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Abstract—Land surface temperature data are rarely available6
at high temporal and spatial resolutions at the same locations. To7
fill this gap, the low spatial resolution data can be disaggregated8
at high temporal frequency using empirical relationships between9
remotely sensed temperature and fractional green (photosynthet-10
ically active) and senescent vegetation covers. In this paper, a11
new disaggregation methodology is developed by physically link-12
ing remotely sensed surface temperature to fractional green and13
senescent vegetation covers using a radiative transfer equation.14
Moreover, the methodology is implemented with two additional15
factors related to the energy budget of irrigated areas, being the16
fraction of open water and soil evaporative efficiency (ratio of17
actual to potential soil evaporation). The approach is tested over18
a 5 km by 32 km irrigated agricultural area in Australia using19
airborne Polarimetric L-band Multibeam Radiometer brightness20
temperature and spaceborne Advanced Scanning Thermal21
Emission and Reflection radiometer (ASTER) multispectral data.22
Fractional green vegetation cover, fractional senescent vegeta-23
tion cover, fractional open water, and soil evaporative efficiency24
are derived from red, near-infrared, shortwave-infrared, and mi-25
crowave-L band data. Low-resolution land surface temperature26
is simulated by aggregating ASTER land surface temperature to27
1-km resolution, and the disaggregated temperature is verified28
against the high-resolution ASTER temperature data initially used29
in the aggregation process. The error in disaggregated tempera-30
ture is successively reduced from 1.65 ◦C to 1.16 ◦C by includ-31
ing each of the four parameters. The correlation coefficient and32
slope between the disaggregated and ASTER temperatures are33
improved from 0.79 to 0.89 and from 0.63 to 0.88, respectively.34
Moreover, the radiative transfer equation allows quantification of35
the impact on disaggregation of the temperature at high resolution36
for each parameter: fractional green vegetation cover is respon-37
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sible for 42% of the variability in disaggregated temperature, 38
fractional senescent vegetation cover for 11%, fractional open 39
water for 20%, and soil evaporative efficiency for 27%. 40

Index Terms—Advanced Scanning Thermal Emission and Re- 41
flection radiometer (ASTER), brightness temperature, disaggre- 42
gation, evaporative efficiency, land surface temperature, Moderate 43
Resolution Imaging Spectroradiometer (MODIS), multispectral, 44
open water, soil moisture, vegetation fraction. 45

I. INTRODUCTION 46

R EMOTELY sensed land surface temperature is a signature 47

of the thermodynamic equilibrium state of the surface 48

skin. Consequently, it provides the potential to monitor dy- 49

namic information on instantaneous energy and water fluxes 50

at the land-surface–atmosphere interface. Nevertheless, the op- 51

erational use of thermal remote sensing for hydrological and 52

water resource management studies has been limited to regional 53

scale applications (e.g., [1] and [2]) mainly because the spatial 54

resolution (larger than 1 km) of current high temporal resolution 55

thermal sensors is too coarse to represent the heterogeneity of 56

man-made landscapes. For example, the Moderate Resolution 57

Imaging Spectroradiometer (MODIS) has a revisit frequency 58

of 1 or 2 times per day but a spatial resolution of only 1 km, 59

while the Advanced Scanning Thermal Emission and Reflection 60

radiometer (ASTER) has a spatial resolution of 90 m but a 61

revisit time of only 16 days. 62

The use of remotely sensed land surface temperature over 63

agricultural areas requires data at both high spatial and temporal 64

resolutions [3]. While there is a lack of high spatial resolution 65

thermal data from satellite with high frequency, there is the 66

potential for land surface temperature derived from kilomet- 67

ric resolution sensors having high temporal resolution to be 68

disaggregated using high spatial resolution ancillary data. The 69

first disaggregation approach of remotely sensed temperature 70

was developed by [4] using the fractional green vegetation 71

cover derived from red and near-infrared reflectances. Given 72

the high temperature difference between bare soil and a well- 73

watered crop, this approach has proved to be effective over 74

areas with relatively uniform soil and vegetation hydric status. 75

Recently, [5] has extended the approach of [4] to conditions 76

where vegetation hydric status is heterogeneous. This required 77

developing a methodology to estimate the fraction of senescent 78

vegetation cover from a time series of FORMOSAT-2 images. 79
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The accuracy in disaggregated temperature was improved by80

taking into account fractional senescent vegetation cover in81

addition to fractional green vegetation cover.82

Fractional green and senescent vegetation covers, however,83

are not the only factors explaining the spatial variations of land84

surface temperature, especially over irrigated areas where crop85

fields may have different moisture status to the surrounds. In86

particular, the temperature over a flooded crop field may be87

drastically different from the temperature over a mature crop88

field. Therefore, the fraction of open water is an important89

variable to represent the spatial variations of land surface tem-90

perature. Over nonwatered land surfaces, the soil evaporative91

efficiency (ratio of actual to potential soil evaporation) is a92

signature of the capacity of the soil to evaporate its water93

content in the near surface and thus to counter an increase of94

its thermodynamic temperature. Consequently, soil evaporative95

efficiency is also an essential variable to describe the spatial96

variations of land surface temperature. Moreover, knowledge97

of soil evaporative efficiency is needed to decouple the effects98

of soil and vegetation hydric status on the surface energy99

budget and hence to better represent the resultant radiative100

surface temperature. As an example, the crop water stress index101

(CWSI) [6], [7] can be used to detect plant stress based on the102

difference between foliage and air temperature. Nevertheless,103

the application of the CWSI to partially vegetated areas is104

subjected to large uncertainties because the soil background105

may have a different temperature to the plants [7] depending106

on soil evaporative efficiency. Another example is provided by107

Moran et al. [8] who proposed the vegetation index/temperature108

(VIT) trapezoid to estimate a most probable range of plant109

stress over partially vegetated fields. It is a three-step procedure110

in which the following steps are performed: 1) the temperatures111

of the four vertices of the VIT trapezoid are estimated using an112

energy budget model; 2) the minimum and maximum probable113

vegetation temperatures are estimated from the measured com-114

posite land surface temperature, together with the maximum115

and minimum simulated soil temperatures; and 3) the minimum116

and maximum probable CWSIs are computed by normalizing117

the minimum and maximum probable vegetation temperatures118

from the vegetation temperature extremes simulated by the119

energy budget model. The point is that this approach does notAQ2 120

allow estimating a single CWSI value because the retrieval121

problem is underdetermined. In particular, Moran et al. [8]122

noted that “with knowledge of a second point within the123

hourglass (perhaps soil temperature), it would be possible to124

infer [the canopy-air temperature] difference and pinpoint the125

CWSI value.” In the latter case, knowledge of soil temperature126

is equivalent to knowledge of soil evaporative efficiency, which127

would remove the underdetermination of the VIT trapezoid.128

The objective of this paper is to develop a new disaggrega-129

tion methodology of kilometric land surface temperature using130

hectometric multivariable ancillary data. The approach is based131

on a radiative transfer equation that estimates differences in132

temperature data at hectometric resolution. Specifically, the use133

of a radiative transfer equation allows the following: 1) includ-134

ing variables other than those used by previous disaggregation135

approaches and 2) deducing the most pertinent variables. In136

addition to fractional green and senescent vegetation covers, the137

new methodology includes the variability at hectometric reso- 138

lution of fractional open water and soil evaporative efficiency. 139

With respect to other disaggregation algorithms in literature 140

[4], [5], the proposed technique differs in the following four 141

main aspects: 1) it relies on a physically based radiative transfer 142

equation rather than empirical linear regressions; 2) it takes 143

into account the fractional open water derived from shortwave- 144

infrared band as required; 3) it takes into account the soil hydric 145

status via microwave-derived soil evaporative efficiency; and 146

4) it allows the relative weight of each parameter used for 147

disaggregating temperature to be quantified. 148

The new disaggregation technique is compared to the ex- 149

isting approaches using data collected during the National 150

Airborne Field Experiment in 2006 (NAFE’06; [9]). The ex- 151

perimental site covers a 5 km by 32 km irrigated agricultural 152

area, which included approximately 5% of flooded rice crops 153

during NAFE’06. Disaggregation algorithms are first tested by 154

aggregating ASTER temperature at 1-km resolution and by 155

comparing the disaggregated temperature to the high-resolution 156

ASTER temperature initially used in the aggregation process. 157

The application to aggregated ASTER data allows evaluating 158

approaches independently of differences between ASTER and 159

MODIS products [5]. Disaggregation algorithms are then ap- 160

plied to MODIS data. 161

II. EXPERIMENTAL DATA 162

The study area is a 5 km by 32 km area included in the 163

Coleambally Irrigation Area (CIA) located in the flat west- 164

ern plains of the Murrumbidgee catchment in southeastern 165

Australia (35◦ S, 146◦ E). The principal summer crops grown 166

in the CIA are rice, maize, and soybeans, while winter crops 167

include wheat, barley, oats, and canola. In November, rice crops 168

are flooded under 30 cm height of irrigation water. 169

The NAFE’06 was conducted from October 31 to 170

November 20, 2006, over a 40 km by 60 km area, with more 171

detailed flights over the 5 km by 32 km focus area studied 172

in this paper. While a full description of the NAFE’06 data 173

set is given in [9], a brief overview of the most pertinent 174

details is provided here. The data used in this paper are 175

comprised of airborne L-band brightness temperature; ASTER 176

red, near-infrared, and shortwave-infrared reflectances; ASTER 177

land surface temperature data (resampled at 250-m resolution); 178

MODIS land surface temperature data; and air temperature data 179

collected by a meteorological station in the NAFE’06 area. 180

A. PLMR 181

The Polarimetric L-band Multibeam Radiometer (PLMR) is 182

an airborne instrument that measures both H and V polariza- 183

tions using a single receiver with polarization switching at view 184

angles of ±7◦, ±21.5◦, and ±38.5◦. The accuracy of the PLMR 185

is estimated to be better than 2 K and 3 K in the H and V 186

polarization, respectively [10]. 187

During NAFE’06, the PLMR flew on November 14 to collect 188

L-band brightness temperature at 250-m resolution over the 189

5 km by 32 km area in the CIA. PLMR was mounted in the 190

across-track configuration so that each pixel was observed at a 191
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given incidence angle (approximately 7◦, 21.5◦, or 38.5◦). Data192

were processed for incidence angle and beam location on the193

ground by taking into account aircraft position, attitude, and194

ground topography.195

As the sensitivity to soil moisture is higher for H-polarized196

brightness temperature than for V-polarized brightness temper-197

ature, only the H-polarized brightness temperature TB is used198

in this paper. Preprocessing of TB consists of the following:199

1) resampling H-polarized PLMR data at 250-m resolution200

on a grid that matches in symmetry to the flight lines over201

the 5 km by 32 km area and 2) converting the resampled202

TB to an equivalent value at 21.5◦ incidence angle. The in-203

cidence angle 21.5◦ is chosen to minimize conversion errors.204

The angular conversion involves the brightness temperature205

collected by inner beams at approximately 7◦ incidence angle206

being multiplied by the ratio TBMB/TBIB, with TBMB and207

TBIB being the mean brightness temperatures collected by the208

middle and inner beams, respectively. Similarly, the brightness209

temperature collected by the outer beams at approximately210

38.5◦ incidence angle is multiplied by the ratio TBMB/TBOB,211

with TBOB being the mean brightness temperature collected by212

the outer beams. Mean brightness temperatures TBIB, TBMB,213

and TBOB are computed as the average (for all flight lines)214

of the TB collected by the beams pointing at ±7◦, ±21.5◦,215

and ±38.5◦, respectively. This technique was already used in216

[11] to generate TB images by assuming that the impact of217

soil moisture and biomass on the angular dependance of TB is218

negligible or small. In this paper, a slightly different approach219

is adopted to take into account the variations in aircraft attitude220

during data collection, which made the incidence angle θ os-221

cillate around 7◦, 21.5◦, and 38.5◦. The brightness temperature222

TB(θ) observed at the incidence angle θ is multiplied by the223

ratio TBMB/TBinterp(θ), with TBinterp(θ) being the mean224

brightness temperature linearly interpolated at θ incidence an-225

gle from the mean data collected by the inner, middle, and outer226

beams.227

B. ASTER228

The ASTER instrument was launched in 1999 aboard Terra, a229

sun synchronous platform with 11:00 UTC descending Equator230

crossing and a 16-day revisit cycle. An ASTER scene covers an231

area of approximately 60 km by 60 km and consists of 14 nadir-232

looking bands and one oblique-looking band to create stereo-233

based digital elevation models. The three nadir-looking bands234

in the visible and near infrared have a 15-m resolution. The six235

bands in the shortwave-infrared have a 30-m resolution. Finally,236

there are five thermal infrared bands with a 90-m resolution.237

The ASTER overpass of the NAFE’06 site was on238

November 16, 2006. Official ASTER products [12] were used239

here for surface reflectance (AST_07) and radiometric temper-240

ature (AST_08) with accuracies of 5% and 1.5 K, respectively241

[13]–[19]. They were downloaded from the Earth Observing242

System Data Gateway (EDG).243

ASTER 15-m resolution red (B2) and near-infrared (B3)244

bands were extracted over the 5 km by 32 km area and re-245

sampled at 250-m resolution to match the spatial resolution246

and extent of PLMR observations. The ASTER 30-m resolution247

B5 band (1.60–1.70 µm) was extracted over the 5 km by 248

32 km study area and resampled at 50-m resolution. Fractional 249

open water was estimated using B5 band [20] based on a 250

threshold method. Consequently, B5 data were resampled at 251

a resolution finer than that (250 m) of PLMR data to classify 252

open water pixels at 50-m resolution and to obtain fractional 253

open water at 250-m resolution from the binary classification. 254

ASTER 90-m resolution radiometric temperature was extracted 255

over the 5 km by 32 km area and aggregated at 250-m res- 256

olution to match the spatial resolution and extent of PLMR 257

observations. Aggregation was achieved by linearly averaging 258

high-resolution surface temperatures, i.e., without accounting 259

for the nonlinear relationship between physical temperature and 260

radiance. This choice was motivated by the results of [21], 261

which compared the temperature aggregated using different 262

scaling approaches and obtained very low differences (maxi- 263

mum difference of 0.2 ◦C). 264

C. MODIS 265

The MODIS/Terra data were collected concurrently with 266

ASTER data. MODIS official products consisted of the 928-m 267

resolution surface skin temperature (MOD11-L2) retrieved by 268

the “generalized split window” algorithm [22]–[24] and reg- 269

istered in the sinusoidal projection. The MODIS Reprojection 270

Tool was used to project MOD11-L2 data in UTM WGS 1984 271

55S with a sampling interval of 1 km. 272

In this paper, the disaggregation of 1-km MODIS tempera- 273

ture is evaluated using high-resolution ASTER data. To distin- 274

guish the errors associated with the disaggregation technique 275

and the errors associated with the discrepancy between MODIS 276

and ASTER temperature products, a comparison is made be- 277

tween ASTER and MODIS data at 1-km resolution over the 278

5 km by 32 km study area. The ASTER data are aggregated 279

at the MODIS spatial resolution (1 km) by linearly averaging 280

high-resolution temperatures. The root-mean-square difference 281

(RMSD), bias, correlation coefficient, and slope of the linear 282

regression between MODIS and aggregated ASTER data are 283

2.7 ◦C, −2.3 ◦C, 0.75, and 0.52, respectively. The discrepancy 284

between MODIS and ASTER data, which is mainly explained 285

here by a significant bias and a relatively low slope of the linear 286

regression, is on the same order of magnitude as the mean 287

difference (about 3 ◦C) reported in literature [5], [21], [25]. 288

III. DISAGGREGATION ALGORITHMS 289

This paper aims to compare different approaches for dis- 290

aggregating kilometric MODIS land surface temperature data. 291

The study uses aggregated ASTER and real MODIS data 292

and demonstrates the disaggregation at 250-m resolution. The 293

resolution of 250 m is chosen to match with the lowest reso- 294

lution at which ancillary data composed of red, near-infrared, 295

shortwave-infrared, and microwave-L bands are available. In 296

this case study, the target scale is determined by the resolution 297

(250 m) of airborne microwave data. 298

As shown in the schematic diagram of Fig. 1, the disaggre- 299

gation algorithms are noted as Dk, with k being the number 300

of factors taken into account in the disaggregation. The new 301
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Fig. 1. Schematic diagram presenting the different disaggregation algorithms
of kilometric temperature Tkm and the verification strategy at high (250 m)
resolution.

algorithms are noted as Dk′. D0 does not use any ancillary302

data, while D1 is based on a linear regression between land303

surface temperature and fractional green (photosynthetically304

active) vegetation cover. Fractional green vegetation cover fgv305

is defined as the surface area of green vegetation per unit area306

of soil. D1 is the same as in [4]. D2 is based on D1 but307

takes into account both fractional green and total vegetation308

covers. Fractional vegetation cover ftv is defined as the total309

surface area of (green plus senescent) vegetation per unit area310

of soil. D2 is the same as in [5]. The new algorithms D1′,311

D2′, D3′, and D4′ (and D4′′) are all derived from a radiative312

transfer equation. The four algorithms differ with regard to the313

number of factors which are explicitly taken into account. D1′314

includes the variability of fgv and is thus a substitute for D1315

based on radiative transfer. D2′ includes the variability of both316

fgv and ftv and is thus a substitute for D2 based on radiative317

transfer. The other algorithms D3′ and D4′ integrate additional318

variables. D3′ includes the variability of fgv, ftv, and fractional319

open water fow. D4′ includes the variability of fgv, ftv, fow,320

and soil evaporative efficiency (ratio of actual to potential soil321

evaporation) β. D4′′ is the same as D4′ but with a different322

formulation for soil evaporative efficiency.323

D0 sets the disaggregated temperature as324

T (0) = Tkm (1)

with Tkm being the land surface temperature observed at kilo-325

metric resolution.326

Using D1, the disaggregated temperature is computed as 327

T (1) = Tkm + a1 × (fgv − 〈fgv〉km) (2)

with fgv being the fractional green vegetation cover derived at 328

high resolution, 〈fgv〉km being the fgv aggregated at kilometric 329

resolution, and a1 being the slope of the linear regression 330

between Tkm and 〈fgv〉km. Note that the variables defined at 331

kilometric resolution are noted with the subscript km. 332

Using D2, the disaggregated temperature is computed as 333

T (2) = Tkm + aproj1 ×
(
fproj
gv − 〈fgv〉km

)
(3)

with fproj
gv being the projected fgv and aproj1 being the slope 334

of the linear regression between Tkm and the projected fgv es- 335

timated at kilometric resolution fproj
gv,km. Note that the variables 336

defined at the image scale are written in bold. The notion of 337

a “projected variable” was introduced in [26]. It is a robust 338

tool that strenghtens the correlation between two variables by 339

representing the dependence of these variables on other addi- 340

tional variables. In [5], the projection technique was applied 341

to fractional green vegetation cover to artificially improve the 342

spatial correlation between T and fgv by taking into account 343

the dependence of T on ftv. The projected fractional green 344

vegetation cover is computed as 345

fproj
gv =fgv−

Tfcsv−(Tb,ds+Tb,ws)/2

Tfcsv−Tfcgv
× (ftv−〈ftv〉km)

(4)

with ftv being the fractional total vegetation cover derived at 346

high resolution, 〈ftv〉km being the ftv aggregated at kilomet- 347

ric resolution, Tb,ws being the temperature of wet bare soil, 348

Tb,ds being the temperature of dry bare soil, Tfcgv being the 349

temperature of full-cover green vegetation, and Tfcsv being 350

the temperature of full-cover senescent vegetation (notations 351

are summarized in Table I). Following the interpretation of 352

the “triangle method” [27], Tb,ws, Tb,ds, Tfcgv, and Tfcsv 353

correspond to the minimum and maximum soil and vegetation 354

temperatures within the study area, respectively. It is reminded 355

that ftv = fgv + fsv, with fgv and fsv being the fractional 356

green and senescent vegetation covers, respectively. 357

In (4), the projected fractional green vegetation cover esti- 358

mated at kilometric resolution is 359

fproj
gv,km = 〈fgv〉km − Tfcsv − (Tb,ds +Tb,ws)/2

Tfcsv −Tfcgv

× (〈ftv〉km − ftv) (5)

with ftv being the mean ftv over the whole study area. 360

The new algorithms D′ use a radiative transfer equation 361

to model the spatial variability of disaggregated temperature 362

within each 1-km resolution pixel, using ancillary data avail- 363

able at high resolution such as fgv, ftv, fow, and β. D1′ is 364

a substitute for D1 based on radiative transfer. It expresses 365

disaggregated temperature as 366

T (1′) = Tkm +∆T (1′) (6)
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TABLE I
INTERPRETATION OF THE VERTICES IN THE GENERALIZED “TRIANGLE APPROACH”

with ∆T (1′) being the difference between the temperature367

simulated using high-resolution fgv and that aggregated within368

the 1-km resolution pixel369

∆T (1′) = Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)
−〈Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)〉km (7)

with Tmod being the land surface temperature simulated by370

a radiative transfer equation. In (7), fractional total vegetation371

cover, fractional open water, and soil evaporative efficiency372

are set to their values aggregated at kilometric resolution.373

Therefore, only the variability of fgv is taken into account at374

high resolution.375

D2′ is a substitute for D2 based on radiative transfer. It376

expresses the disaggregated temperature as in (6), with the377

simulated temperature difference ∆T (2′) written as378

∆T (2′) = Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)
−〈Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)〉km . (8)

D3′ is derived from the same radiative transfer equation and379

includes the variability of fgv, ftv, and fow at high resolution.380

It determines the disaggregated temperature using (6) but with381

the simulated temperature difference ∆T (3′) written as382

∆T (3′) = Tmod (fgv, ftv, fow, 〈β〉km)
−〈Tmod (fgv, ftv, fow, 〈β〉km)〉km . (9)

D4′ is derived from the same radiative transfer equation and383

includes the variability of fgv, ftv, fow, and β at high resolu-384

tion. It determines the disaggregated temperature using (6) but385

with the simulated temperature difference ∆T (4′) written as386

∆T (4′) = Tmod (fgv, ftv, fow, β)

−〈Tmod (fgv, ftv, fow, β)〉km . (10)

D4′′ is an extension of (10) to replace β by another formula-387

tion of soil evaporative efficiency noted as β′.388

The high- to low-resolution simulated temperature difference389

in (7)–(10) is computed using a linearized radiative transfer390

equation [5], [28], [29]. Modeled land surface temperature391

Tmod is written as392

Tmod = fowTow + (1− fow)Tnw (11)

with Tow being the surface temperature of a water body and393

Tnw being the skin temperature of a nonwatered land surface.394

Nonwatered land surface temperature is expressed as 395

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv + (1− ftv)Tbs (12)

with Tfcgv and Tfcsv being the temperature of full-cover green 396

and senescent vegetations, respectively, and Tbs being the bare 397

soil temperature. With the soil evaporative efficiency defined 398

[30] as 399

β =
Tb,ds − Tbs

Tb,ds −Tb,ws
(13)

the bare soil temperature can be expressed as 400

Tbs = βTb,ws + (1− β)Tb,ds. (14)

By assuming that water temperature is close to well-watered 401

green vegetation [27], modeled land surface temperature 402

becomes 403

Tmod = fowTfcgv + (1− fow)Tnw (15)

with the nonwatered land surface temperature expressed as 404

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) [βTb,ws + (1− β)Tb,ds] . (16)

The temperature extremes Tb,ds, Tb,ws, Tfcgv, and Tfcsv are 405

extrapolated (according to Section V) from low-resolution land 406

surface temperatures using high-resolution ancillary data [5]. 407

IV. DERIVATION OF BIOPHYSICAL VARIABLES 408

The four variables used by the disaggregation methodol- 409

ogy are the following: fractional green vegetation cover fgv, 410

fractional total (green plus senescent) vegetation cover ftv, 411

fractional open water fow, and soil evaporative efficiency β. 412

All of these variables are estimated from ASTER red, near- 413

infrared, and shortwave-infrared reflectance products and from 414

the PLMR H-polarized brightness temperature converted at an 415

incidence angle of 21.5◦. 416

A. Fractional Green Vegetation Cover 417

Fractional green vegetation cover can be estimated from the 418

Normalized Difference Vegetation Index (NDVI) as in [31] 419

fgv =
NDVI −NDVIbs

NDVIfcgv −NDVIbs
(17)
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Fig. 2. Images of fractional green vegetation cover fgv, fractional senescent
vegetation cover fsv = ftv − fgv, fractional open water fow , soil evaporative
efficiency β, and soil evaporative efficiency β′. Note that 2% of the 5 km by
32 km area is contaminated by clouds and cloud shadow. Contaminated 250-m
resolution pixels are represented by crossed-out surfaces.

with NDVIbs and NDVIfcgv being the NDVI over bare420

soil and full-cover green vegetation, respectively. NDVI is421

computed as the difference between near-infrared and red bands422

divided by their sum. The spatial variation of fractional green423

vegetation cover over the study area is shown in Fig. 2.424

B. Fractional Total (Green Plus Senescent) Vegetation Cover425

Fractional total vegetation cover is estimated by correlating426

ftv with surface albedo for green vegetation and by setting ftv427

to the maximum fgv for senescent vegetation. This methodol-428

ogy [5] is based on two assumptions, which are generally met in429

agricultural areas: 1) soil albedo is generally lower than green430

vegetation albedo, and 2) green vegetation albedo is lower than431

senescent vegetation albedo. Although a time series of red and432

near-infrared data would be required to estimate soil albedo433

and green vegetation albedo on a pixel-by-pixel basis [5], only434

one ASTER scene is available for this study period. Therefore,435

an alternate approach is adopted. Surface albedo is modeled436

as a linear mixing of vegetation and soil components (e.g.,437

[32] and [33])438

α = (1− ftv)αbs + fgvαfcgv + (ftv − fgv)αfcsv (18)

with αbs, αfcgv, and αfcsv being the albedo for bare soil, full-439

cover green vegetation, and full-cover senescent vegetation,440

respectively, and with the end-members αbs, αfcgv, and αfcsv441

estimated in Section V.442

By inverting (18), fractional vegetation cover is expressed as 443

ftv =
α− αbs + fgv(αfcsv − αfcgv)

αfcsv − αbs
(19)

with α being the surface albedo estimated as a weighted sum of 444

red and near-infrared reflectances using the coefficients given in 445

[34] and validated in [35]–[38]. As stated previously, our case 446

study does not allow calibrating αbs, αfcgv, and αfcsv on a 447

pixel-by-pixel basis. Consequently, the value of ftv computed 448

from (19) may, on some occasions, be lower than fgv or larger 449

than 1. To avoid nonphysical values, ftv is set to fgv and 1 in 450

the former and latter case, respectively. 451

The spatial variation of fractional senescent vegetation cover 452

(fsv = ftv − fgv) over the study area is shown in Fig. 2. Note 453

that NAFE’06 was undertaken at the beginning of the summer 454

agricultural season so that all irrigated crops were green and 455

healthy. 456

C. Fractional Open Water 457

The fraction of open water within each 250-m resolution 458

pixel is estimated using 50-m resolution resampled ASTER 459

B5 reflectance product. Various studies have indicated that the 460

shortwave-infrared band centered at around 1 µm is highly 461

sensitive to the presence of open water [20], [39], [40]. In this 462

paper, a simple threshold method is applied to classify at 50-m 463

resolution the 5 km by 32 km area in two classes: water and 464

nonwatered surface. The threshold value is estimated as 0.170 465

from one flooded crop field in the south of the study area. The 466

spatial variation of fractional open water over the study area is 467

shown in Fig. 2. Open water represents 5% of the study area 468

and is attributed to rice cropping. 469

D. Soil Evaporative Efficiency 470

Soil evaporative efficiency β is defined as the ratio of actual 471

to potential soil evaporation. In this paper, β is estimated from 472

PLMR brightness temperatures. Two different formulations 473

are used to evaluate the coupling effects of near-surface soil 474

moisture, fgv, and fsv on microwave-derived soil evaporative 475

efficiency. 476

By assuming that brightness temperature is mainly sensitive 477

to surface soil moisture [41] and that soil evaporative efficiency 478

is mainly driven by surface soil moisture [42], [43], soil evapo- 479

rative efficiency can be estimated as 480

β = 1− TB −TBb,ws

TBfcsv,ds −TBb,ws
(20)

with TBb,ws and TBfcsv,ds being the minimum and max- 481

imum brightness temperatures observed over the study area, 482

respectively. As brightness temperature generally decreases 483

with surface soil moisture and increases with vegetation cover 484

[44], TBb,ws and TBfcsv,ds are interpreted as the brightness 485

temperatures over wet bare soil and full-cover senescent vege- 486

tation with dry soil, respectively. The spatial variation of β over 487

the study area is shown in Fig. 2. 488

Since brightness temperature also depends on biomass (e.g., 489

[45]), a second formulation of soil evaporative efficiency β′ is 490
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TABLE II
NDVI AND SURFACE ALBEDO END-MEMBERS

derived in order to decouple the effects of soil moisture, fgv,491

and fsv on TB. As in [46], the assumption is that, for a given492

vegetated pixel, if vegetation is partially stressed (i.e., fsv > 0493

or ftv > fgv), then near-surface soil moisture availability is494

zero (i.e., β′ = 0). Alternatively, if that pixel does not contain495

senescent vegetation (i.e., fsv = 0 or ftv = fgv), then β′ is496

computed as the ratio of the measured “wet soil” brightness497

temperature difference to the “dry soil”–“wet soil” brightness498

temperature difference. Formally, one writes499

β′ =0 if TB > TBds (21)

β′ =1− TB − TBws

TBds − TBws
if TB ≤ TBds (22)

with TBds and TBws being the “dry soil” and “wet soil”500

brightness temperatures, respectively, both being estimated for501

fsv = 0. Since green vegetation is partially transparent to mi-502

crowaves, the “dry soil” brightness temperature is computed as503

a weighted sum of the brightness temperature over dry bare soil504

(noted as TBb,ds) and the brightness temperature over full-505

cover green vegetation with dry soil (noted as TBfcgv,ds)506

TBds = fgvTBfcgv,ds + (1− fgv)TBb,ds. (23)

Similarly, the “wet soil” brightness temperature is computed as507

a weighted sum of the brightness temperature over wet bare soil508

(noted as TBb,ws) and the brightness temperature over full-509

cover green vegetation with wet soil (noted as TBfcgv,ws)510

TBws = fgvTBfcgv,ws + (1− fgv)TBb,ws. (24)

The spatial variation of β′ over the study area is shown in Fig. 2.511

V. ESTIMATING END-MEMBERS512

A key step in the disaggregation procedure is estimating513

the 14 end-members from ASTER and PLMR data. They514

are composed of the following: NDVIbs, NDVIfcgv, αbs,515

αfcgv, αfcsv, Tb,ws, Tb,ds, Tfcgv, Tfcsv, TBb,ws, TBb,ds,516

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. For the convenience517

of the reader, the unit is degree Celsius for radiometric temper-518

ature and kelvin for brightness temperature.519

A. NDVI520

NDVI end-members are estimated as the minimum and maxi-521

mum values of NDVI observed over the 5 km by 32 km area for522

bare soil and full-cover green vegetation, respectively. Values523

for NDVIbs and NDVIfcgv are reported in Table II.524

Fig. 3. ASTER surface albedo α plotted against ASTER fractional green
vegetation cover fgv. Three particular values of α are identified: the soil
albedo αbs estimated as the minimum surface albedo, the green vegetation
albedo αfcgv estimated as the albedo corresponding to the largest fgv , and the
senescent vegetation albedo αfcsv estimated as the maximum surface albedo.

In this paper, the study domain included extreme conditions 525

in terms of vegetation cover so that NDVI end-members could 526

be estimated from the red and near-infrared reflectances ac- 527

quired over the area on a single date. In the case where extreme 528

conditions are not encountered in the application domain, a 529

different approach should be adopted, such as the use of a time 530

series of NDVI data (instead of a single snapshot image) that 531

would capture the phenological stages of agricultural crops. 532

Also, the determination of reflectance end-members could 533

be further constrained by the use of ancillary spectral data 534

sets [47]. 535

B. Albedo 536

Fig. 3 shows the space defined by surface albedo α and 537

fractional green vegetation cover fgv. Pixels including open 538

water are removed from the scatterplot. The soil albedo αbs 539

is defined as the minimum ASTER surface albedo observed 540

within the study area by assuming that the dependence of 541

αbs on soil moisture is small compared to the dependence of 542

α on vegetation cover. The green vegetation albedo αfcgv is 543

estimated as the surface albedo corresponding to maximum 544

fractional green vegetation cover. The senescent vegetation 545

albedo αfcsv is estimated as the maximum surface albedo 546

observed within the study area. Values for αbs, αfcgv, and 547

αfcsv are reported in Table II. 548

C. Land Surface Temperature 549

As the range of surface conditions varies with spatial res- 550

olution, two different procedures are developed to estimate 551

temperature end-members. 552

1) When estimating temperature end-members from 250-m 553

resolution data, one pixel is identified as fully covered 554

green vegetation, one pixel as fully covered senescent 555

vegetation, one pixel as bare dry soil, and one pixel as 556

bare wet soil. In this case, it is assumed that all extreme 557

conditions are included at high resolution within the study 558

domain. 559
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TABLE III
LAND SURFACE TEMPERATURE AND L-BAND BRIGHTNESS

TEMPERATURE END-MEMBERS THAT ARE ESTIMATED FROM

HIGH-RESOLUTION ASTER TEMPERATURE DATA, EXTRAPOLATED

FROM AGGREGATED ASTER TEMPERATURE DATA, AND EXTRAPOLATED

FROM MODIS TEMPERATURE DATA. FOR THE CONVENIENCE OF THE

READER, THE UNIT IS DEGREE CELSIUSFOR RADIOMETRIC

TEMPERATURE AND KELVIN FOR BRIGHTNESS TEMPERATUREAQ3

2) When estimating temperature end-members from 1-km560

resolution data (as in the operational scenario), none of561

the pixels are identified as representative of any extreme562

condition. Temperature end-members are extrapolated563

from 1-km temperature data using ancillary data com-564

posed of air temperature, soil albedo, green vegetation565

albedo, and senescent vegetation albedo as described in566

the following.567

End-members Tb,ws, Tb,ds, Tfcgv, and Tfcsv are deter-568

mined by analyzing the consistency of the diagrams in Fig. 4.569

Fig. 4(a) shows the space defined by ASTER land surface570

temperature and ASTER fractional green vegetation cover. The571

three edges of the triangle T − fgv are interpreted [27] as “bare572

soil” between A and B, “wet surface” between B and C, and573

“dry soil” between C and A. Fig. 4(b) shows the space de-574

fined by ASTER land surface temperature and ASTER surface575

albedo. An interpretation of the polygon T − α is provided576

in [5], which is consistent with the triangle method. The four577

edges are interpreted as “bare soil” between A and B, “wet578

surface” between B and C, “full cover” between C and D,579

and “dry surface” between D and A. The notation system for580

polygon vertices A, B, C, and D is summarized in Table I, and581

the corresponding temperature values Tb,ds, Tb,ws, Tfcgv,582

and Tfcsv are reported in Table III.583

In this paper, high-resolution temperature T is assumed to584

be unavailable. Consequently, the extreme temperatures Tb,ds,585

Tb,ws, Tfcgv, and Tfcsv are extrapoled from the spaces Tkm −586

〈fgv〉km and Tkm − 〈α〉km defined at kilometric resolution587

(see Fig. 4(c) and (d) for aggregated ASTER temperature and588

Fig. 4(e) and (f) for MODIS temperature). An approach similar589

to [5] is used as follows.590

1) Vertex C corresponds to full-cover green vegetation591

and is located at (1,Tfcgv) in Fig. 4(c) (Fig. 4(e) for592

MODIS temperature) and at (αfcgv,Tfcgv) in Fig. 4(d)593

[Fig. 4(f)]. In this paper, Tfcgv is set to the air tem-594

perature Ta measured at the time of ASTER overpass.595

Vertex C is thus placed at (1,Ta) in Fig. 4(c) [Fig. 4(e)]596

and at (αfcgv,Ta) in Fig. 4(d) [Fig. 4(f)].597

Fig. 4. (a) Scatterplot of ASTER temperature versus fractional green vegeta-
tion cover and (b) versus surface albedo, (c) scatterplot of aggregated ASTER
temperature versus aggregated fractional green vegetation cover and (d) versus
aggregated surface albedo, and (e) scatterplot of MODIS temperature versus
aggregated fractional green vegetation cover and (f) versus aggregated surface
albedo. The vertices A, B, C, and D obtained using high-resolution data in
(a) and (b) are extrapolated using low-resolution data in (c), (d), (e), and (f)
from ancillary data composed of air temperature Ta, soil albedo αbs, green
vegetation albedo αfcgv , and senescent vegetation albedo αfcsv .

2) Vertex B corresponds to wet bare soil and is located at 598

(0,Tb,ws) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ws) in 599

Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)] 600

at the intersection between (BC) and the vertical line 601

〈fgv〉km = 0. The slope of (BC) is computed as the slope 602

of the linear regression of the data points corresponding 603

to the “wet surface” edge of the triangle Tkm − 〈fgv〉km. 604

The off-set of (BC) is determined from C. 605

3) Vertex A corresponds to dry bare soil and is located at 606

(0,Tb,ds) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ds) in 607

Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)] 608

at the intersection between (AC) and the vertical line 609

〈fgv〉km = 0. The slope of (AC) is computed as the slope 610

of the linear regression of the data points corresponding 611

to the “dry soil” edge of the triangle Tkm − 〈fgv〉km. The 612

off-set of (AC) is determined from C. 613

4) Vertex D corresponds to full-cover senescent vegetation 614

and is located at (αfcsv,Tfcsv) in Fig. 4(d) [Fig. 4(f)]. 615

It is placed in Fig. 4(d) [Fig. 4(f)] at the intersection 616

between (AD) and the vertical line 〈α〉km = αfcsv. The 617

line (AD) is considered as being parallel to (BC)[5]. 618

Consequently, the slope of (AD) is determined from 619
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the slope of (BC). The off-set of (AD) is determined620

from A. Note that the lines (AD) and (BC) might621

not be strictly parallel. This may be due to a lack of622

representativeness of the surface conditions captured at623

250-m resolution within the study area. In that case, one624

or several data points may be located above (AD). To625

circumvent this artifact, the slope of (AD) in Fig. 4(d)626

[Fig. 4(f)] is increased so that all data points will be627

located below the “dry surface” edge.628

Table III lists the four temperature end-members: 1) esti-629

mated from Fig. 4(a) and (b) using high-resolution ASTER630

data; 2) extrapolated from Fig. 4(c) and (d) using aggregated631

ASTER temperature data; and 3) extrapolated from Fig. 4(e)632

and (f) using MODIS temperature data. The values extrapo-633

lated from aggregated ASTER and MODIS temperatures are634

rather close to those estimated from high-resolution ASTER635

temperature data, with the maximum difference in extrapolated636

temperatures being 2.6 ◦C, except for Tfcsv using MODIS637

data. In the latter case, the significant underestimation (5.3 ◦C)638

of Tfcsv can be explained by the following: 1) the negative639

mean difference (−2.3 ◦C) between MODIS and ASTER data640

and/or 2) the smaller range of (spatial dynamics) of 1-km641

resolution MODIS data in relation to 1-km aggregated ASTER642

data [please compare Fig. 4(c) with Fig. 4(e), and Fig. 4(d) with643

Fig. 4(f)].644

D. Brightness Temperature645

To estimate soil evaporative efficiency β in (20) and β′646

in (22), five brightness temperature values corresponding to647

extreme surface conditions are required: TBb,ds, TBb,ws,648

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. In this paper, those649

five values are estimated from a generalized version [5], [9] of650

the classical “triangle method” [27].651

Fig. 5(a) shows the space defined by PLMR brightness652

temperature and ASTER land surface temperature. In the fol-653

lowing, an original interpretation of the five vertices visible654

in Fig. 5(a) is provided, which is consistent with both the655

classical “triangle method” and the state-of-the-art L-band ra-656

diative transfer models. Vertices are presented successively in657

the counterclockwise direction, and the correspondence with658

vegetation and soil conditions is summarized in Table I.659

1) Vertex at minimum brightness temperature: L-band ra-660

diative transfer models predict an increase of brightness661

temperature with biomass and a decrease of brightness662

temperature with surface soil moisture (e.g., [48] and663

[49]). Therefore, the point at minimum brightness tem-664

perature corresponds to wet bare soil. This vertex is noted665

as B in Fig. 5(a), which is consistent with Fig. 4.666

2) Vertex at maximum land surface temperature: the triangle667

method predicts a decrease of land surface temperature668

with both vegetation cover and surface soil moisture.669

Therefore, the point at maximum land surface tempera-670

ture corresponds to dry bare soil. This vertex is noted as671

A in Fig. 5(a), which is consistent with Fig. 4.672

3) Vertex at maximum brightness temperature: being con-673

sistent with an increase of vegetation emission with674

biomass and a decrease of soil emission with surface soil675

moisture, the point at maximum brightness temperature 676

corresponds to full-cover vegetation with dry soil. It 677

could correspond to full-cover green vegetation. How- 678

ever, the associated land surface temperature in Fig. 5(a) 679

is much larger than that over full-cover green vegetation 680

(21 ◦C) and rather close to the temperature over full- 681

cover senescent vegetation (34 ◦C). Therefore, the point 682

at maximum brightness temperature corresponds to full- 683

cover senescent vegetation with dry soil. This vertex 684

is noted as D′ in Fig. 5(a), which is consistent with 685

Fig. 4. A prime mark indicates that D′ corresponds to a 686

dry soil, whereas D does not specify soil hydric status. 687

Note that D′ does not necessarily correspond to dry 688

senescent vegetation since wet senescent vegetation can 689

lead to large values of brightness temperature [50]. In 690

our case study, however, no rainfall occurred during the 691

four days preceding the ASTER overpass, which means 692

that senescent vegetation was completely dry. In terms of 693

radiative transfer modeling, the effect of dry biomass on 694

brightness temperature can be represented by large values 695

of roughness parameter [51]. 696

4) Vertices at minimum land surface temperature: two more 697

vertices are apparent in the counterclockwise direction. 698

Being consistent with a decrease of land surface tem- 699

perature with green vegetation, both points correspond 700

to full-cover green vegetation. As vegetation is partially 701

transparent to the L-band emission from the soil, each 702

point corresponds to a different soil hydric status. The 703

vertex with a larger TB [noted as C′′ in Fig. 5(a)] 704

corresponds to full-cover green vegetation with dry soil, 705

and the point with a lower TB [noted as C′ in Fig. 5(a)] 706

corresponds to full-cover green vegetation with wet soil. 707

As high-resolution temperature is assumed to be unavailable 708

in this paper, brightness temperature end-members are not 709

estimated from the polygon TB − T in Fig. 5(a) but from 710

the polygon TB − fgv shown in Fig. 5(b). The following is 711

an interpretation of the polygon in Fig. 5(b), based on the 712

consistency with the polygon in Fig. 5(a). In particular, the five 713

vertices in Fig. 5(a) can be located in Fig. 5(b) as follows. 714

1) Vertex B corresponds to wet bare soil. It is located at 715

the minimum value of brightness temperature such that 716

fgv = 0. 717

2) Vertex A corresponds to bare dry soil. It is not apparent 718

in Fig. 5(b) because fractional green vegetation is not 719

sufficient information to distinguish between bare soil 720

and senescent vegetation. 721

3) Vertex D′ corresponds to full-cover senescent vegetation 722

with dry soil. It is located at the maximum value of 723

brightness temperature. 724

4) Vertex C′′ corresponds to full-cover green vegetation 725

with dry soil. It is located at the maximum value of 726

brightness temperature such that fgv = 1. 727

5) Vertex C′ corresponds to full-cover green vegetation with 728

wet soil. It is located at the minimum value of brightness 729

temperature such that fgv = 1. 730

Based on the aforementioned interpretation of the polygon 731

TB − fgv in Fig. 5(b), the methodology used for estimating 732
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Fig. 5. (a) Scatterplot of PLMR incidence-corrected brightness temperature TB versus ASTER land surface temperature and (b) versus ASTER fractional
green vegetation cover, and (c) scatterplot of aggregated TB versus aggregated ASTER temperature and (d) versus MODIS temperature. Extreme brightness
temperatures TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds are estimated by interpreting the bare soil, dry surface, full-cover vegetation, and wet surface
edges of the polygon in (b). The estimation of TBb,ds using low-resolution temperature data is illustrated with aggregated ASTER temperature in (c) and MODIS
temperature in (d).

TBb,ds, TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds is733

detailed in the following.734

1) The brightness temperature over full-cover dry surface735

(TBfcsv,ds) and over wet bare soil (TBb,ws) are set736

to the maximum and minimum brightness temperatures737

observed within the study area, respectively.738

2) The brightness temperatures over full-cover green veg-739

etation with wet soil (TBfcgv,ws) and over full-cover740

green vegetation with dry soil (TBfcgv,ds) are estimated741

as the brightness temperature extrapolated at fgv = 1 in742

Fig. 5(b) along the “wet soil” and the “full-cover dry743

soil” edge, respectively. The slope of the lines (BC′)744

and (D′C′′) are determined so that all of the points with745

fgv > 0.5 be above and below the “wet soil” and “full-746

cover dry soil” edges, respectively.747

3) Vertex A cannot be identified in the space TB − fgv.748

Consequently, TBb,ds is set to the brightness tempera-749

ture corresponding to the maximum Tkm (see Fig. 5(c) for750

aggregated ASTER temperature and Fig. 5(d) for MODIS751

temperature data).752

Table III lists the five brightness temperature end-members:753

1) estimated from Fig. 5(a) using high-resolution ASTER data;754

2) estimated from Fig. 5(b) and (c) using high-resolution755

fractional green vegetation cover and aggregated ASTER tem-756

perature data; and 3) estimated from Fig. 5(b) and (d) using757

high-resolution fractional green vegetation cover and MODIS758

temperature data. Values estimated from low-resolution tem-759

perature are remarkably close to those estimated from high-760

resolution ASTER temperature data (Table III), except for761

TBb,ds with a difference of 6 K. This difference is apparently762

due to the lack of representativeness of kilometric aggregated763

brightness temperature and the method for estimating TBb,ds764

at kilometric scale. Note, however, that a 6-K difference is still765

relatively low compared to the range (190 K–280 K) covered766

by brightness temperature values.767

VI. APPLICATION768

The disaggregation algorithms presented here are applied769

to the NAFE’06 data set. ASTER land surface temperature is770

aggregated at 1-km resolution, and kilometric temperature is771

used as input to D0, D1, D1′, D2, D2′, D3′, D4′, and D4′′. As772

shown in Fig. 1, the verification strategy consists in comparing 773

disaggregation results at 250-m resolution with ASTER land 774

surface temperature. An application to MODIS data is also 775

presented. 776

A. Application to Aggregated ASTER Data 777

1) End-Members Derived From High-Resolution Data: The 778

approach is first implemented using the end-members estimated 779

from high-resolution ASTER temperature data. This allows 780

testing the robustness of the model in (15) and (16) inde- 781

pendently of the methodology used for extrapolating the nine 782

end-members Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws, 783

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. 784

Fig. 6 shows the output images of the eight disaggregation 785

algorithms, which are to be compared with the reference image 786

derived from ASTER land surface temperature. One observes 787

that the disaggregated temperature is successively improved 788

by including additional factors in the disaggregation, which 789

indicates that the methodology is able to take into account 790

several independent factors. Although the boxy artifact at 1-km 791

resolution is successively reduced from T (0) to T (4′′), it is still 792

apparent for T (4′′). This effect may be due to the following: 1) 793

other factors that are not taken into account in the procedure, 794

such as green vegetation water stress, wind speed, surface 795

emissivity, surface albedo, etc.; 2) errors in estimated fgv, fsv, 796

fow, and β; and/or 3) resampling errors at 250-m resolution. 797

Table IV lists the RMSD, correlation coefficient, and slope 798

between the disaggregated and ASTER temperatures for each 799

of the eight disaggregation algorithms. The error is successively 800

decreased from 1.65 ◦C to 1.16 ◦C, while the correlation coef- 801

ficient and slope are successively increased from 0.79 and 0.63 802

to 0.89 and 0.88, respectively. When comparing D1, D2, D1′, 803

and D2′, no significant differences are observed between all 804

four algorithms in terms of root-mean-square error, correlation 805

coefficient, and slope. Note that, in this paper, ftv was estimated 806

in a different way than in [5] because only one visible and 807

near-infrared image was available and a FORMOSAT-like time 808

series would be required to derive ftv more accurately on a 809

pixel-by-pixel basis. Nevertheless, this comparison suggests 810

that D1′ seems to be equivalent to D1 and D2′ equivalent to 811

D2, which justifies the use of the Tmod model. 812
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Fig. 6. Maps of the temperature disaggregated by the eight algorithms as compared with the map (right) of high-resolution ASTER temperature.

TABLE IV
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS ESTIMATED USING

HIGH-RESOLUTION ASTER TEMPERATURE DATA

(TO THE END-MEMBERS EXTRAPOLATED USING

AGGREGATED ASTER TEMPERATURE DATA)

The main advantage of the new approach is to take into813

account a number of additional factors, including fractional814

open water and soil evaporative efficiency. When comparing the815

results obtained for D3′, D4′, and D4′′ in Table IV, it is observed816

that the disaggregated temperature is significantly improved817

against the classical approaches D1 and D2. Moreover, the818

statistical results are successively improved by including fow,819

β, and β′. Fig. 7 shows the improvement, especially in the820

slope between the disaggregated and ASTER temperatures. The821

good results obtained for D4′′ indicate that the performance of822

disaggregation algorithms is intimately related to the following:823

1) the capability of separating the independent factors that824

impact on surface temperature and 2) the ability to integrate825

them consistently into the procedure.826

2) End-Members Derived From Aggregated ASTER Data:827

As disaggregation procedures D1′, D2′, D3′, D4′, and D4′′828

Fig. 7. Aggregated ASTER temperature (1 km) is disaggregated by each of
the eight algorithms and is plotted against high-resolution ASTER temperature.

are subjected to uncertainties in land surface temperature and 829

brightness temperature end-members, the five algorithms are 830

next tested using the end-members estimated from kilomet- 831

ric temperature data, as presented in Section V. Aggregated 832

ASTER (instead of MODIS) data are used to evaluate the 833
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Fig. 8. MODIS temperature (1 km) is disaggregated by each of the eight
algorithms and is plotted against high-resolution ASTER temperature.

impact of end-members regardless of the discrepancy between834

MODIS and ASTER temperatures.835

Table IV lists the RMSD, correlation coefficient, and slope836

between the disaggregated and ASTER temperatures for each837

of the five algorithms. Results are compared with those ob-838

tained using the end-members estimated from high-resolution839

ASTER temperature. In general, the error is slightly larger,840

and the correlation coefficient and slope are slightly lower us-841

ing extrapolated end-members. Nevertheless, the disaggregated842

temperature is still much improved by applying D4′′ instead of843

D1′, with the correlation coefficient and slope increasing from844

0.74 to 0.88 and from 0.72 to 0.86, respectively. Consequently,845

the extrapolation of end-members from kilometric data is not846

found to be a limiting factor in the methodology.847

B. Application to MODIS Data848

Disaggregation algorithms D0, D1, D1′, D2, D2′, D3′, D4′,849

and D4′′ are then applied to MODIS data. In this case, end-850

members are derived from MODIS data. Fig. 8 shows the scat-851

terplot of disaggregated MODIS versus ASTER temperature for852

each algorithm separately. One observes that the new methodol-853

ogy improves the correlation and slope of the linear regression854

between the disaggregated and ASTER temperatures. However,855

a systematic negative bias is apparent in the disaggregated856

temperature. Table V lists the RMSD, correlation coefficient,857

and slope between the disaggregated and ASTER temperatures858

for each of the eight algorithms. The error slightly decreases859

TABLE V
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS EXTRAPOLATED

USING MODIS TEMPERATURE DATA

from 3.2 ◦C to 3.0 ◦C, while the correlation coefficient and 860

slope increase from 0.6 and 0.3 to 0.7 and 0.5, respectively. 861

The results obtained for D3′ and D4′ in Table V indicate that 862

the disaggregated temperature is improved against the classical 863

approaches D1 and D2. As for the application to aggregated 864

ASTER data, the statistical results are successively improved 865

by including fow, β, and β′. However, the improvement with 866

MODIS data is not as visible as with aggregated ASTER 867

data because the difference between MODIS and ASTER data 868

(please refer to Section II-C) has the same order of magnitude 869

as the subpixel variability at 250-m resolution (see RMSD for 870

D0 in Table V). In particular, the mean bias and the relatively 871

low slope of the linear regression between the disaggregrated 872

and ASTER data are associated with the discrepancy at 1-km 873

resolution between the MODIS and ASTER temperature data. 874

VII. SENSITIVITY ANALYSIS 875

To further assess the stability of the new D′ algorithms based 876

on radiative transfer, two sensitivity analyses are conducted 877

by the following: 1) adding a Gaussian noise on kilometric 878

temperatures and high-resolution brightness temperatures and 879

2) estimating the contribution of each factor on the variability 880

of modeled land surface temperature. 881

A. Uncertainty in End-Members 882

To test the stability of the method for estimating the nine 883

end-members (Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws, 884

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds) from low-resolution 885

temperature data, a Gaussian noise with a standard deviation 886

of 1 ◦C is added to the kilometric (aggregated ASTER) land 887

surface temperature data set, and a Gaussian noise with a stan- 888

dard deviation of 2 K is added to the high-resolution brightness 889

temperature data set. An ensemble of 100 data sets is generated 890

and used as input to the disaggregation algorithms. 891

Table VI reports the average and standard deviation of ex- 892

trapolated end-members computed within the ensemble of 100 893

artificially perturbed data sets. Results indicate that the method 894

for extrapolating end-members is stable for all end-members. 895
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TABLE VI
MEAN AND STANDARD DEVIATION OF LAND SURFACE TEMPERATURE

AND L-BAND BRIGHTNESS TEMPERATURE END-MEMBERS

EXTRAPOLATED USING KILOMETRIC TEMPERATURE DATA. FOR THE

CONVENIENCE OF THE READER, THE UNIT IS DEGREE CELSIUS FOR

RADIOMETRIC TEMPERATURE AND KELVIN FOR

BRIGHTNESS TEMPERATURE

TABLE VII
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES FOR THE DATA

INCLUDING ALL THE 100 ARTIFICIALLY NOISED DATA SETS

Table VII lists the RMSD, correlation coefficient, and slope896

between the disaggregated and ASTER temperatures for all 100897

data sets. Although the results are generally degraded by using898

noisy input data sets, D4′′ is still superior to all other algorithms899

(see Fig. 9). Therefore, the integration of fractional open water900

and soil evaporative efficiency into the disaggregation is able to901

improve the representation of land surface temperature variabil-902

ity despite the uncertainties in fow and β′, and the uncertainties903

in extrapolated end-members.904

B. Weighting Variability Factors905

Results with the NAFE’06 data set have indicated that the906

new D′ algorithms based on radiative transfer significantly907

improve (in relation to D1 and D2 methods) the representation908

of disaggregated temperature by directly integrating the various909

input parameters of the radiative transfer equation. Another ad-910

vantage of the proposed methodology is to quantify the weight911

of these input parameters. Here, the relative weights of fgv,912

fsv, fow, and β′ are compared, and the relative improvement in913

disaggregated temperature when including these factors in the914

disaggregation is assessed. The weight of fgv on the variability915

Fig. 9. As for Fig. 7 but using all the 100 artificially noised input data sets.

in land surface temperature is derived by computing the first 916

partial derivative of Tmod from (15) and (16) 917

∂Tmod

∂fgv
= −(1− fow)(Tfcsv −Tfcgv). (25)

Similarly, the first partial derivative of Tmod is computed with 918

respect to fsv 919

∂Tmod

∂fsv
= −(1− fow) [β

′Tb,ws + (1− β′)Tb,ds −Tfcsv]

(26)
with respect to fow 920

∂Tmod

∂fow
= − [fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) (β
′Tb,ws + (1− β′)Tb,ds)−Tfcgv] (27)

and with respect to β′ 921

∂Tmod

∂β′ = −(1− fow)(1− ftv)(Tb,ds −Tb,ws). (28)

Table VIII lists the standard deviation of each parameter 922

within the study area, the average of partial derivatives, and the 923

relative weight of each parameter on the variability of modeled 924

land surface temperature. The relative weights of fgv, fsv, fow, 925

and β′ are estimated as the mean partial derivative times the 926

standard deviation. Results indicate that all parameters have a 927

negative impact on T . More interestingly, fgv appears to be 928

the most significant variability factor, with a relative weight 929

of 42%, which is consistent with NDVI-based approaches [4]. 930



IE
EE

Pr
oo

f

14 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE VIII
STANDARD DEVIATION, MEAN PARTIAL DERIVATIVE, AND IMPACT ON HIGH-RESOLUTION MODELED TEMPERATURE OF EACH OF THE

FOUR PARAMETERS: FRACTIONAL GREEN VEGETATION COVER, FRACTIONAL SENESCENT VEGETATION COVER,
FRACTIONAL OPEN WATER, AND SOIL EVAPORATIVE EFFICIENCY

The second and third most significant variability factors are soil931

evaporative efficiency and fractional open water, with relative932

weights of 27% and 20%, respectively. Finally, fractional senes-933

cent vegetation cover represents only 11% of the variability934

in land surface temperature. The low impact of fsv can be935

associated with the low mean partial derivative. In particular,936

∂Tmod /∂fsv is low because the temperature difference be-937

tween dry bare soil (Tb,ds) and full-cover senescent vegetation938

(Tfcsv) is also low in our case study.939

The relative weights in Table VIII are now related with940

the disaggregation results in Table III. Consequently, the poor941

improvement of D2 against D1 (and D2′ against D1′) can be942

attributed to the relatively low weight of fsv in the variability of943

land surface temperature. Conversely, the significant improve-944

ments of D4′′ against D3′, D3′ against D2′, and D1 (and D1′)945

against D0 are attributed to the large weights of β′, fow, and946

fgv, respectively.947

In summary, the variability of land surface temperature is rea-948

sonably represented by model Tmod . Moreover, the approach949

allows the relative weight of each variability factor to be taken950

into account in the disaggregation procedure.951

VIII. SUMMARY AND CONCLUSION952

A new disaggregation methodology for land surface tem-953

perature has been developed to integrate the main surface954

parameters involved in the surface energy budget. It is based955

on a linearized radiative transfer equation, which distinguishes956

between soil, vegetation, and water temperature, and uses soil957

evaporative efficiency and fractional senescent vegetation cover958

to parameterize/estimate soil and vegetation hydric status, re-959

spectively. The approach is implemented using four parame-960

ters: the fraction of green vegetation cover derived from red961

and near-infrared bands, the fraction of senescent vegetation962

cover derived from red and near-infrared bands, the fraction963

of open water derived from shortwave-infrared band, and the964

soil evaporative efficiency derived from microwave-L band.965

It is tested over a 5 km by 32 km area of irrigated land in966

Australia, including flooded rice crops, using ASTER and L-967

band airborne data. Low-resolution land surface temperature968

is simulated by aggregating ASTER land surface tempera-969

ture at 1-km resolution, and the disaggregated temperature is970

compared to high-resolution ASTER temperature. The results971

indicate that the methodology is able to separate efficiently the972

independent factors that impact surface temperature and to inte-973

grate them consistently into the disaggregation procedure. The974

error in disaggregated temperature is successively reduced from 975

1.65 ◦C to 1.16 ◦C by including each of the four parameters. 976

The correlation coefficient and slope between the disaggregated 977

and ASTER temperatures are improved from 0.79 to 0.89 and 978

from 0.63 to 0.88, respectively. Moreover, the radiative transfer 979

equation allows quantifying the impact at high resolution of 980

each parameter on land surface temperature. In this case study, 981

fractional green vegetation cover is responsible for 42% of the 982

variability in disaggregated land surface temperature, fractional 983

senescent vegetation cover for 11%, fractional open water for 984

20%, and soil evaporative efficiency for 27%. 985

Note that the approach presented in this paper did not take 986

into account the water stress of green vegetation because none 987

of the considered parameters (fractional green vegetation cover, 988

fractional senescent vegetation cover, fractional open water, and 989

soil evaporative efficiency) could describe the hydric status of 990

photosynthetically active (green) vegetation. The analysis was 991

conducted solely in a highly irrigated environment in which 992

vegetation water stress was small. However, in most cases, 993

the vegetation water stress might not be negligible for natural 994

areas. In the presence of water-stressed green vegetation, the 995

scatterplot (temperature versus green vegetation cover) would 996

be transformed into a trapezoidal shape with four vertices 997

rather than a triangle. In such conditions, the disaggregation 998

problem would be partly undetermined since the partitioning 999

between unstressed and stressed green vegetations would not 1000

be represented. Consequently, the approaches shown here are 1001

not expected to be representative of other less extreme environ- 1002

ments than the present irrigated area. Nevertheless, one should 1003

keep in mind that improving the spatial resolution of land 1004

surface temperature data via disaggregation is only relevant in 1005

the conditions where the spatial variability of temperature is 1006

large. 1007

Although the approach was successfully applied to airborne 1008

and satellite data collected during NAFE’06, further research is 1009

needed to test the disaggregation approach on a routine basis. 1010

One may anticipate that fractional green and senescent vege- 1011

tation covers could be derived accurately using FORMOSAT- 1012

like data. The FORMOSAT-2 instrument [52] provides short- 1013

wave data at high spatial resolution (8 m) and high temporal 1014

frequency (potentially one image per day), which allow a fine 1015

analysis of the seasonality of canopies during the crop cycle 1016

[5], [53], [54]. Fractional open water could be derived from 1017

Landsat-5 data (e.g., [20]). Although the repeat cycle of Landsat 1018

(16 days) is longer than the temporal resolution needed for land 1019

surface temperature, the seasonal variations of water bodies 1020
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such as irrigation canals and flooded fields are expected to1021

be low. Soil evaporative efficiency could be derived at high1022

resolution from active microwave sensors, such as the Phased1023

Array L-band SAR (PALSAR) [55]. Soil evaporative efficiency1024

formulas express evaporation as a function of normalized sur-1025

face soil moisture. Therefore, soil evaporative efficiency is1026

equivalent to a soil moisture index, which could be replaced1027

in (20) by the radar-derived soil wetness index computed as1028

the observed to minimal backscattering coefficient difference1029

divided by the maximal to minimal backscattering coefficient1030

difference [56], [57]. Note, however, that the temporal coverage1031

of the PALSAR fine beam dual polarization mode is relatively1032

low, with a revisit cycle of 46 days. Consequently, accurate1033

disaggregation of land surface temperature would still rely on1034

the availability of high-resolution radar data.1035
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Multidimensional Disaggregation of Land Surface
Temperature Using High-Resolution Red,

Near-Infrared, Shortwave-Infrared,
and Microwave-L Bands

1

2

3

4

Olivier Merlin, Frédéric Jacob, Jean-Pierre Wigneron, Jeffrey Walker, and Ghani Chehbouni5

Abstract—Land surface temperature data are rarely available6
at high temporal and spatial resolutions at the same locations. To7
fill this gap, the low spatial resolution data can be disaggregated8
at high temporal frequency using empirical relationships between9
remotely sensed temperature and fractional green (photosynthet-10
ically active) and senescent vegetation covers. In this paper, a11
new disaggregation methodology is developed by physically link-12
ing remotely sensed surface temperature to fractional green and13
senescent vegetation covers using a radiative transfer equation.14
Moreover, the methodology is implemented with two additional15
factors related to the energy budget of irrigated areas, being the16
fraction of open water and soil evaporative efficiency (ratio of17
actual to potential soil evaporation). The approach is tested over18
a 5 km by 32 km irrigated agricultural area in Australia using19
airborne Polarimetric L-band Multibeam Radiometer brightness20
temperature and spaceborne Advanced Scanning Thermal21
Emission and Reflection radiometer (ASTER) multispectral data.22
Fractional green vegetation cover, fractional senescent vegeta-23
tion cover, fractional open water, and soil evaporative efficiency24
are derived from red, near-infrared, shortwave-infrared, and mi-25
crowave-L band data. Low-resolution land surface temperature26
is simulated by aggregating ASTER land surface temperature to27
1-km resolution, and the disaggregated temperature is verified28
against the high-resolution ASTER temperature data initially used29
in the aggregation process. The error in disaggregated tempera-30
ture is successively reduced from 1.65 ◦C to 1.16 ◦C by includ-31
ing each of the four parameters. The correlation coefficient and32
slope between the disaggregated and ASTER temperatures are33
improved from 0.79 to 0.89 and from 0.63 to 0.88, respectively.34
Moreover, the radiative transfer equation allows quantification of35
the impact on disaggregation of the temperature at high resolution36
for each parameter: fractional green vegetation cover is respon-37
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sible for 42% of the variability in disaggregated temperature, 38
fractional senescent vegetation cover for 11%, fractional open 39
water for 20%, and soil evaporative efficiency for 27%. 40

Index Terms—Advanced Scanning Thermal Emission and Re- 41
flection radiometer (ASTER), brightness temperature, disaggre- 42
gation, evaporative efficiency, land surface temperature, Moderate 43
Resolution Imaging Spectroradiometer (MODIS), multispectral, 44
open water, soil moisture, vegetation fraction. 45

I. INTRODUCTION 46

R EMOTELY sensed land surface temperature is a signature 47

of the thermodynamic equilibrium state of the surface 48

skin. Consequently, it provides the potential to monitor dy- 49

namic information on instantaneous energy and water fluxes 50

at the land-surface–atmosphere interface. Nevertheless, the op- 51

erational use of thermal remote sensing for hydrological and 52

water resource management studies has been limited to regional 53

scale applications (e.g., [1] and [2]) mainly because the spatial 54

resolution (larger than 1 km) of current high temporal resolution 55

thermal sensors is too coarse to represent the heterogeneity of 56

man-made landscapes. For example, the Moderate Resolution 57

Imaging Spectroradiometer (MODIS) has a revisit frequency 58

of 1 or 2 times per day but a spatial resolution of only 1 km, 59

while the Advanced Scanning Thermal Emission and Reflection 60

radiometer (ASTER) has a spatial resolution of 90 m but a 61

revisit time of only 16 days. 62

The use of remotely sensed land surface temperature over 63

agricultural areas requires data at both high spatial and temporal 64

resolutions [3]. While there is a lack of high spatial resolution 65

thermal data from satellite with high frequency, there is the 66

potential for land surface temperature derived from kilomet- 67

ric resolution sensors having high temporal resolution to be 68

disaggregated using high spatial resolution ancillary data. The 69

first disaggregation approach of remotely sensed temperature 70

was developed by [4] using the fractional green vegetation 71

cover derived from red and near-infrared reflectances. Given 72

the high temperature difference between bare soil and a well- 73

watered crop, this approach has proved to be effective over 74

areas with relatively uniform soil and vegetation hydric status. 75

Recently, [5] has extended the approach of [4] to conditions 76

where vegetation hydric status is heterogeneous. This required 77

developing a methodology to estimate the fraction of senescent 78

vegetation cover from a time series of FORMOSAT-2 images. 79

0196-2892/$26.00 © 2011 IEEE
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The accuracy in disaggregated temperature was improved by80

taking into account fractional senescent vegetation cover in81

addition to fractional green vegetation cover.82

Fractional green and senescent vegetation covers, however,83

are not the only factors explaining the spatial variations of land84

surface temperature, especially over irrigated areas where crop85

fields may have different moisture status to the surrounds. In86

particular, the temperature over a flooded crop field may be87

drastically different from the temperature over a mature crop88

field. Therefore, the fraction of open water is an important89

variable to represent the spatial variations of land surface tem-90

perature. Over nonwatered land surfaces, the soil evaporative91

efficiency (ratio of actual to potential soil evaporation) is a92

signature of the capacity of the soil to evaporate its water93

content in the near surface and thus to counter an increase of94

its thermodynamic temperature. Consequently, soil evaporative95

efficiency is also an essential variable to describe the spatial96

variations of land surface temperature. Moreover, knowledge97

of soil evaporative efficiency is needed to decouple the effects98

of soil and vegetation hydric status on the surface energy99

budget and hence to better represent the resultant radiative100

surface temperature. As an example, the crop water stress index101

(CWSI) [6], [7] can be used to detect plant stress based on the102

difference between foliage and air temperature. Nevertheless,103

the application of the CWSI to partially vegetated areas is104

subjected to large uncertainties because the soil background105

may have a different temperature to the plants [7] depending106

on soil evaporative efficiency. Another example is provided by107

Moran et al. [8] who proposed the vegetation index/temperature108

(VIT) trapezoid to estimate a most probable range of plant109

stress over partially vegetated fields. It is a three-step procedure110

in which the following steps are performed: 1) the temperatures111

of the four vertices of the VIT trapezoid are estimated using an112

energy budget model; 2) the minimum and maximum probable113

vegetation temperatures are estimated from the measured com-114

posite land surface temperature, together with the maximum115

and minimum simulated soil temperatures; and 3) the minimum116

and maximum probable CWSIs are computed by normalizing117

the minimum and maximum probable vegetation temperatures118

from the vegetation temperature extremes simulated by the119

energy budget model. The point is that this approach does notAQ2 120

allow estimating a single CWSI value because the retrieval121

problem is underdetermined. In particular, Moran et al. [8]122

noted that “with knowledge of a second point within the123

hourglass (perhaps soil temperature), it would be possible to124

infer [the canopy-air temperature] difference and pinpoint the125

CWSI value.” In the latter case, knowledge of soil temperature126

is equivalent to knowledge of soil evaporative efficiency, which127

would remove the underdetermination of the VIT trapezoid.128

The objective of this paper is to develop a new disaggrega-129

tion methodology of kilometric land surface temperature using130

hectometric multivariable ancillary data. The approach is based131

on a radiative transfer equation that estimates differences in132

temperature data at hectometric resolution. Specifically, the use133

of a radiative transfer equation allows the following: 1) includ-134

ing variables other than those used by previous disaggregation135

approaches and 2) deducing the most pertinent variables. In136

addition to fractional green and senescent vegetation covers, the137

new methodology includes the variability at hectometric reso- 138

lution of fractional open water and soil evaporative efficiency. 139

With respect to other disaggregation algorithms in literature 140

[4], [5], the proposed technique differs in the following four 141

main aspects: 1) it relies on a physically based radiative transfer 142

equation rather than empirical linear regressions; 2) it takes 143

into account the fractional open water derived from shortwave- 144

infrared band as required; 3) it takes into account the soil hydric 145

status via microwave-derived soil evaporative efficiency; and 146

4) it allows the relative weight of each parameter used for 147

disaggregating temperature to be quantified. 148

The new disaggregation technique is compared to the ex- 149

isting approaches using data collected during the National 150

Airborne Field Experiment in 2006 (NAFE’06; [9]). The ex- 151

perimental site covers a 5 km by 32 km irrigated agricultural 152

area, which included approximately 5% of flooded rice crops 153

during NAFE’06. Disaggregation algorithms are first tested by 154

aggregating ASTER temperature at 1-km resolution and by 155

comparing the disaggregated temperature to the high-resolution 156

ASTER temperature initially used in the aggregation process. 157

The application to aggregated ASTER data allows evaluating 158

approaches independently of differences between ASTER and 159

MODIS products [5]. Disaggregation algorithms are then ap- 160

plied to MODIS data. 161

II. EXPERIMENTAL DATA 162

The study area is a 5 km by 32 km area included in the 163

Coleambally Irrigation Area (CIA) located in the flat west- 164

ern plains of the Murrumbidgee catchment in southeastern 165

Australia (35◦ S, 146◦ E). The principal summer crops grown 166

in the CIA are rice, maize, and soybeans, while winter crops 167

include wheat, barley, oats, and canola. In November, rice crops 168

are flooded under 30 cm height of irrigation water. 169

The NAFE’06 was conducted from October 31 to 170

November 20, 2006, over a 40 km by 60 km area, with more 171

detailed flights over the 5 km by 32 km focus area studied 172

in this paper. While a full description of the NAFE’06 data 173

set is given in [9], a brief overview of the most pertinent 174

details is provided here. The data used in this paper are 175

comprised of airborne L-band brightness temperature; ASTER 176

red, near-infrared, and shortwave-infrared reflectances; ASTER 177

land surface temperature data (resampled at 250-m resolution); 178

MODIS land surface temperature data; and air temperature data 179

collected by a meteorological station in the NAFE’06 area. 180

A. PLMR 181

The Polarimetric L-band Multibeam Radiometer (PLMR) is 182

an airborne instrument that measures both H and V polariza- 183

tions using a single receiver with polarization switching at view 184

angles of ±7◦, ±21.5◦, and ±38.5◦. The accuracy of the PLMR 185

is estimated to be better than 2 K and 3 K in the H and V 186

polarization, respectively [10]. 187

During NAFE’06, the PLMR flew on November 14 to collect 188

L-band brightness temperature at 250-m resolution over the 189

5 km by 32 km area in the CIA. PLMR was mounted in the 190

across-track configuration so that each pixel was observed at a 191
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given incidence angle (approximately 7◦, 21.5◦, or 38.5◦). Data192

were processed for incidence angle and beam location on the193

ground by taking into account aircraft position, attitude, and194

ground topography.195

As the sensitivity to soil moisture is higher for H-polarized196

brightness temperature than for V-polarized brightness temper-197

ature, only the H-polarized brightness temperature TB is used198

in this paper. Preprocessing of TB consists of the following:199

1) resampling H-polarized PLMR data at 250-m resolution200

on a grid that matches in symmetry to the flight lines over201

the 5 km by 32 km area and 2) converting the resampled202

TB to an equivalent value at 21.5◦ incidence angle. The in-203

cidence angle 21.5◦ is chosen to minimize conversion errors.204

The angular conversion involves the brightness temperature205

collected by inner beams at approximately 7◦ incidence angle206

being multiplied by the ratio TBMB/TBIB, with TBMB and207

TBIB being the mean brightness temperatures collected by the208

middle and inner beams, respectively. Similarly, the brightness209

temperature collected by the outer beams at approximately210

38.5◦ incidence angle is multiplied by the ratio TBMB/TBOB,211

with TBOB being the mean brightness temperature collected by212

the outer beams. Mean brightness temperatures TBIB, TBMB,213

and TBOB are computed as the average (for all flight lines)214

of the TB collected by the beams pointing at ±7◦, ±21.5◦,215

and ±38.5◦, respectively. This technique was already used in216

[11] to generate TB images by assuming that the impact of217

soil moisture and biomass on the angular dependance of TB is218

negligible or small. In this paper, a slightly different approach219

is adopted to take into account the variations in aircraft attitude220

during data collection, which made the incidence angle θ os-221

cillate around 7◦, 21.5◦, and 38.5◦. The brightness temperature222

TB(θ) observed at the incidence angle θ is multiplied by the223

ratio TBMB/TBinterp(θ), with TBinterp(θ) being the mean224

brightness temperature linearly interpolated at θ incidence an-225

gle from the mean data collected by the inner, middle, and outer226

beams.227

B. ASTER228

The ASTER instrument was launched in 1999 aboard Terra, a229

sun synchronous platform with 11:00 UTC descending Equator230

crossing and a 16-day revisit cycle. An ASTER scene covers an231

area of approximately 60 km by 60 km and consists of 14 nadir-232

looking bands and one oblique-looking band to create stereo-233

based digital elevation models. The three nadir-looking bands234

in the visible and near infrared have a 15-m resolution. The six235

bands in the shortwave-infrared have a 30-m resolution. Finally,236

there are five thermal infrared bands with a 90-m resolution.237

The ASTER overpass of the NAFE’06 site was on238

November 16, 2006. Official ASTER products [12] were used239

here for surface reflectance (AST_07) and radiometric temper-240

ature (AST_08) with accuracies of 5% and 1.5 K, respectively241

[13]–[19]. They were downloaded from the Earth Observing242

System Data Gateway (EDG).243

ASTER 15-m resolution red (B2) and near-infrared (B3)244

bands were extracted over the 5 km by 32 km area and re-245

sampled at 250-m resolution to match the spatial resolution246

and extent of PLMR observations. The ASTER 30-m resolution247

B5 band (1.60–1.70 µm) was extracted over the 5 km by 248

32 km study area and resampled at 50-m resolution. Fractional 249

open water was estimated using B5 band [20] based on a 250

threshold method. Consequently, B5 data were resampled at 251

a resolution finer than that (250 m) of PLMR data to classify 252

open water pixels at 50-m resolution and to obtain fractional 253

open water at 250-m resolution from the binary classification. 254

ASTER 90-m resolution radiometric temperature was extracted 255

over the 5 km by 32 km area and aggregated at 250-m res- 256

olution to match the spatial resolution and extent of PLMR 257

observations. Aggregation was achieved by linearly averaging 258

high-resolution surface temperatures, i.e., without accounting 259

for the nonlinear relationship between physical temperature and 260

radiance. This choice was motivated by the results of [21], 261

which compared the temperature aggregated using different 262

scaling approaches and obtained very low differences (maxi- 263

mum difference of 0.2 ◦C). 264

C. MODIS 265

The MODIS/Terra data were collected concurrently with 266

ASTER data. MODIS official products consisted of the 928-m 267

resolution surface skin temperature (MOD11-L2) retrieved by 268

the “generalized split window” algorithm [22]–[24] and reg- 269

istered in the sinusoidal projection. The MODIS Reprojection 270

Tool was used to project MOD11-L2 data in UTM WGS 1984 271

55S with a sampling interval of 1 km. 272

In this paper, the disaggregation of 1-km MODIS tempera- 273

ture is evaluated using high-resolution ASTER data. To distin- 274

guish the errors associated with the disaggregation technique 275

and the errors associated with the discrepancy between MODIS 276

and ASTER temperature products, a comparison is made be- 277

tween ASTER and MODIS data at 1-km resolution over the 278

5 km by 32 km study area. The ASTER data are aggregated 279

at the MODIS spatial resolution (1 km) by linearly averaging 280

high-resolution temperatures. The root-mean-square difference 281

(RMSD), bias, correlation coefficient, and slope of the linear 282

regression between MODIS and aggregated ASTER data are 283

2.7 ◦C, −2.3 ◦C, 0.75, and 0.52, respectively. The discrepancy 284

between MODIS and ASTER data, which is mainly explained 285

here by a significant bias and a relatively low slope of the linear 286

regression, is on the same order of magnitude as the mean 287

difference (about 3 ◦C) reported in literature [5], [21], [25]. 288

III. DISAGGREGATION ALGORITHMS 289

This paper aims to compare different approaches for dis- 290

aggregating kilometric MODIS land surface temperature data. 291

The study uses aggregated ASTER and real MODIS data 292

and demonstrates the disaggregation at 250-m resolution. The 293

resolution of 250 m is chosen to match with the lowest reso- 294

lution at which ancillary data composed of red, near-infrared, 295

shortwave-infrared, and microwave-L bands are available. In 296

this case study, the target scale is determined by the resolution 297

(250 m) of airborne microwave data. 298

As shown in the schematic diagram of Fig. 1, the disaggre- 299

gation algorithms are noted as Dk, with k being the number 300

of factors taken into account in the disaggregation. The new 301
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Fig. 1. Schematic diagram presenting the different disaggregation algorithms
of kilometric temperature Tkm and the verification strategy at high (250 m)
resolution.

algorithms are noted as Dk′. D0 does not use any ancillary302

data, while D1 is based on a linear regression between land303

surface temperature and fractional green (photosynthetically304

active) vegetation cover. Fractional green vegetation cover fgv305

is defined as the surface area of green vegetation per unit area306

of soil. D1 is the same as in [4]. D2 is based on D1 but307

takes into account both fractional green and total vegetation308

covers. Fractional vegetation cover ftv is defined as the total309

surface area of (green plus senescent) vegetation per unit area310

of soil. D2 is the same as in [5]. The new algorithms D1′,311

D2′, D3′, and D4′ (and D4′′) are all derived from a radiative312

transfer equation. The four algorithms differ with regard to the313

number of factors which are explicitly taken into account. D1′314

includes the variability of fgv and is thus a substitute for D1315

based on radiative transfer. D2′ includes the variability of both316

fgv and ftv and is thus a substitute for D2 based on radiative317

transfer. The other algorithms D3′ and D4′ integrate additional318

variables. D3′ includes the variability of fgv, ftv, and fractional319

open water fow. D4′ includes the variability of fgv, ftv, fow,320

and soil evaporative efficiency (ratio of actual to potential soil321

evaporation) β. D4′′ is the same as D4′ but with a different322

formulation for soil evaporative efficiency.323

D0 sets the disaggregated temperature as324

T (0) = Tkm (1)

with Tkm being the land surface temperature observed at kilo-325

metric resolution.326

Using D1, the disaggregated temperature is computed as 327

T (1) = Tkm + a1 × (fgv − 〈fgv〉km) (2)

with fgv being the fractional green vegetation cover derived at 328

high resolution, 〈fgv〉km being the fgv aggregated at kilometric 329

resolution, and a1 being the slope of the linear regression 330

between Tkm and 〈fgv〉km. Note that the variables defined at 331

kilometric resolution are noted with the subscript km. 332

Using D2, the disaggregated temperature is computed as 333

T (2) = Tkm + aproj1 ×
(
fproj
gv − 〈fgv〉km

)
(3)

with fproj
gv being the projected fgv and aproj1 being the slope 334

of the linear regression between Tkm and the projected fgv es- 335

timated at kilometric resolution fproj
gv,km. Note that the variables 336

defined at the image scale are written in bold. The notion of 337

a “projected variable” was introduced in [26]. It is a robust 338

tool that strenghtens the correlation between two variables by 339

representing the dependence of these variables on other addi- 340

tional variables. In [5], the projection technique was applied 341

to fractional green vegetation cover to artificially improve the 342

spatial correlation between T and fgv by taking into account 343

the dependence of T on ftv. The projected fractional green 344

vegetation cover is computed as 345

fproj
gv =fgv−

Tfcsv−(Tb,ds+Tb,ws)/2

Tfcsv−Tfcgv
× (ftv−〈ftv〉km)

(4)

with ftv being the fractional total vegetation cover derived at 346

high resolution, 〈ftv〉km being the ftv aggregated at kilomet- 347

ric resolution, Tb,ws being the temperature of wet bare soil, 348

Tb,ds being the temperature of dry bare soil, Tfcgv being the 349

temperature of full-cover green vegetation, and Tfcsv being 350

the temperature of full-cover senescent vegetation (notations 351

are summarized in Table I). Following the interpretation of 352

the “triangle method” [27], Tb,ws, Tb,ds, Tfcgv, and Tfcsv 353

correspond to the minimum and maximum soil and vegetation 354

temperatures within the study area, respectively. It is reminded 355

that ftv = fgv + fsv, with fgv and fsv being the fractional 356

green and senescent vegetation covers, respectively. 357

In (4), the projected fractional green vegetation cover esti- 358

mated at kilometric resolution is 359

fproj
gv,km = 〈fgv〉km − Tfcsv − (Tb,ds +Tb,ws)/2

Tfcsv −Tfcgv

× (〈ftv〉km − ftv) (5)

with ftv being the mean ftv over the whole study area. 360

The new algorithms D′ use a radiative transfer equation 361

to model the spatial variability of disaggregated temperature 362

within each 1-km resolution pixel, using ancillary data avail- 363

able at high resolution such as fgv, ftv, fow, and β. D1′ is 364

a substitute for D1 based on radiative transfer. It expresses 365

disaggregated temperature as 366

T (1′) = Tkm +∆T (1′) (6)
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TABLE I
INTERPRETATION OF THE VERTICES IN THE GENERALIZED “TRIANGLE APPROACH”

with ∆T (1′) being the difference between the temperature367

simulated using high-resolution fgv and that aggregated within368

the 1-km resolution pixel369

∆T (1′) = Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)
−〈Tmod (fgv, 〈ftv〉km, 〈fow〉km, 〈β〉km)〉km (7)

with Tmod being the land surface temperature simulated by370

a radiative transfer equation. In (7), fractional total vegetation371

cover, fractional open water, and soil evaporative efficiency372

are set to their values aggregated at kilometric resolution.373

Therefore, only the variability of fgv is taken into account at374

high resolution.375

D2′ is a substitute for D2 based on radiative transfer. It376

expresses the disaggregated temperature as in (6), with the377

simulated temperature difference ∆T (2′) written as378

∆T (2′) = Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)
−〈Tmod (fgv, ftv, 〈fow〉km, 〈β〉km)〉km . (8)

D3′ is derived from the same radiative transfer equation and379

includes the variability of fgv, ftv, and fow at high resolution.380

It determines the disaggregated temperature using (6) but with381

the simulated temperature difference ∆T (3′) written as382

∆T (3′) = Tmod (fgv, ftv, fow, 〈β〉km)
−〈Tmod (fgv, ftv, fow, 〈β〉km)〉km . (9)

D4′ is derived from the same radiative transfer equation and383

includes the variability of fgv, ftv, fow, and β at high resolu-384

tion. It determines the disaggregated temperature using (6) but385

with the simulated temperature difference ∆T (4′) written as386

∆T (4′) = Tmod (fgv, ftv, fow, β)

−〈Tmod (fgv, ftv, fow, β)〉km . (10)

D4′′ is an extension of (10) to replace β by another formula-387

tion of soil evaporative efficiency noted as β′.388

The high- to low-resolution simulated temperature difference389

in (7)–(10) is computed using a linearized radiative transfer390

equation [5], [28], [29]. Modeled land surface temperature391

Tmod is written as392

Tmod = fowTow + (1− fow)Tnw (11)

with Tow being the surface temperature of a water body and393

Tnw being the skin temperature of a nonwatered land surface.394

Nonwatered land surface temperature is expressed as 395

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv + (1− ftv)Tbs (12)

with Tfcgv and Tfcsv being the temperature of full-cover green 396

and senescent vegetations, respectively, and Tbs being the bare 397

soil temperature. With the soil evaporative efficiency defined 398

[30] as 399

β =
Tb,ds − Tbs

Tb,ds −Tb,ws
(13)

the bare soil temperature can be expressed as 400

Tbs = βTb,ws + (1− β)Tb,ds. (14)

By assuming that water temperature is close to well-watered 401

green vegetation [27], modeled land surface temperature 402

becomes 403

Tmod = fowTfcgv + (1− fow)Tnw (15)

with the nonwatered land surface temperature expressed as 404

Tnw = fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) [βTb,ws + (1− β)Tb,ds] . (16)

The temperature extremes Tb,ds, Tb,ws, Tfcgv, and Tfcsv are 405

extrapolated (according to Section V) from low-resolution land 406

surface temperatures using high-resolution ancillary data [5]. 407

IV. DERIVATION OF BIOPHYSICAL VARIABLES 408

The four variables used by the disaggregation methodol- 409

ogy are the following: fractional green vegetation cover fgv, 410

fractional total (green plus senescent) vegetation cover ftv, 411

fractional open water fow, and soil evaporative efficiency β. 412

All of these variables are estimated from ASTER red, near- 413

infrared, and shortwave-infrared reflectance products and from 414

the PLMR H-polarized brightness temperature converted at an 415

incidence angle of 21.5◦. 416

A. Fractional Green Vegetation Cover 417

Fractional green vegetation cover can be estimated from the 418

Normalized Difference Vegetation Index (NDVI) as in [31] 419

fgv =
NDVI −NDVIbs

NDVIfcgv −NDVIbs
(17)
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Fig. 2. Images of fractional green vegetation cover fgv, fractional senescent
vegetation cover fsv = ftv − fgv, fractional open water fow , soil evaporative
efficiency β, and soil evaporative efficiency β′. Note that 2% of the 5 km by
32 km area is contaminated by clouds and cloud shadow. Contaminated 250-m
resolution pixels are represented by crossed-out surfaces.

with NDVIbs and NDVIfcgv being the NDVI over bare420

soil and full-cover green vegetation, respectively. NDVI is421

computed as the difference between near-infrared and red bands422

divided by their sum. The spatial variation of fractional green423

vegetation cover over the study area is shown in Fig. 2.424

B. Fractional Total (Green Plus Senescent) Vegetation Cover425

Fractional total vegetation cover is estimated by correlating426

ftv with surface albedo for green vegetation and by setting ftv427

to the maximum fgv for senescent vegetation. This methodol-428

ogy [5] is based on two assumptions, which are generally met in429

agricultural areas: 1) soil albedo is generally lower than green430

vegetation albedo, and 2) green vegetation albedo is lower than431

senescent vegetation albedo. Although a time series of red and432

near-infrared data would be required to estimate soil albedo433

and green vegetation albedo on a pixel-by-pixel basis [5], only434

one ASTER scene is available for this study period. Therefore,435

an alternate approach is adopted. Surface albedo is modeled436

as a linear mixing of vegetation and soil components (e.g.,437

[32] and [33])438

α = (1− ftv)αbs + fgvαfcgv + (ftv − fgv)αfcsv (18)

with αbs, αfcgv, and αfcsv being the albedo for bare soil, full-439

cover green vegetation, and full-cover senescent vegetation,440

respectively, and with the end-members αbs, αfcgv, and αfcsv441

estimated in Section V.442

By inverting (18), fractional vegetation cover is expressed as 443

ftv =
α− αbs + fgv(αfcsv − αfcgv)

αfcsv − αbs
(19)

with α being the surface albedo estimated as a weighted sum of 444

red and near-infrared reflectances using the coefficients given in 445

[34] and validated in [35]–[38]. As stated previously, our case 446

study does not allow calibrating αbs, αfcgv, and αfcsv on a 447

pixel-by-pixel basis. Consequently, the value of ftv computed 448

from (19) may, on some occasions, be lower than fgv or larger 449

than 1. To avoid nonphysical values, ftv is set to fgv and 1 in 450

the former and latter case, respectively. 451

The spatial variation of fractional senescent vegetation cover 452

(fsv = ftv − fgv) over the study area is shown in Fig. 2. Note 453

that NAFE’06 was undertaken at the beginning of the summer 454

agricultural season so that all irrigated crops were green and 455

healthy. 456

C. Fractional Open Water 457

The fraction of open water within each 250-m resolution 458

pixel is estimated using 50-m resolution resampled ASTER 459

B5 reflectance product. Various studies have indicated that the 460

shortwave-infrared band centered at around 1 µm is highly 461

sensitive to the presence of open water [20], [39], [40]. In this 462

paper, a simple threshold method is applied to classify at 50-m 463

resolution the 5 km by 32 km area in two classes: water and 464

nonwatered surface. The threshold value is estimated as 0.170 465

from one flooded crop field in the south of the study area. The 466

spatial variation of fractional open water over the study area is 467

shown in Fig. 2. Open water represents 5% of the study area 468

and is attributed to rice cropping. 469

D. Soil Evaporative Efficiency 470

Soil evaporative efficiency β is defined as the ratio of actual 471

to potential soil evaporation. In this paper, β is estimated from 472

PLMR brightness temperatures. Two different formulations 473

are used to evaluate the coupling effects of near-surface soil 474

moisture, fgv, and fsv on microwave-derived soil evaporative 475

efficiency. 476

By assuming that brightness temperature is mainly sensitive 477

to surface soil moisture [41] and that soil evaporative efficiency 478

is mainly driven by surface soil moisture [42], [43], soil evapo- 479

rative efficiency can be estimated as 480

β = 1− TB −TBb,ws

TBfcsv,ds −TBb,ws
(20)

with TBb,ws and TBfcsv,ds being the minimum and max- 481

imum brightness temperatures observed over the study area, 482

respectively. As brightness temperature generally decreases 483

with surface soil moisture and increases with vegetation cover 484

[44], TBb,ws and TBfcsv,ds are interpreted as the brightness 485

temperatures over wet bare soil and full-cover senescent vege- 486

tation with dry soil, respectively. The spatial variation of β over 487

the study area is shown in Fig. 2. 488

Since brightness temperature also depends on biomass (e.g., 489

[45]), a second formulation of soil evaporative efficiency β′ is 490
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TABLE II
NDVI AND SURFACE ALBEDO END-MEMBERS

derived in order to decouple the effects of soil moisture, fgv,491

and fsv on TB. As in [46], the assumption is that, for a given492

vegetated pixel, if vegetation is partially stressed (i.e., fsv > 0493

or ftv > fgv), then near-surface soil moisture availability is494

zero (i.e., β′ = 0). Alternatively, if that pixel does not contain495

senescent vegetation (i.e., fsv = 0 or ftv = fgv), then β′ is496

computed as the ratio of the measured “wet soil” brightness497

temperature difference to the “dry soil”–“wet soil” brightness498

temperature difference. Formally, one writes499

β′ =0 if TB > TBds (21)

β′ =1− TB − TBws

TBds − TBws
if TB ≤ TBds (22)

with TBds and TBws being the “dry soil” and “wet soil”500

brightness temperatures, respectively, both being estimated for501

fsv = 0. Since green vegetation is partially transparent to mi-502

crowaves, the “dry soil” brightness temperature is computed as503

a weighted sum of the brightness temperature over dry bare soil504

(noted as TBb,ds) and the brightness temperature over full-505

cover green vegetation with dry soil (noted as TBfcgv,ds)506

TBds = fgvTBfcgv,ds + (1− fgv)TBb,ds. (23)

Similarly, the “wet soil” brightness temperature is computed as507

a weighted sum of the brightness temperature over wet bare soil508

(noted as TBb,ws) and the brightness temperature over full-509

cover green vegetation with wet soil (noted as TBfcgv,ws)510

TBws = fgvTBfcgv,ws + (1− fgv)TBb,ws. (24)

The spatial variation of β′ over the study area is shown in Fig. 2.511

V. ESTIMATING END-MEMBERS512

A key step in the disaggregation procedure is estimating513

the 14 end-members from ASTER and PLMR data. They514

are composed of the following: NDVIbs, NDVIfcgv, αbs,515

αfcgv, αfcsv, Tb,ws, Tb,ds, Tfcgv, Tfcsv, TBb,ws, TBb,ds,516

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. For the convenience517

of the reader, the unit is degree Celsius for radiometric temper-518

ature and kelvin for brightness temperature.519

A. NDVI520

NDVI end-members are estimated as the minimum and maxi-521

mum values of NDVI observed over the 5 km by 32 km area for522

bare soil and full-cover green vegetation, respectively. Values523

for NDVIbs and NDVIfcgv are reported in Table II.524

Fig. 3. ASTER surface albedo α plotted against ASTER fractional green
vegetation cover fgv. Three particular values of α are identified: the soil
albedo αbs estimated as the minimum surface albedo, the green vegetation
albedo αfcgv estimated as the albedo corresponding to the largest fgv , and the
senescent vegetation albedo αfcsv estimated as the maximum surface albedo.

In this paper, the study domain included extreme conditions 525

in terms of vegetation cover so that NDVI end-members could 526

be estimated from the red and near-infrared reflectances ac- 527

quired over the area on a single date. In the case where extreme 528

conditions are not encountered in the application domain, a 529

different approach should be adopted, such as the use of a time 530

series of NDVI data (instead of a single snapshot image) that 531

would capture the phenological stages of agricultural crops. 532

Also, the determination of reflectance end-members could 533

be further constrained by the use of ancillary spectral data 534

sets [47]. 535

B. Albedo 536

Fig. 3 shows the space defined by surface albedo α and 537

fractional green vegetation cover fgv. Pixels including open 538

water are removed from the scatterplot. The soil albedo αbs 539

is defined as the minimum ASTER surface albedo observed 540

within the study area by assuming that the dependence of 541

αbs on soil moisture is small compared to the dependence of 542

α on vegetation cover. The green vegetation albedo αfcgv is 543

estimated as the surface albedo corresponding to maximum 544

fractional green vegetation cover. The senescent vegetation 545

albedo αfcsv is estimated as the maximum surface albedo 546

observed within the study area. Values for αbs, αfcgv, and 547

αfcsv are reported in Table II. 548

C. Land Surface Temperature 549

As the range of surface conditions varies with spatial res- 550

olution, two different procedures are developed to estimate 551

temperature end-members. 552

1) When estimating temperature end-members from 250-m 553

resolution data, one pixel is identified as fully covered 554

green vegetation, one pixel as fully covered senescent 555

vegetation, one pixel as bare dry soil, and one pixel as 556

bare wet soil. In this case, it is assumed that all extreme 557

conditions are included at high resolution within the study 558

domain. 559
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TABLE III
LAND SURFACE TEMPERATURE AND L-BAND BRIGHTNESS

TEMPERATURE END-MEMBERS THAT ARE ESTIMATED FROM

HIGH-RESOLUTION ASTER TEMPERATURE DATA, EXTRAPOLATED

FROM AGGREGATED ASTER TEMPERATURE DATA, AND EXTRAPOLATED

FROM MODIS TEMPERATURE DATA. FOR THE CONVENIENCE OF THE

READER, THE UNIT IS DEGREE CELSIUSFOR RADIOMETRIC

TEMPERATURE AND KELVIN FOR BRIGHTNESS TEMPERATUREAQ3

2) When estimating temperature end-members from 1-km560

resolution data (as in the operational scenario), none of561

the pixels are identified as representative of any extreme562

condition. Temperature end-members are extrapolated563

from 1-km temperature data using ancillary data com-564

posed of air temperature, soil albedo, green vegetation565

albedo, and senescent vegetation albedo as described in566

the following.567

End-members Tb,ws, Tb,ds, Tfcgv, and Tfcsv are deter-568

mined by analyzing the consistency of the diagrams in Fig. 4.569

Fig. 4(a) shows the space defined by ASTER land surface570

temperature and ASTER fractional green vegetation cover. The571

three edges of the triangle T − fgv are interpreted [27] as “bare572

soil” between A and B, “wet surface” between B and C, and573

“dry soil” between C and A. Fig. 4(b) shows the space de-574

fined by ASTER land surface temperature and ASTER surface575

albedo. An interpretation of the polygon T − α is provided576

in [5], which is consistent with the triangle method. The four577

edges are interpreted as “bare soil” between A and B, “wet578

surface” between B and C, “full cover” between C and D,579

and “dry surface” between D and A. The notation system for580

polygon vertices A, B, C, and D is summarized in Table I, and581

the corresponding temperature values Tb,ds, Tb,ws, Tfcgv,582

and Tfcsv are reported in Table III.583

In this paper, high-resolution temperature T is assumed to584

be unavailable. Consequently, the extreme temperatures Tb,ds,585

Tb,ws, Tfcgv, and Tfcsv are extrapoled from the spaces Tkm −586

〈fgv〉km and Tkm − 〈α〉km defined at kilometric resolution587

(see Fig. 4(c) and (d) for aggregated ASTER temperature and588

Fig. 4(e) and (f) for MODIS temperature). An approach similar589

to [5] is used as follows.590

1) Vertex C corresponds to full-cover green vegetation591

and is located at (1,Tfcgv) in Fig. 4(c) (Fig. 4(e) for592

MODIS temperature) and at (αfcgv,Tfcgv) in Fig. 4(d)593

[Fig. 4(f)]. In this paper, Tfcgv is set to the air tem-594

perature Ta measured at the time of ASTER overpass.595

Vertex C is thus placed at (1,Ta) in Fig. 4(c) [Fig. 4(e)]596

and at (αfcgv,Ta) in Fig. 4(d) [Fig. 4(f)].597

Fig. 4. (a) Scatterplot of ASTER temperature versus fractional green vegeta-
tion cover and (b) versus surface albedo, (c) scatterplot of aggregated ASTER
temperature versus aggregated fractional green vegetation cover and (d) versus
aggregated surface albedo, and (e) scatterplot of MODIS temperature versus
aggregated fractional green vegetation cover and (f) versus aggregated surface
albedo. The vertices A, B, C, and D obtained using high-resolution data in
(a) and (b) are extrapolated using low-resolution data in (c), (d), (e), and (f)
from ancillary data composed of air temperature Ta, soil albedo αbs, green
vegetation albedo αfcgv , and senescent vegetation albedo αfcsv .

2) Vertex B corresponds to wet bare soil and is located at 598

(0,Tb,ws) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ws) in 599

Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)] 600

at the intersection between (BC) and the vertical line 601

〈fgv〉km = 0. The slope of (BC) is computed as the slope 602

of the linear regression of the data points corresponding 603

to the “wet surface” edge of the triangle Tkm − 〈fgv〉km. 604

The off-set of (BC) is determined from C. 605

3) Vertex A corresponds to dry bare soil and is located at 606

(0,Tb,ds) in Fig. 4(c) [Fig. 4(e)] and at (αbs,Tb,ds) in 607

Fig. 4(d) [Fig. 4(f)]. It is placed in Fig. 4(c) [Fig. 4(e)] 608

at the intersection between (AC) and the vertical line 609

〈fgv〉km = 0. The slope of (AC) is computed as the slope 610

of the linear regression of the data points corresponding 611

to the “dry soil” edge of the triangle Tkm − 〈fgv〉km. The 612

off-set of (AC) is determined from C. 613

4) Vertex D corresponds to full-cover senescent vegetation 614

and is located at (αfcsv,Tfcsv) in Fig. 4(d) [Fig. 4(f)]. 615

It is placed in Fig. 4(d) [Fig. 4(f)] at the intersection 616

between (AD) and the vertical line 〈α〉km = αfcsv. The 617

line (AD) is considered as being parallel to (BC)[5]. 618

Consequently, the slope of (AD) is determined from 619
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the slope of (BC). The off-set of (AD) is determined620

from A. Note that the lines (AD) and (BC) might621

not be strictly parallel. This may be due to a lack of622

representativeness of the surface conditions captured at623

250-m resolution within the study area. In that case, one624

or several data points may be located above (AD). To625

circumvent this artifact, the slope of (AD) in Fig. 4(d)626

[Fig. 4(f)] is increased so that all data points will be627

located below the “dry surface” edge.628

Table III lists the four temperature end-members: 1) esti-629

mated from Fig. 4(a) and (b) using high-resolution ASTER630

data; 2) extrapolated from Fig. 4(c) and (d) using aggregated631

ASTER temperature data; and 3) extrapolated from Fig. 4(e)632

and (f) using MODIS temperature data. The values extrapo-633

lated from aggregated ASTER and MODIS temperatures are634

rather close to those estimated from high-resolution ASTER635

temperature data, with the maximum difference in extrapolated636

temperatures being 2.6 ◦C, except for Tfcsv using MODIS637

data. In the latter case, the significant underestimation (5.3 ◦C)638

of Tfcsv can be explained by the following: 1) the negative639

mean difference (−2.3 ◦C) between MODIS and ASTER data640

and/or 2) the smaller range of (spatial dynamics) of 1-km641

resolution MODIS data in relation to 1-km aggregated ASTER642

data [please compare Fig. 4(c) with Fig. 4(e), and Fig. 4(d) with643

Fig. 4(f)].644

D. Brightness Temperature645

To estimate soil evaporative efficiency β in (20) and β′646

in (22), five brightness temperature values corresponding to647

extreme surface conditions are required: TBb,ds, TBb,ws,648

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. In this paper, those649

five values are estimated from a generalized version [5], [9] of650

the classical “triangle method” [27].651

Fig. 5(a) shows the space defined by PLMR brightness652

temperature and ASTER land surface temperature. In the fol-653

lowing, an original interpretation of the five vertices visible654

in Fig. 5(a) is provided, which is consistent with both the655

classical “triangle method” and the state-of-the-art L-band ra-656

diative transfer models. Vertices are presented successively in657

the counterclockwise direction, and the correspondence with658

vegetation and soil conditions is summarized in Table I.659

1) Vertex at minimum brightness temperature: L-band ra-660

diative transfer models predict an increase of brightness661

temperature with biomass and a decrease of brightness662

temperature with surface soil moisture (e.g., [48] and663

[49]). Therefore, the point at minimum brightness tem-664

perature corresponds to wet bare soil. This vertex is noted665

as B in Fig. 5(a), which is consistent with Fig. 4.666

2) Vertex at maximum land surface temperature: the triangle667

method predicts a decrease of land surface temperature668

with both vegetation cover and surface soil moisture.669

Therefore, the point at maximum land surface tempera-670

ture corresponds to dry bare soil. This vertex is noted as671

A in Fig. 5(a), which is consistent with Fig. 4.672

3) Vertex at maximum brightness temperature: being con-673

sistent with an increase of vegetation emission with674

biomass and a decrease of soil emission with surface soil675

moisture, the point at maximum brightness temperature 676

corresponds to full-cover vegetation with dry soil. It 677

could correspond to full-cover green vegetation. How- 678

ever, the associated land surface temperature in Fig. 5(a) 679

is much larger than that over full-cover green vegetation 680

(21 ◦C) and rather close to the temperature over full- 681

cover senescent vegetation (34 ◦C). Therefore, the point 682

at maximum brightness temperature corresponds to full- 683

cover senescent vegetation with dry soil. This vertex 684

is noted as D′ in Fig. 5(a), which is consistent with 685

Fig. 4. A prime mark indicates that D′ corresponds to a 686

dry soil, whereas D does not specify soil hydric status. 687

Note that D′ does not necessarily correspond to dry 688

senescent vegetation since wet senescent vegetation can 689

lead to large values of brightness temperature [50]. In 690

our case study, however, no rainfall occurred during the 691

four days preceding the ASTER overpass, which means 692

that senescent vegetation was completely dry. In terms of 693

radiative transfer modeling, the effect of dry biomass on 694

brightness temperature can be represented by large values 695

of roughness parameter [51]. 696

4) Vertices at minimum land surface temperature: two more 697

vertices are apparent in the counterclockwise direction. 698

Being consistent with a decrease of land surface tem- 699

perature with green vegetation, both points correspond 700

to full-cover green vegetation. As vegetation is partially 701

transparent to the L-band emission from the soil, each 702

point corresponds to a different soil hydric status. The 703

vertex with a larger TB [noted as C′′ in Fig. 5(a)] 704

corresponds to full-cover green vegetation with dry soil, 705

and the point with a lower TB [noted as C′ in Fig. 5(a)] 706

corresponds to full-cover green vegetation with wet soil. 707

As high-resolution temperature is assumed to be unavailable 708

in this paper, brightness temperature end-members are not 709

estimated from the polygon TB − T in Fig. 5(a) but from 710

the polygon TB − fgv shown in Fig. 5(b). The following is 711

an interpretation of the polygon in Fig. 5(b), based on the 712

consistency with the polygon in Fig. 5(a). In particular, the five 713

vertices in Fig. 5(a) can be located in Fig. 5(b) as follows. 714

1) Vertex B corresponds to wet bare soil. It is located at 715

the minimum value of brightness temperature such that 716

fgv = 0. 717

2) Vertex A corresponds to bare dry soil. It is not apparent 718

in Fig. 5(b) because fractional green vegetation is not 719

sufficient information to distinguish between bare soil 720

and senescent vegetation. 721

3) Vertex D′ corresponds to full-cover senescent vegetation 722

with dry soil. It is located at the maximum value of 723

brightness temperature. 724

4) Vertex C′′ corresponds to full-cover green vegetation 725

with dry soil. It is located at the maximum value of 726

brightness temperature such that fgv = 1. 727

5) Vertex C′ corresponds to full-cover green vegetation with 728

wet soil. It is located at the minimum value of brightness 729

temperature such that fgv = 1. 730

Based on the aforementioned interpretation of the polygon 731

TB − fgv in Fig. 5(b), the methodology used for estimating 732
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Fig. 5. (a) Scatterplot of PLMR incidence-corrected brightness temperature TB versus ASTER land surface temperature and (b) versus ASTER fractional
green vegetation cover, and (c) scatterplot of aggregated TB versus aggregated ASTER temperature and (d) versus MODIS temperature. Extreme brightness
temperatures TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds are estimated by interpreting the bare soil, dry surface, full-cover vegetation, and wet surface
edges of the polygon in (b). The estimation of TBb,ds using low-resolution temperature data is illustrated with aggregated ASTER temperature in (c) and MODIS
temperature in (d).

TBb,ds, TBb,ws, TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds is733

detailed in the following.734

1) The brightness temperature over full-cover dry surface735

(TBfcsv,ds) and over wet bare soil (TBb,ws) are set736

to the maximum and minimum brightness temperatures737

observed within the study area, respectively.738

2) The brightness temperatures over full-cover green veg-739

etation with wet soil (TBfcgv,ws) and over full-cover740

green vegetation with dry soil (TBfcgv,ds) are estimated741

as the brightness temperature extrapolated at fgv = 1 in742

Fig. 5(b) along the “wet soil” and the “full-cover dry743

soil” edge, respectively. The slope of the lines (BC′)744

and (D′C′′) are determined so that all of the points with745

fgv > 0.5 be above and below the “wet soil” and “full-746

cover dry soil” edges, respectively.747

3) Vertex A cannot be identified in the space TB − fgv.748

Consequently, TBb,ds is set to the brightness tempera-749

ture corresponding to the maximum Tkm (see Fig. 5(c) for750

aggregated ASTER temperature and Fig. 5(d) for MODIS751

temperature data).752

Table III lists the five brightness temperature end-members:753

1) estimated from Fig. 5(a) using high-resolution ASTER data;754

2) estimated from Fig. 5(b) and (c) using high-resolution755

fractional green vegetation cover and aggregated ASTER tem-756

perature data; and 3) estimated from Fig. 5(b) and (d) using757

high-resolution fractional green vegetation cover and MODIS758

temperature data. Values estimated from low-resolution tem-759

perature are remarkably close to those estimated from high-760

resolution ASTER temperature data (Table III), except for761

TBb,ds with a difference of 6 K. This difference is apparently762

due to the lack of representativeness of kilometric aggregated763

brightness temperature and the method for estimating TBb,ds764

at kilometric scale. Note, however, that a 6-K difference is still765

relatively low compared to the range (190 K–280 K) covered766

by brightness temperature values.767

VI. APPLICATION768

The disaggregation algorithms presented here are applied769

to the NAFE’06 data set. ASTER land surface temperature is770

aggregated at 1-km resolution, and kilometric temperature is771

used as input to D0, D1, D1′, D2, D2′, D3′, D4′, and D4′′. As772

shown in Fig. 1, the verification strategy consists in comparing 773

disaggregation results at 250-m resolution with ASTER land 774

surface temperature. An application to MODIS data is also 775

presented. 776

A. Application to Aggregated ASTER Data 777

1) End-Members Derived From High-Resolution Data: The 778

approach is first implemented using the end-members estimated 779

from high-resolution ASTER temperature data. This allows 780

testing the robustness of the model in (15) and (16) inde- 781

pendently of the methodology used for extrapolating the nine 782

end-members Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws, 783

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds. 784

Fig. 6 shows the output images of the eight disaggregation 785

algorithms, which are to be compared with the reference image 786

derived from ASTER land surface temperature. One observes 787

that the disaggregated temperature is successively improved 788

by including additional factors in the disaggregation, which 789

indicates that the methodology is able to take into account 790

several independent factors. Although the boxy artifact at 1-km 791

resolution is successively reduced from T (0) to T (4′′), it is still 792

apparent for T (4′′). This effect may be due to the following: 1) 793

other factors that are not taken into account in the procedure, 794

such as green vegetation water stress, wind speed, surface 795

emissivity, surface albedo, etc.; 2) errors in estimated fgv, fsv, 796

fow, and β; and/or 3) resampling errors at 250-m resolution. 797

Table IV lists the RMSD, correlation coefficient, and slope 798

between the disaggregated and ASTER temperatures for each 799

of the eight disaggregation algorithms. The error is successively 800

decreased from 1.65 ◦C to 1.16 ◦C, while the correlation coef- 801

ficient and slope are successively increased from 0.79 and 0.63 802

to 0.89 and 0.88, respectively. When comparing D1, D2, D1′, 803

and D2′, no significant differences are observed between all 804

four algorithms in terms of root-mean-square error, correlation 805

coefficient, and slope. Note that, in this paper, ftv was estimated 806

in a different way than in [5] because only one visible and 807

near-infrared image was available and a FORMOSAT-like time 808

series would be required to derive ftv more accurately on a 809

pixel-by-pixel basis. Nevertheless, this comparison suggests 810

that D1′ seems to be equivalent to D1 and D2′ equivalent to 811

D2, which justifies the use of the Tmod model. 812
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Fig. 6. Maps of the temperature disaggregated by the eight algorithms as compared with the map (right) of high-resolution ASTER temperature.

TABLE IV
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS ESTIMATED USING

HIGH-RESOLUTION ASTER TEMPERATURE DATA

(TO THE END-MEMBERS EXTRAPOLATED USING

AGGREGATED ASTER TEMPERATURE DATA)

The main advantage of the new approach is to take into813

account a number of additional factors, including fractional814

open water and soil evaporative efficiency. When comparing the815

results obtained for D3′, D4′, and D4′′ in Table IV, it is observed816

that the disaggregated temperature is significantly improved817

against the classical approaches D1 and D2. Moreover, the818

statistical results are successively improved by including fow,819

β, and β′. Fig. 7 shows the improvement, especially in the820

slope between the disaggregated and ASTER temperatures. The821

good results obtained for D4′′ indicate that the performance of822

disaggregation algorithms is intimately related to the following:823

1) the capability of separating the independent factors that824

impact on surface temperature and 2) the ability to integrate825

them consistently into the procedure.826

2) End-Members Derived From Aggregated ASTER Data:827

As disaggregation procedures D1′, D2′, D3′, D4′, and D4′′828

Fig. 7. Aggregated ASTER temperature (1 km) is disaggregated by each of
the eight algorithms and is plotted against high-resolution ASTER temperature.

are subjected to uncertainties in land surface temperature and 829

brightness temperature end-members, the five algorithms are 830

next tested using the end-members estimated from kilomet- 831

ric temperature data, as presented in Section V. Aggregated 832

ASTER (instead of MODIS) data are used to evaluate the 833
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Fig. 8. MODIS temperature (1 km) is disaggregated by each of the eight
algorithms and is plotted against high-resolution ASTER temperature.

impact of end-members regardless of the discrepancy between834

MODIS and ASTER temperatures.835

Table IV lists the RMSD, correlation coefficient, and slope836

between the disaggregated and ASTER temperatures for each837

of the five algorithms. Results are compared with those ob-838

tained using the end-members estimated from high-resolution839

ASTER temperature. In general, the error is slightly larger,840

and the correlation coefficient and slope are slightly lower us-841

ing extrapolated end-members. Nevertheless, the disaggregated842

temperature is still much improved by applying D4′′ instead of843

D1′, with the correlation coefficient and slope increasing from844

0.74 to 0.88 and from 0.72 to 0.86, respectively. Consequently,845

the extrapolation of end-members from kilometric data is not846

found to be a limiting factor in the methodology.847

B. Application to MODIS Data848

Disaggregation algorithms D0, D1, D1′, D2, D2′, D3′, D4′,849

and D4′′ are then applied to MODIS data. In this case, end-850

members are derived from MODIS data. Fig. 8 shows the scat-851

terplot of disaggregated MODIS versus ASTER temperature for852

each algorithm separately. One observes that the new methodol-853

ogy improves the correlation and slope of the linear regression854

between the disaggregated and ASTER temperatures. However,855

a systematic negative bias is apparent in the disaggregated856

temperature. Table V lists the RMSD, correlation coefficient,857

and slope between the disaggregated and ASTER temperatures858

for each of the eight algorithms. The error slightly decreases859

TABLE V
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES. THE RESULTS

CORRESPOND TO THE END-MEMBERS EXTRAPOLATED

USING MODIS TEMPERATURE DATA

from 3.2 ◦C to 3.0 ◦C, while the correlation coefficient and 860

slope increase from 0.6 and 0.3 to 0.7 and 0.5, respectively. 861

The results obtained for D3′ and D4′ in Table V indicate that 862

the disaggregated temperature is improved against the classical 863

approaches D1 and D2. As for the application to aggregated 864

ASTER data, the statistical results are successively improved 865

by including fow, β, and β′. However, the improvement with 866

MODIS data is not as visible as with aggregated ASTER 867

data because the difference between MODIS and ASTER data 868

(please refer to Section II-C) has the same order of magnitude 869

as the subpixel variability at 250-m resolution (see RMSD for 870

D0 in Table V). In particular, the mean bias and the relatively 871

low slope of the linear regression between the disaggregrated 872

and ASTER data are associated with the discrepancy at 1-km 873

resolution between the MODIS and ASTER temperature data. 874

VII. SENSITIVITY ANALYSIS 875

To further assess the stability of the new D′ algorithms based 876

on radiative transfer, two sensitivity analyses are conducted 877

by the following: 1) adding a Gaussian noise on kilometric 878

temperatures and high-resolution brightness temperatures and 879

2) estimating the contribution of each factor on the variability 880

of modeled land surface temperature. 881

A. Uncertainty in End-Members 882

To test the stability of the method for estimating the nine 883

end-members (Tb,ds, Tb,ws, Tfcgv, Tfcsv, TBb,ds, TBb,ws, 884

TBfcgv,ws, TBfcgv,ds, and TBfcsv,ds) from low-resolution 885

temperature data, a Gaussian noise with a standard deviation 886

of 1 ◦C is added to the kilometric (aggregated ASTER) land 887

surface temperature data set, and a Gaussian noise with a stan- 888

dard deviation of 2 K is added to the high-resolution brightness 889

temperature data set. An ensemble of 100 data sets is generated 890

and used as input to the disaggregation algorithms. 891

Table VI reports the average and standard deviation of ex- 892

trapolated end-members computed within the ensemble of 100 893

artificially perturbed data sets. Results indicate that the method 894

for extrapolating end-members is stable for all end-members. 895
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TABLE VI
MEAN AND STANDARD DEVIATION OF LAND SURFACE TEMPERATURE

AND L-BAND BRIGHTNESS TEMPERATURE END-MEMBERS

EXTRAPOLATED USING KILOMETRIC TEMPERATURE DATA. FOR THE

CONVENIENCE OF THE READER, THE UNIT IS DEGREE CELSIUS FOR

RADIOMETRIC TEMPERATURE AND KELVIN FOR

BRIGHTNESS TEMPERATURE

TABLE VII
RMSD, CORRELATION COEFFICIENT (R), AND SLOPE BETWEEN THE

DISAGGREGATED AND ASTER TEMPERATURES FOR THE DATA

INCLUDING ALL THE 100 ARTIFICIALLY NOISED DATA SETS

Table VII lists the RMSD, correlation coefficient, and slope896

between the disaggregated and ASTER temperatures for all 100897

data sets. Although the results are generally degraded by using898

noisy input data sets, D4′′ is still superior to all other algorithms899

(see Fig. 9). Therefore, the integration of fractional open water900

and soil evaporative efficiency into the disaggregation is able to901

improve the representation of land surface temperature variabil-902

ity despite the uncertainties in fow and β′, and the uncertainties903

in extrapolated end-members.904

B. Weighting Variability Factors905

Results with the NAFE’06 data set have indicated that the906

new D′ algorithms based on radiative transfer significantly907

improve (in relation to D1 and D2 methods) the representation908

of disaggregated temperature by directly integrating the various909

input parameters of the radiative transfer equation. Another ad-910

vantage of the proposed methodology is to quantify the weight911

of these input parameters. Here, the relative weights of fgv,912

fsv, fow, and β′ are compared, and the relative improvement in913

disaggregated temperature when including these factors in the914

disaggregation is assessed. The weight of fgv on the variability915

Fig. 9. As for Fig. 7 but using all the 100 artificially noised input data sets.

in land surface temperature is derived by computing the first 916

partial derivative of Tmod from (15) and (16) 917

∂Tmod

∂fgv
= −(1− fow)(Tfcsv −Tfcgv). (25)

Similarly, the first partial derivative of Tmod is computed with 918

respect to fsv 919

∂Tmod

∂fsv
= −(1− fow) [β

′Tb,ws + (1− β′)Tb,ds −Tfcsv]

(26)
with respect to fow 920

∂Tmod

∂fow
= − [fgvTfcgv + (ftv − fgv)Tfcsv

+(1− ftv) (β
′Tb,ws + (1− β′)Tb,ds)−Tfcgv] (27)

and with respect to β′ 921

∂Tmod

∂β′ = −(1− fow)(1− ftv)(Tb,ds −Tb,ws). (28)

Table VIII lists the standard deviation of each parameter 922

within the study area, the average of partial derivatives, and the 923

relative weight of each parameter on the variability of modeled 924

land surface temperature. The relative weights of fgv, fsv, fow, 925

and β′ are estimated as the mean partial derivative times the 926

standard deviation. Results indicate that all parameters have a 927

negative impact on T . More interestingly, fgv appears to be 928

the most significant variability factor, with a relative weight 929

of 42%, which is consistent with NDVI-based approaches [4]. 930
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TABLE VIII
STANDARD DEVIATION, MEAN PARTIAL DERIVATIVE, AND IMPACT ON HIGH-RESOLUTION MODELED TEMPERATURE OF EACH OF THE

FOUR PARAMETERS: FRACTIONAL GREEN VEGETATION COVER, FRACTIONAL SENESCENT VEGETATION COVER,
FRACTIONAL OPEN WATER, AND SOIL EVAPORATIVE EFFICIENCY

The second and third most significant variability factors are soil931

evaporative efficiency and fractional open water, with relative932

weights of 27% and 20%, respectively. Finally, fractional senes-933

cent vegetation cover represents only 11% of the variability934

in land surface temperature. The low impact of fsv can be935

associated with the low mean partial derivative. In particular,936

∂Tmod /∂fsv is low because the temperature difference be-937

tween dry bare soil (Tb,ds) and full-cover senescent vegetation938

(Tfcsv) is also low in our case study.939

The relative weights in Table VIII are now related with940

the disaggregation results in Table III. Consequently, the poor941

improvement of D2 against D1 (and D2′ against D1′) can be942

attributed to the relatively low weight of fsv in the variability of943

land surface temperature. Conversely, the significant improve-944

ments of D4′′ against D3′, D3′ against D2′, and D1 (and D1′)945

against D0 are attributed to the large weights of β′, fow, and946

fgv, respectively.947

In summary, the variability of land surface temperature is rea-948

sonably represented by model Tmod . Moreover, the approach949

allows the relative weight of each variability factor to be taken950

into account in the disaggregation procedure.951

VIII. SUMMARY AND CONCLUSION952

A new disaggregation methodology for land surface tem-953

perature has been developed to integrate the main surface954

parameters involved in the surface energy budget. It is based955

on a linearized radiative transfer equation, which distinguishes956

between soil, vegetation, and water temperature, and uses soil957

evaporative efficiency and fractional senescent vegetation cover958

to parameterize/estimate soil and vegetation hydric status, re-959

spectively. The approach is implemented using four parame-960

ters: the fraction of green vegetation cover derived from red961

and near-infrared bands, the fraction of senescent vegetation962

cover derived from red and near-infrared bands, the fraction963

of open water derived from shortwave-infrared band, and the964

soil evaporative efficiency derived from microwave-L band.965

It is tested over a 5 km by 32 km area of irrigated land in966

Australia, including flooded rice crops, using ASTER and L-967

band airborne data. Low-resolution land surface temperature968

is simulated by aggregating ASTER land surface tempera-969

ture at 1-km resolution, and the disaggregated temperature is970

compared to high-resolution ASTER temperature. The results971

indicate that the methodology is able to separate efficiently the972

independent factors that impact surface temperature and to inte-973

grate them consistently into the disaggregation procedure. The974

error in disaggregated temperature is successively reduced from 975

1.65 ◦C to 1.16 ◦C by including each of the four parameters. 976

The correlation coefficient and slope between the disaggregated 977

and ASTER temperatures are improved from 0.79 to 0.89 and 978

from 0.63 to 0.88, respectively. Moreover, the radiative transfer 979

equation allows quantifying the impact at high resolution of 980

each parameter on land surface temperature. In this case study, 981

fractional green vegetation cover is responsible for 42% of the 982

variability in disaggregated land surface temperature, fractional 983

senescent vegetation cover for 11%, fractional open water for 984

20%, and soil evaporative efficiency for 27%. 985

Note that the approach presented in this paper did not take 986

into account the water stress of green vegetation because none 987

of the considered parameters (fractional green vegetation cover, 988

fractional senescent vegetation cover, fractional open water, and 989

soil evaporative efficiency) could describe the hydric status of 990

photosynthetically active (green) vegetation. The analysis was 991

conducted solely in a highly irrigated environment in which 992

vegetation water stress was small. However, in most cases, 993

the vegetation water stress might not be negligible for natural 994

areas. In the presence of water-stressed green vegetation, the 995

scatterplot (temperature versus green vegetation cover) would 996

be transformed into a trapezoidal shape with four vertices 997

rather than a triangle. In such conditions, the disaggregation 998

problem would be partly undetermined since the partitioning 999

between unstressed and stressed green vegetations would not 1000

be represented. Consequently, the approaches shown here are 1001

not expected to be representative of other less extreme environ- 1002

ments than the present irrigated area. Nevertheless, one should 1003

keep in mind that improving the spatial resolution of land 1004

surface temperature data via disaggregation is only relevant in 1005

the conditions where the spatial variability of temperature is 1006

large. 1007

Although the approach was successfully applied to airborne 1008

and satellite data collected during NAFE’06, further research is 1009

needed to test the disaggregation approach on a routine basis. 1010

One may anticipate that fractional green and senescent vege- 1011

tation covers could be derived accurately using FORMOSAT- 1012

like data. The FORMOSAT-2 instrument [52] provides short- 1013

wave data at high spatial resolution (8 m) and high temporal 1014

frequency (potentially one image per day), which allow a fine 1015

analysis of the seasonality of canopies during the crop cycle 1016

[5], [53], [54]. Fractional open water could be derived from 1017

Landsat-5 data (e.g., [20]). Although the repeat cycle of Landsat 1018

(16 days) is longer than the temporal resolution needed for land 1019

surface temperature, the seasonal variations of water bodies 1020
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such as irrigation canals and flooded fields are expected to1021

be low. Soil evaporative efficiency could be derived at high1022

resolution from active microwave sensors, such as the Phased1023

Array L-band SAR (PALSAR) [55]. Soil evaporative efficiency1024

formulas express evaporation as a function of normalized sur-1025

face soil moisture. Therefore, soil evaporative efficiency is1026

equivalent to a soil moisture index, which could be replaced1027

in (20) by the radar-derived soil wetness index computed as1028

the observed to minimal backscattering coefficient difference1029

divided by the maximal to minimal backscattering coefficient1030

difference [56], [57]. Note, however, that the temporal coverage1031

of the PALSAR fine beam dual polarization mode is relatively1032

low, with a revisit cycle of 46 days. Consequently, accurate1033

disaggregation of land surface temperature would still rely on1034

the availability of high-resolution radar data.1035
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