forest have isotropic properties, the radial spectra are then obtained after azimuthally 21 

averaging over all travelling directions (Fig. 2, step 3, left). Frequencies are expressed in cycles 22 

per kilometer, i.e. the number of repetitions over a 1 km distance. The discrete set of spatial 23 

frequencies f can be also transformed into sampled wavelengths (in meters) as λ=1000/f. For 24 

example, a frequency of 200 cycles per kilometre corresponds to a wavelength of 5 metres.  25 

2.2.2 Principal component analysis for regional analysis 26 
Standardized principal component analysis of the spectra table created by the stacking of all 27 

r-spectra is a mean to perform regional analysis of canopy grain variations through one or 28 

several image scenes. For illustration, a 0.5-m panchromatic Geoeye image covering (after 29 

masking non-forest areas) 11271 hectares of mangroves is analyzed (Fig. 3). The three first 30 

factorial axes of the PCA accounted for more than 81% of the total variability. The first PCA 31 

axis opposes coarse and fine canopy grain that correspond to spatial frequencies of less than 32 

100 cycles/km (=10 m) and more than 250 cycles/km (=4 m), respectively. Intermediate 33 

spatial frequencies are found with high negative loadings on the second axis.  34 

From this analysis, we coded window scores on the three main PCA axes as RGB real values 35 
(Fig. 4). Pioneer and young stages of mangroves are characterized by red–i.e. high scores on 36 
PC1 only– whereas intergrades between blue and cyan corresponded to areas with adult 37 
trees (low positive scores on PC1 and negative scores on PC2). Green color maps mature and 38 
decaying stages of mangrove with high PC2 and very low PC1 scores. Hence, 39 
coarseness/fineness gradients of thousands of unexplored hectares of mangrove can be 40 
mapped and allow to capture, at a glance, the overall spatial organization presented in the 41 
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 Remote Sensing of Biomass: Principles and Applications / Book 1 6 
image. An equivalent result was also obtained using a 1-m panchromatic Ikonos image 1 
(Proisy et al. 2007). The FOTO analysis is confirmed of prime interest for mangrove 2 
monitoring studies and for highlighting coastal processes in French Guiana (Fromard et al. 3 
2004) through the mapping of forest growth stages. 4 

2.3 The DART modelling method 5 
Large-scale validation of the FOTO method is highly desirable, to study both the method’s 6 
sensitivity to complex variations in forest structure and to instrumental perturbations. 7 
However, it is notoriously difficult to obtain both detailed forest structure information in 8 
inaccessible tropical environments and cloudless imagery over field plots. It was therefore 9 
necessary to develop a modeling framework for testing FOTO sensitivity, in simplified but 10 
controlled conditions (Barbier et al. 2010; 2011; in press).  11 
 12 
 13 
 14 
 15 
 16 
 17 
 18 
 19 
 20 

 21 
 22 
 23 
 24 
 25 
 26 
 27 
 28 
 29 

Fig. 3. Principal component analysis of Fourier spectra obtained from the FOTO analysis of a 30 
Geoeye panchromatic image covering 11271 hectares of mangroves in French Guiana. 31 
Correlation between PCA axes and spatial frequencies are shown in the left graph.  32 
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 1 

Fig. 4. Panchromatic-derived FOTO map obtained from a Geoeye panchromatic image 2 
acquired in September 2009. RGB channels code for windows scores on PCA axes. A large 3 
part of the mangrove area is masked because either under clouds or with bare mud.  4 

2.3.1 Basic principles 5 
The 3D Discrete Anisotropic Radiative Transfer (DART) model is a ray-tracing model that 6 
can simulate, simultaneously in several wavelengths of the optical domain, remotely sensed 7 
images of heterogeneous natural and urban landscapes with or without relief, using 3D 8 
generic representations of these landscapes for any sun direction, any view direction or any 9 
atmosphere (Gastellu-Etchegorry et al., 2004). The model is freely downloadable from 10 
http://www.cesbio.ups-tlse.fr/fr/dart.html for scientific studies, after signing a charter of use. In 11 
the case of forests, a DART scene, namely a ‘maket’, is a three-dimensional representation of 12 
a forest stand within a voxel space. Transmittance and phase functions (the optical 13 
properties) associated to each voxel depend on the voxel type (leaves, trunk, soil, etc.). 14 
Leaves cells are modelled as turbid media with volume interaction properties whereas 15 
others voxel types are taken as solid media with surface properties. Others structural 16 
characteristics within the cell (e.g. LAI, leaf and branches angle distribution) can be taken 17 
into account. The scattering of rays from each cell is simulated iteratively in a discrete 18 
number of directions. We keep the maket size 10% larger of the FOTO window or the forest 19 
plot sizes in order to avoid border effects. The final DART image is a sub-scene of 20 
dimensions equal to the reference window or plot.  21 
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2.3.2 3D forest templates 1 
A first step within this modeling framework is to reproduce biologically realistic 3D 2 
templates of forests. Depending on the level of detail and biological realism one is to obtain, 3 
different approaches can be considered to build 3D forest mock-ups. For instance, the 4 
Stretch model (Vincent & Arja, 2008) allows accounting for dynamic crown deformations 5 
through various mechanisms and levels of plant plasticity. However, for our present 6 
purpose, we focus on variations in size-frequency distributions of trees, without entering 7 
too much into architectural (i.e. structural and dynamic) details. For this reason, we 8 
developed the Allostand model (Barbier et al. in press), a simple Matlab® algorithm using a 9 
DBH distribution, established DBH-Crown-height allometric relationships, and an iterative 10 
hard-core point process generator, to reproduce ‘lollipop stands’, that is a 3D arrangement 11 
of trunk cylinders bearing ellipsoid crowns. This forest template matches the DART maket 12 
requirements, e.g. a list of trees with parameters of their 3D geometry. Such simulation 13 
framework is particularly well adapted to the study of mangroves forest in which few 14 
species grow rapidly over areas with no relief (Fig. 5). 15 
 16 
 17 
 18 

 19 
 20 
 21 
 22 

Fig. 5. Examples of 110 x 110m mockups obtained for a young Avicennia mangrove of 159 23 
tDM.ha-1  (top left) and a mixed adult mangrove of 360 tDM.ha-1 (top right). Associated 1-m 24 
pixel DART images simulated at 0.75 µm are shown below. 25 
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2.3.3 Virtual canopy images 1 
In this work, we only simulated mono-spectral images in the visible domain on flat 2 
topography without taking into account atmospheric effects (Fig. 5). Standard optical 3 
profiles of reflectance for soil, trunks and leaves are selected from the DART database using, 4 
for instance, '2D soil-vegetation', '2D bark_spruce' and '3D leaf_decidous' files. Such 5 
oversimplified images of virtual forest stands composed of trees with 'lollipop-shaped' 6 
crowns produce homogeneous texture dominated by few frequencies. The FOTO analysis of 7 
330 DART images however demonstrated their potential for benchmarking textural gradient 8 
of real forest canopies throughout the Amazon basin (cf. Fig. 3 in Barbier et al. 2010).  9 

2.4 Influence of instrumental characteristics 10 
2.4.1 Window size and spatial resolution 11 
Large windows may include features characterizing landforms such as relief variations 12 
rather than canopy grain (Couteron et al., 2006) whereas small windows may be unable 13 
to adequately capture large canopy features observable in mature growth stages. 14 
However, whatever the window size taken within a reasonable range of variations, i.e. 15 
75 to 150 m for tropical forest, spatial frequencies should display more or less the same 16 
patterns of contribution to PCA axes (Couteron et al. 2006). The influence of spatial 17 
resolution on the sensitivity of r-spectra to capture canopy grain of different forest types 18 
was highlighted using 1-m panchromatic and 4-m near infrared (NIR) Ikonos images in 19 
Proisy et al. (2007).  20 
 21 

 22 

Fig. 6. Radial spectra of 2 different mangrove growth stages using 0.5-m and 2-m 23 
panchromatic and near infrared Geoeye channels. 24 
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 Remote Sensing of Biomass: Principles and Applications / Book 1 10 
The loss of sensitivity to the finest textures was also observed using 2-m NIR channel of 1 
Geoeye image (Fig. 6). Whereas r-spectra of 0.5-m and 2-m image extracts displayed the 2 
same behaviour with an identical dominant frequency, they did not exhibit the same 3 
profiles for the pioneer stage consisting of a very high density of trees with 2-3 m crown 4 
diameters. This limitation was also observed for the same forest growth stages after 5 
comparison of 1-m and 4-m Ikonos channels (see Fig. 4 in Proisy et al. 2007). As the 6 
limitation with regard to the youngest stages appeared using 2-m channels, it was 7 
recommended to privilege the use of panchromatic satellite images with metric and sub-8 
metric pixels. 9 

2.4.2 Sun and viewing angles: the BTF 10 
Parameters of VHR image acquisitions such as sun elevation angle θs, viewing angle from 11 
nadir θv and azimuth angle Φs-v between sun and camera can vary significantly as illustrated 12 
in Fig. 7. We introduced the bidirectional texture function (BTF; Barbier et al. 2011) diagrams 13 
to map the influence of different acquisitions conditions in terms of texture perception (Fig. 14 
8). The finest textures are perceived in the sun-backward configuration whereas the coarsest 15 
are observed when sun is facing the camera (the forward configuration) due to the loss of 16 
perception in shadowed areas. These findings show that to ensure a coherent comparison 17 
between scenes, one must either use images with similar acquisition conditions, or use a BTF 18 
trained on similar forest areas or derived from a sufficiently realistic physical simulations to 19 
allow minimizing these effects (Barbier et al. 2011). 20 
 21 
 22 
 23 
 24 
 25 
 26 

 27 
 28 
 29 
 30 
 31 
 32 

Fig. 7. Variation of acquisition parameters through a dataset of 292 images. The dataset 33 
includes 270 Quickbird, 8 Geoeye, 9 Ikonos and 5 Orbview images acquired over tropical 34 
forest of Bangladesh, Brazil, Cameroun, Central African Republic, French Guiana, India, 35 
Indonesia, Democratic Republic of Congo. 36 
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 1 

Fig. 8. Example of discrete sampling of θv and s-v acquisition angles with θs =59° (left) to 2 
generate the Bidirectional Texture Function (BTF). The BTF diagram (right) is computed 3 
from the mean PC1 scores resulting from the FOTO analysis of numerous DART images and 4 
3D forest templates. Brighter intensities values imply finer perceived canopy textures.  5 

3. From canopy grain to AGB  6 

3.1 Requirements for forest data  7 
The canopy grain approach must be calibrated at the forest plot scale i.e. by conducting 8 
forest inventories from which above ground biomass will be estimated. Areas of about 9 
one hectare are necessary to take into account structural diversity within the forest plot. 10 
This area of inventory can possibly be reduced for simpler forest stands and plantations, 11 
but this is basically dependent on the size of the canopy trees since the computation of 12 
FOTO indices should be meaningful at plot scale (Couteron et al. 2005). AGB estimation 13 
for each plot will be taken as the AGB of reference to correlate with FOTO indices. Since 14 
very labor-intensive destructive measures are necessary to acquire biomass values, 15 
reference field AGB values are generally computed indirectly using pre-established 16 
allometric functions predicting tree AGB from the measure of the tree diameter at breast 17 
height (DBH) as explained, for example, by Chave et al. (2005). On this basis prediction of 18 
stand AGB in reference field plots can be computed by measuring DBH>5cm in young 19 
forest and DBH>10cm in adult forest. Allometric equation between DBH and tree biomass 20 
are established from few cut trees that are weighed on site (e.g. Fromard et al. 1998 for 21 
mangroves and Brown et al, 1989 for tropical moist forest). Due to the extreme difficulty 22 
of achieving this kind of field work, relationships are often limited to trees with 23 
DBH<40cm whereas DBH histograms in tropical forest show values above 150 cm. 24 
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 Remote Sensing of Biomass: Principles and Applications / Book 1 12 
Additionally, for a given species varying tree heights and crowns dimensions may yield 1 
important mass differences that the parsimonious relationships cannot take into account. 2 
Selecting an appropriate allometric model is then crucial and the sampling uncertainty 3 
relative to the size of the study plot should also be addressed carefully (e.g. Chave et al. 4 
2004). 5 
Tree location, crown shape, tree height and wood specific gravity also constitute useful 6 

information that will contribute to the characterization of the forest structure typology.  7 

Although it remains unrealistic in heterogeneous forests without the help of skilled 8 

botanists, identification of tree species is advisable in low-diversified situations, since the 9 

inclusion of a specific wood gravity parameter into allometric equations proved to improve 10 

significantly the model (Chave et al. 2005). Such additional data will also be valuable for 11 

initializing 3D forest templates. It is important to note that, in tropical forest, tree height 12 

measurements from the ground are problematic and cumbersome explaining the 13 

enthusiasm aroused by Lidar data (e.g. Gillespie et al. 2004). Another important point to 14 

improve AGB prediction would be to conduct forest inventories simultaneously to image 15 

acquisitions.  16 

3.2 Sensitivity to forest structure and AGB 17 
Assuming that the constituted forest plots dataset is well distributed within the acquired 18 

scene(s), Fourier r-spectra can be computed for windows centred on each plot. For 19 

example, when applied to 1-m Ikonos (Proisy et al. 2007) or 0.5-m Geoeye panchromatic 20 

images (Fig. 9) r-spectra permit good discrimination of a wide array of canopy structures 21 

of mangroves (Fig. 9). Furthermore pre-adult, mature and decaying mangrove forests 22 

show contrasted signatures with dominant frequencies around 180, 80, 50 and 30 cycles 23 

per kilometre. 24 

Inverting FOTO indices (the three first PCA axes) into AGB of forest plots distributed 25 

over two different sites (i.e. two different images) yielded good correlations and low 26 

errors, as presented in Fig. 10. Compared to estimations provided by the P-band HV 27 

polarisation channel, FOTO-derived AGB did not show saturations over the whole range 28 

of mangrove biomass (Fig. 9), i.e. up to 500 tDM.ha -1 and rmse error remains acceptable 29 

(33 tDM.ha-1). This result suggests that, in the case of closed canopies with sub-strata of 30 

low biomass (e.g. the mangrove ecosystem in French Guiana), the canopy grain approach 31 

is suitable to map AGB because crown size and spatial distribution are directly 32 

correlated to standing biomass of the dominant trees. However, one do not forget that 33 

the remote sensing-based model of AGB is assessed with respect to allometric 34 

predictions of "true" AGB, i.e. the aboveground dry mass of trees, from dendrometric 35 

data, so that the quality of the allometric model is potentially a additional source of bias  36 

(Chave et al. 2004; 2005).  37 

Assuming the constituted forest dataset is well distributed within the acquired scene(s) 38 

r-spectra can be computed for Fourier windows centred on each plot. For example, when 39 

applied to 1-m Ikonos (Proisy et al. 2007) or 0.5-m Geoeye panchromatic images, r-40 

spectra permit good discrimination of a wide array of forest structures of mangroves 41 

(Fig. 9). For young, pre-adult, mature and decaying mangrove forests, they show 42 

contrasted signatures with dominant frequencies around 180, 80, 50 and 30 cycles per 43 

kilometre. 44 
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Good correlations were obtained between the first axis and tree density (r²= 0.8) or mean 1 
quadratic DBH (r²=0.71) in tropical evergreen terra firme forest Couteron et al (2005). 2 
However, forest heterogeneity and presence of relief makes the canopy approach to be 3 
used carefully, that is one must analyze visually whether the relief influences or not some 4 
of the PCA axes (e.g. Ploton, 2010). Only axes immune to relief influence should be used 5 
for biomass prediction otherwise the result may be biased or highly context-dependent. 6 
Moreover, due to the diversity of forest stand structures in tropical terra firme forests, a 7 
sufficient number of studies in diversified locations and contexts are still needed before 8 
general conclusions can be reached about the robustness of such correlations. 9 
Independent ongoing studies suggest that the correlation with density is highly context-10 
specific while the correlation with the mean quadratic diameter may be a more robust 11 
feature.   12 
 13 
 14 
 15 
 16 
 17 

 18 
 19 
 20 
 21 
 22 
 23 

Fig. 9. Radial spectra and associated 100 x 100 m images of different mangrove growth 24 
stages using a 0.5 m panchromatic Geoeye image acquired in 2009. Forest inventories dated 25 
of 2010 and 2011. Note the r-spectra of the open canopy decaying stage. A photograph of 26 
this plot is available in Fig. 11. 27 

255 tDM/ha, decaying

225 tDM/ha, mature

160 tDM/ha, adult

110 tDM/ha, young
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 1 

Fig. 10. Comparison of FOTO- (Proisy et al. 2007) and P-HV-derived (from Mougin et al. 2 
1999) biomass estimates in mangroves of French Guiana 3 

3.3 Present limitations of the methods and prerequisite 4 
In tropical forest, both gaps and multi-strata organization are often observed. Gaps are due 5 
to accidental tree falls or natural decaying of some canopy trees (Fig. 11, left). In presence of 6 
gaps, r-spectra tend to be skewed towards low frequencies and this may be erroneously 7 
interpreted as if the canopy contained large tree crowns (Fig. 9, r-spectrum of the decaying 8 
stage). In fact, gap-influenced r-spectra cannot be automatically related to the same biomass 9 
levels and must be removed from the PCA analysis to avoid biases in the AGB-FOTO 10 
relationship. Identically, the method was so far tested principally on evergreen forests. 11 
Further studies are needed regarding deciduous forests, not only because of the seasonal 12 
changes of the canopy aspect, but also because biomass of understorey vegetation often 13 
found in such forest type is not necessarily negligible. As spectral properties of the 14 
understorey may influence the overall reflectance of the corresponding pixels, this may be 15 
all more confusing if there is no intermediate stratum beneath the highest deciduous trees. 16 
An example of this is provided by the so-called Maranthaceae forest in Africa (Fig. 11, right) 17 
which presents a fairly closed albeit deciduous canopy and a very scarce intermediate tree 18 
storey. Such a structure allows the development of a dense herbaceous cover. Without 19 
relevant field information, results of the FOTO approach may be confusing in those forests. 20 
Their standing biomass is probably less than for evergreen closed forests since woody 21 
intermediate storey is missing, whereas both canopies are dominated by trees with large 22 
crowns. At least, statistical relationships between FOTO indices and AGB should be 23 
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analyzed after separating deciduous and evergreen forests than may be simultaneously 1 
present in a given region. Appropriate regional pre-stratification using multispectral 2 
satellite data and/or L- or P-band polarized signatures (Proisy et al. 2002) may help towards 3 
this purpose. 4 
 5 

 6 

Fig. 11. Two examples of specific forest structures for which canopy grain and total AGB 7 
relationships cannot be safely derived without prior-stratification of the main forest types. 8 
Left: Decaying mangrove, with both large surviving trees and large canopy gaps, French 9 
Guiana © C. Proisy. Right: Maranthaceae understorey, overtopped by a fairly continuous 10 
albeit deciduous forest canopy referred to as “Maranthaceae forests” in Cameroun, Africa, 11 
note the absence of any intermediate tree strata © N. Barbier. 12 

4. Conclusion 13 

The canopy grain approach is largely original. It combines common techniques, i.e. Fourier 14 
transform and principal component analysis to characterize tropical canopy aspect and 15 
beyond forest structure from images of metric resolution. It can be implemented without 16 
prior radiometric correction, such as reflectance calibration or histogram range concordance. 17 
Regarding the increasing availability of metric to sub-metric optical images, the FOTO 18 
canopy grain analysis demonstrated its potential to capture gradients of forest structural 19 
characteristics in tropical regions. Within this context, the possible contribution of the 20 
canopy grain approach to the challenging task of estimating tropical above-ground biomass 21 
is worth being assessed at very broad scale. Such aim requires conducting simultaneously 22 
observational and simulation studies aiming at better understanding how canopy grain is 23 
sensitive to forest structure or biomass in various types of forests under various conditions 24 
of image acquisitions. There is particularly an important field of research in simulating 25 
multi-spectral and metric reflectance images from realistic forest 3D templates to identify, 26 
for instance, the range of conditions for which inversing above ground biomass of tropical 27 
forests appears possible. Considering the extreme complexity of most the tropical forests, it 28 
would be illusory to believe that only one remote sensing technique can provide all the 29 
information required to the AGB inversion. We thus believe that combining canopy grain 30 
analysis with low frequencies radar-based studies can provide new insights on this problem. 31 
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