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Disaggregation of SMOS Soil Moisture
in Southeastern Australia
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Olivier Merlin, Christoph Rüdiger, Ahmad Al Bitar, Philippe Richaume, Jeffrey P. Walker, and Yann H. Kerr3

Abstract—Disaggregation based on Physical And Theoretical4
scale Change (DisPATCh) is an algorithm dedicated to the dis-5
aggregation of soil moisture observations using high-resolution6
soil temperature data. DisPATCh converts soil temperature fields7
into soil moisture fields given a semi-empirical soil evaporative8
efficiency model and a first-order Taylor series expansion around9
the field-mean soil moisture. In this study, the disaggregation10
approach is applied to soil moisture and ocean salinity (SMOS)11
data over the 500 km by 100 km AACES (Australian Airborne12
Calibration/validation Experiments for SMOS) area. The 40-km13
resolution SMOS surface soil moisture pixels are disaggregated14
at 1-km resolution using the soil skin temperature derived from15
moderate resolution imaging spectroradiometer (MODIS) data,16
and subsequently compared with the AACES intensive ground17
measurements aggregated at 1-km resolution. The objective is to18
test DisPATCh under various surface and atmospheric conditions.19
It is found that the accuracy of disaggregation products varies20
greatly according to season: while the correlation coefficient be-21
tween disaggregated and in situ soil moisture is about 0.7 during22
the summer AACES, it is approximately zero during the winter23
AACES, consistent with a weaker coupling between evaporation24
and surface soil moisture in temperate than in semi-arid climate.25
Moreover, during the summer AACES, the correlation coefficient26
between disaggregated and in situ soil moisture is increased from27
0.70 to 0.85, by separating the 1-km pixels where MODIS temper-28
ature is mainly controlled by soil evaporation, from those where29
MODIS temperature is controlled by both soil evaporation and30
vegetation transpiration. It is also found that the 5-km resolution31
atmospheric correction of the official MODIS temperature data32
has a significant impact on DisPATCh output. An alternative at-33
mospheric correction at 40-km resolution increases the correlation34
coefficient between disaggregated and in situ soil moisture from35
0.72 to 0.82 during the summer AACES. Results indicate that36
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DisPATCh has a strong potential in low-vegetated semi-arid areas 37
where it can be used as a tool to evaluate SMOS data (by reducing 38
the mismatch in spatial extent between SMOS observations and 39
localized in situ measurements), and as a further step, to derive 40
a 1-km resolution soil moisture product adapted for large-scale 41
hydrological studies. 42

Index Terms—AACES, calibration/validation, disaggregation, 43
Disaggregation based on Physical And Theoretical scale Change 44
(DisPATCh), field campaign, moderate resolution imaging spectro- 45
radiometer (MODIS), soil moisture and ocean salinity (SMOS). 46

I. INTRODUCTION 47

PASSIVE MICROWAVE remote sensing has the capability 48

to provide key elements of the terrestrial hydrological 49

cycle such as surface soil moisture [1], [2] and overland pre- 50

cipitation [3], [4]. Nevertheless, due to the large discrepancy 51

between the observation scale (several tens of km) and the scale 52

of physical interactions with the land surface (one wavelength 53

or several cm), the radiative transfer models applied to passive 54

microwave remote sensing data are only semiphysically based. 55

Consequently, the retrieval process of land surface parameters 56

from microwave brightness temperatures requires ancillary data 57

for calibration and validation purposes [5]. It also requires a 58

strategy to use such ancillary data since ground-based sampling 59

is often made over a small area/point, which constrasts with 60

the large integrated extent of spaceborne passive microwave 61

observations. 62

The soil moisture and ocean salinity (SMOS), [6]) satellite 63

was launched on November 2, 2009. Over land, the SMOS 64

mission aims at providing ∼5 cm surface soil moisture data 65

at a spatial resolution better than 50 km and a repeat cycle of 66

less than 3 days. The payload is a 2-D interferometer equipped 67

with 69 individual L-band antennas regularly spaced along Y- 68

shaped arms. This new concept allows observing all pixels in 69

the 1000 km wide field of view at a range of incidence angles. 70

It also allows reconstructing brightness temperatures on a fixed 71

sampling grid [7]. 72

Since the SMOS launch, various field experiments (the 73

HOBE site in Denmark [8], the Mali site in Western Africa 74

[9], the SMOSMANIA site in Southwestern France [10] just 75

to name a few) have been undertaken to validate SMOS recon- 76

structed brightness temperatures and soil moisture retrievals. 77

The AACES (Australian Airborne Calibration/validation 78

Experiment for SMOS, [11]) is one of the most compre- 79

hensive campaigns worldwide dedicated to SMOS calibra- 80

tion/validation. A series of two experiments were undertaken 81

in 2010, AACES-1 in January-February (Austral summer) and 82

0196-2892/$26.00 © 2011 IEEE
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AACES-2 in September (Austral winter). The data collected83

in AACES include 1-km resolution airborne L-band brightness84

temperature mapped over a 500 km by 100 km area, 20 days85

of very intensive ground measurements and 20 5 km by 2 km86

ground sampling areas.87

Even though the AACES ground measurements are very88

extensive, it is not feasible to cover the whole extent of a89

SMOS pixel by ground sampling alone. This is the reason why90

most validation strategies of spaceborne passive microwave91

data using in situ measurements have been based on the as-92

sumption that local observations are representative of a much93

larger spatial extent (i.e., the size of a microwave pixel). In the94

heterogeneous case where this assumption does not hold, up-95

scaling approaches [12], [13] have been developed to relate the96

available ground observations to satellite scale soil moisture.97

Such approaches are very useful over sites which have been98

monitored for a long time and where extensive measurements99

have been made over a range of spatial scales. However, aggre-100

gation rules are difficult to build over sites which have been set101

up recently, or where no extensive field campaigns have been102

undertaken.103

This study develops a methodology to facilitate the cali-104

bration and validation of SMOS data using localized ground105

measurements, such as those collected during AACES. The106

methodology combines upscaling (aggregation) and downscal-107

ing (disaggregation) approaches to make remote sensing and108

in situ observations match at an intermediate spatial resolution109

of 1 km. The key step in the procedure is a disaggregation110

algorithm of passive microwave soil moisture using kilometric111

optical data [14]–[16]. Disaggregating SMOS soil moisture can112

solve the disparity of spatial scales between satellite and in situ113

observations. However, the validation of spaceborne data by114

means of a disaggregation approach requires the uncertainties115

and potential error sources in downscaled data to be assessed.116

Generally speaking, disaggregation is a compromise between117

downscaling resolution and accuracy. The higher downscaling118

resolution, the more disaggregated values are spatially repre-119

sentative of ground observations, but typically have a lower120

accuracy and vice versa [17]. In this context, a disaggrega-121

tion algorithm named Disaggregation based on Physical And122

Theoretical scale Change (DisPATCh) is applied to 40-km123

resolution SMOS soil moisture over the AACES area using 1-124

km resolution Moderate resolution Imaging Spectroradiometer125

(MODIS) data. The objective is to test DisPATCh under various126

surface and atmospheric conditions. Specifically, the impact127

of climatic (evaporative demand), meteorologic (presence of128

clouds), and vegetation (cover and water status) conditions on129

1-km resolution disaggregated soil moisture is evaluated both130

qualitatively by visual assessment of disaggregation images and131

quantitatively by comparing DisPATCh output with AACES132

intensive ground measurements.133

The AACES, SMOS, and MODIS data used in this study134

are first described. Next, the disaggregation methodology is135

presented followed by a step-by-step description of the Dis-136

PATCh algorithm. Results of the comparison between disag-137

gregated SMOS soil moisture and in situ measurements are138

then reported. To test DisPATCh under various surface and139

atmospheric conditions, the algorithm is run during AACES-1140

and AACES-2 in different modes, by including (or not) a 141

correction for vegetation and atmospheric effects. Finally, some 142

perspectives in the use of DisPATCh for validating SMOS data 143

using ground-based sampling are given. 144

II. DATA COLLECTION AND PREPROCESSING 145

The AACES experiments were planned to provide ground 146

and airborne soil moisture data over an area of approximately 147

500 km by 100 km during the two main seasons in the 148

Murrumbidgee river catchment, in southeastern Australia. The 149

first AACES campaign (AACES-1) was undertaken in summer 150

2010 from January 18 to February 21, and the second campaign 151

(AACES-2) was undertaken in the following Austral winter 152

from September 11 to September 24 [11]. Fig. 1 presents the 153

study area including the 20 5 km by 2 km ground sampling 154

focus areas. The background image is the MODIS 250-m res- 155

olution 16-day normalized difference vegetation index (NDVI) 156

product of February 2, 2010. The climate of the Murrumbidgee 157

catchment area ranges from semi-arid in the west to alpine in 158

the east, with a strong rainfall and potential evapotranspiration 159

gradient in the west-east direction. Land use is extensive graz- 160

ing in the west, cropping in the center, and mostly grazing/forest 161

in the east (refer to [11] for a detailed account of AACES). 162

A. HDAS 163

During both AACES-1 and AACES-2, a spatially enabled 164

platform (Hydraprobe Data Acquisition System, HDAS) was 165

used to collect extensive measurements of near-surface soil 166

moisture. HDAS is a handheld system combining a soil dielec- 167

tric sensor (Hydraprobe) and a pocket PC with GPS receiver, 168

allowing for direct storage of location and measurement within 169

the GIS software. HDAS measurements were calibrated using 170

the approach presented in [18] with a root mean square error 171

of point estimate of about 0.03 m3/m3. The sampling coverage 172

was two 5 km by 2 km farms per day during AACES-1 and one 173

5 km by 2 km farm per day during AACES-2. Within each farm, 174

a total of six adjacent 5 km long transects separated by 330 m 175

were walked to cover each area of 10 km2, and three separate 176

HDAS measurements were made along transects every 50 m. 177

In this study, HDAS soil moisture data are aggregated at 178

1-km resolution by averaging all measurements made within 179

each pixel of the MODIS resolution grid. Out of concern for 180

spatial representativeness of in situ observations, only the 1-km 181

pixels whose ground sampling covers more than two third of 182

its surface area are kept for comparison with disaggregation 183

results. The 1-km average of HDAS measurements is denoted 184

〈SMHDAS〉 and the standard deviation of in situ measurements 185

(denoted σHDAS) computed to estimate the subpixel variability 186

at 1-km resolution. 187

B. SMOS 188

The version-4 SMOS level-2 soil moisture product is used. 189

This product (released on March 24, 2011) was produced from 190

the reprocessed level 1C data, and the version-4 level-2 soil 191

moisture algorithm. SMOS has a 6 am (ascending) and 6 pm 192
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Fig. 1. Overview of the study area. During AACES, ten 100 km by 50 km patches were overflown by an airborne L-band radiometer. Within each patch, two
5 km by 2 km subareas were sampled to collect spatial soil moisture measurements. In this study, DisPATCh is run over a 640 by 240 km area including the whole
AACES area, and disaggregation results are evaluated over the ground sampling areas.

(descending) equator crossing time. The sampling grid of the193

SMOS level-2 soil moisture product is called DGG or discrete194

global grid [19], [20] and has a node separation of about195

15 km. The DGG provides a discretization that is higher than196

the SMOS natural pixel size, which is 40 km on average,197

ranging from 30 km at boresight to 90 km at high incidence198

angles. In this study, the disaggregation procedure takes advan-199

tage of the oversampling of SMOS data to potentially reduce200

(and provide an estimate of) random errors in disaggregated201

SMOS data. Instead of using a single snapshot SMOS im-202

age, DisPATCh uses four (overlapping) independent snapshots,203

which are generated by: 1) sliding a 40-km resolution grid; and204

2) extracting the DGG nodes approximately centered on each205

40 km pixel. The extraction of SMOS DGG nodes is presented206

in [21]. The DGG node(s) that fall(s) near the center of the207

40-km resolution pixels with a +/−10-km tolerance are se-208

lected. If more than one DGG is selected, the associated soil209

moisture values are averaged to produce a single value for each210

40-km resolution pixel. The 40-km resolution grid that fits the211

study area corresponds to what is termed here Resampling 1.212

Similarly, Resampling 2, 3, and 4 are performed by sliding the213

40-km resolution grid to coordinates (+20 km, 0), (0, −20 km),214

and (+20 km, −20 km), respectively. The four 40-km resolu-215

tion SMOS data sets are then used independently as input to216

DisPATCh.217

C. MODIS218

The MODIS data used in this paper are composed of:219

• Version-5 MODIS/Terra land surface temperature and220

emissivity daily level-3 global 1-km grid product221

(MOD11A1) and version-5 MODIS/Aqua land surface222

temperature and emissivity daily level-3 global 1-km grid 223

product (MYD11A1). The land surface temperature data 224

set is the main component of DisPATCh. It is used to 225

estimate 1-km resolution soil evaporative efficiency at 226

10 am (Terra data) and 1 pm (Aqua data) [22]. 227

• Version-5 MODIS/Terra vegetation indices 16-day level-3 228

global 1-km grid product (MOD13A2). The NDVI data set 229

is used in DisPATCh to estimate the fractional vegetation 230

cover at 1-km resolution [23]. 231

• Version-5 MODIS/Terra+Aqua albedo 16-day level-3 232

global 1-km grid product (MCD43B3). The surface albedo 233

data set is used in DisPATCh to estimate the vegetation 234

temperature at maximum water stress from the space land 235

surface temperature albedo [24]. The MCD43B3 product 236

provides 1-km data describing both directional hemispher- 237

ical reflectance (black-sky albedo) at local solar noon 238

and bihemispherical reflectance (white-sky albedo). In this 239

study, surface albedo refers to the MODIS shortwave white 240

sky albedo. 241

• MODIS/Terra level-1B calibrated radiances swath 1-km 242

grid product (MOD021KM) and MODIS/Aqua level- 243

1B calibrated radiances swath 1-km grid product 244

(MYD021KM). The radiance data set is used to derive 245

a land surface temperature data set that differs from the 246

official MOD11A1 and MYD11A1 products with respect 247

to atmospheric correction. 248

Products MOD11A1, MYD11A1, MOD13A2, and 249

MCD43B3 were downloaded through the NASA Warehouse 250

Inventory Search Tool (WIST http://wist.echo.nasa.gov/) and 251

products MOD021KM and MYD021KM were downloaded 252

through the NASA Level 1 and Atmosphere Archive and Dis- 253

tribution System (LAADS http://ladsweb.nascom.nasa.gov). 254
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TABLE I
SCALE AND OFFSET VALUES USED TO CONVERT TERRA (AND AQUA)

MODIS RADIANCE DATA TO PHYSICAL RADIANCE

VALUES OVER THE AACES AREA

All products were projected in UTM 55 South with a sampling255

interval of 1000 m using the MODIS reprojection tool.256

The level-1B calibrated radiance data (R31 and R32 for bands257

31 and 32, respectively) were converted from digital number258

(DN) to radiance in W m−2 sr−1 using the radiance scales and259

offsets provided with each MODIS granule as listed in Table I260

Rλ = Scaleλ × (DNλ − Offsetλ) (1)

The radiance values were then converted to brightness temper-261

ature in K using the inverse of the Planck function [25]262

Tbλ =
c2

λ ln
(
1 + c1

Rλλ5

) (2)

with c1 = 1.19107× 108 µm5 W m−2 sr−1 and c2 =263

1.43883× 104 µm K, for center wavelength of the given band264

(11.0186 µm and 12.0325 µm for 31 and 32 band, respectively).265

D. Overlapping HDAS, SMOS, and MODIS Data and266

Generating an Input Data Set267

As indicated in Table II, HDAS soil moisture, SMOS soil268

moisture, and cloud-free MODIS land surface temperature data269

have overlapped on five days during AACES-1 (on January270

28 and 30 and February 15, 18, and 20) and on five days271

during AACES-2 (on September 11, 13, 21, 22, and 24). On272

each sampling day, two farms were sampled during AACES-1273

(except on February 18 when three farms were sampled), and274

one farm was sampled during AACES-2, so that disaggregation275

results can be evaluated for ten date-farm units during AACES-276

1 and five date-farm units during AACES-2.277

DisPATCh is applied to an input ensemble composed of the278

different combinations of available SMOS (ascending orbit at279

6 am and/or descending orbit at 6 pm) and MODIS (onboard280

Terra platform at 10 am and/or Aqua platform at 1 pm) data. To281

increase the quantity of input data sets, the MODIS data col-282

lected on the day before and the day after the SMOS overpass283

date are also included. For SMOS data on day of year (DoY)284

51, the clear sky MODIS data collected on DoY 54 are used.285

Note that one implicitly assumes that no rainfall occurs between286

MODIS and SMOS overpasses, and that the spatial variability287

captured by MODIS is relatively similar to the actual variabil-288

ity of surface soil moisture at the time of SMOS overpass.289

Moreover, the SMOS data oversampling is used to generate290

four (overlapping) 40-km resolution SMOS grids on which291

DisPATCh is run independently, thus increasing the number292

of downscaled data that could be used in the validation. It is293

reminded that the spacing (about 15 km) between neighboring294

SMOS DGG nodes is smaller than the SMOS resolution (about295

40 km). By combining the four SMOS grids, the two potential 296

SMOS data sets (two orbits in one day) and the six potential 297

MODIS data sets (three days including two overpasses each), 298

the maximum number of input data sets is 48. The generation 299

of input data sets is shown in Fig. 2 and the number of daily 300

input data sets is indicated for each date-farm unit in Table II. 301

III. DISAGGGREGATION ALGORITHM 302

DisPATCh converts 1-km resolution MODIS-derived soil 303

temperature fields into 1-km resolution surface soil moisture 304

fields given a semi-empirical soil evaporative efficiency model 305

[26] and a first-order Taylor series expansion around the 306

40-km resolution SMOS observation. DisPATCh is an im- 307

proved version of the algorithms in [16] and [27], and mainly 308

differs with regard to the representation of the vegetation water 309

status. In previous versions [16], [27], the soil temperature was 310

derived from MODIS land surface temperature by assuming 311

that vegetation was unstressed so that vegetation temperature 312

was uniformly set to the minimum surface temperature ob- 313

served within the SMOS pixel. In this study, the approach in 314

[28] is implemented to take into account vegetation water status 315

in the estimation of soil temperature. 316

A. Disaggregation Methodology 317

The disaggregation procedure decouples the soil evaporation 318

from the 0–5 cm soil layer and the vegetation transpiration 319

from the root-zone soil layer by separating MODIS surface 320

temperature into its soil and vegetation components as in the 321

triangle or trapezoidal method [28], [29]. MODIS-derived soil 322

temperature is then used to estimate soil evaporative efficiency, 323

which is known to be relatively constant during the day on clear 324

sky conditions. MODIS-derived soil evaporative efficiency is 325

finally used as a proxy for surface (0–5 cm) soil moisture 326

variability within the SMOS pixel. The link between surface 327

soil moisture and soil evaporative efficiency at different scales 328

is ensured by a downscaling relationship and a soil evapo- 329

rative efficiency model, as described below in more detail. 330

The originality of DisPATCh relies on a dynamical land cover 331

classification (based on the hourglass approach in [28]) that 332

takes into account the subpixel variability of the sensitivity of 333

soil evaporative efficiency to surface soil moisture. 334

1) Downscaling Relationship: The downscaling relation- 335

ship can be written as 336

SM1 km = SMSMOS +
∂SMmod

∂SEE

× (SEEMODIS,1 km − 〈SEEMODIS,1 km〉40 km) (3)

with SMSMOS being the SMOS soil moisture (for clarity, 337

the variables defined at SMOS scale are written in bold), 338

SEEMODIS the MODIS-derived soil evaporative efficiency (ra- 339

tio of actual to potential evaporation), 〈SEEMODIS〉40 km its 340

average within a SMOS pixel and ∂SMmod/∂SEE the partial 341

derivative evaluated at SMOS scale of soil moisture with re- 342

spect to soil evaporative efficiency. Note that the linearity of (3) 343

implies that a possible bias in SMOS data would produce the 344
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TABLE II
LIST OF OVERLAPPING HDAS, SMOS, AND MODIS (MOD11A1 AND MYD11A1) DATA DURING AACES-1 AND AACES-2. ONLY THE SMOS DATA

COLLECTED ON THE SAME DAY AS GROUND SAMPLING HAVE BEEN CONSIDERED. THE MODIS DATA CONSIDERED AS INPUT TO DISPATCH

HAVE BEEN COLLECTED WITHIN PLUS OR MINUS ONE DAY EITHER SIDE THE GROUND SAMPLING (AND SMOS OVERPASS)
DATE. ON EACH SAMPLING DATE, THE RESULTANT NUMBER OF INPUT DATA SETS TO DISPATCH IS ALSO INDICATED

Fig. 2. Schematic diagram presenting the combination of SMOS and MODIS to generate an ensemble of input data to DisPATCh. The output data are composited
at 1-km resolution by computing the average (SM1 km) and standard deviation (σSM,1 km) of disaggregated SMOS soil moisture.

same bias in disaggregated data [30]. Consequently, although345

the possible presence of a bias in SMOS data limits the accuracy346

in the disaggregated soil moisture, it is not a limiting factor to347

the applicability of DisPATCh. MODIS derived soil evaporative348

efficiency is expressed as a linear function of soil temperature349

SEEMODIS,1 km =
Ts,max − Ts,1 km

Ts,max −Ts,min
(4)

with Ts being the MODIS-derived soil skin temperature,350

Ts,max the soil skin temperature at SEE = 0 and Ts,min351

the soil skin temperature at SEE = 1. The linearity of the352

relationship between soil evaporative efficiency and surface353

soil temperature was verified using the physically based dual354

source energy budget model in [31] using a synthetic data set355

composed of a range of surface soil moisture values and differ-356

ent atmospheric conditions (results not shown). End-members357

Ts,min and Ts,max are estimated from the polygons obtained358

by plotting MODIS surface temperature against MODIS NDVI 359

and MODIS albedo as in [24]. Derivation of soil temperature is 360

based on a linear decomposition of the surface temperature into 361

its soil and vegetation components as a good approximation of 362

the relationship with fourth power for temperatures [32], [33] 363

and consistent with the triangle method. MODIS-derived soil 364

skin temperature is expressed as 365

Ts,1 km =
TMODIS − fv,1 kmTv,1 km

1− fv,1 km
(5)

with TMODIS being the 1-km resolution MODIS land sur- 366

face temperature, fv the MODIS-derived fractional vegetation 367

cover, and Tv the vegetation temperature. In this study, vegeta- 368

tion temperature is estimated using the approach proposed by 369

[28]. In (5), fractional vegetation cover is written as 370

fv,1 km =
NDVIMODIS −NDVIs
NDVIv −NDVIs

(6)
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with NDVIMODIS being the 1-km resolution MODIS NDVI,371

NDVIs the NDVI corresponding to bare soil, and NDVIv the372

NDVI corresponding to full-cover vegetation. Minimum and373

maximum NDVI values are set to 0.15 and 0.90, respectively.374

In [16], the accuracy and robustness of the disaggregation375

methodology were tested using three different formulations of376

soil evaporative efficiency [26], [34], [35]. Results based on the377

NAFE’06 data set [36], which was collected over a 60 km by378

40 km area in the AACES area, indicated that the model in379

[26] was better adapted for conditions where soil properties are380

unknown at high resolution. Consequently, the partial derivative381

in (3) is computed using the soil evaporative efficiency model382

in [26]383

SEEmod =
1

2
− 1

2
cos(π · SM/SMp) (7)

with SMp being a soil parameter (in soil moisture unit). In384

[26], SMp was set to the soil moisture at field capacity. In385

DisPATCh, SMp is retrieved at 40-km resolution from SMOS386

and aggregated MODIS data [16]. By inverting (7), one obtains387

SMmod =
SMp

π
cos−1(1− 2 SEE) (8)

2) Vegetation Temperature: Vegetation temperature in (5) is388

estimated at 1-km resolution with the “hourglass” approach in389

[28]. By plotting the diagonals in the quadrilateral in Fig. 3,390

four areas are distinguished in the space defined by surface391

temperature and fractional vegetation cover. In zone A, land392

surface temperature is mainly controlled by soil evaporation393

leading to optimal sensitivity to surface soil moisture. In zone394

D, land surface temperature is mainly controlled by vegetation395

transpiration with no sensitivity to surface soil moisture. In396

zones B and C, land surface temperature is controlled by both397

soil evaporation and vegetation transpiration with intermediate398

(average) sensitivity to surface soil moisture. Based on this un-399

derstanding, vegetation temperature is estimated in a different400

manner in each zone.401

For a given data point located in Zone A, vegetation temper-402

ature is403

Tv,1 km = (Tv,min +Tv,max)/2 (9)

with Tv,min and Tv,max being the vegetation temperature404

at minimum and maximum water stress, respectively. End-405

members Tv,min and Tv,max are estimated from the poly-406

gons obtained by plotting MODIS surface temperature against407

MODIS NDVI and MODIS albedo as in [24].408

For a given data point located in Zone B, vegetation temper-409

ature is410

Tv,1 km = (Tv,min,1 km +Tv,max)/2 (10)

with Tv,min,1 km being the vegetation temperature associated411

with SEE = 0 (Ts = Ts,max).412

For a given data point located in Zone C, vegetation temper-413

ature is414

Tv,1 km = (Tv,min + Tv,max,1 km)/2 (11)

Fig. 3. Polygon defined in the land surface temperature-fractional vegetation
cover space contains four distinct zones A, B, C, and D. In Zone A (soil-
dominated area), the estimated vegetation temperature is constant leading to
optimal sensitivity of estimated soil temperature to surface soil moisture. In
Zone D, the estimated soil temperature is constant with no sensitivity to surface
soil moisture. In Zone B and C (mixed surface), surface temperature is both
controlled by soil evaporation and vegetation transpiration with intermediate
(average) sensitivity of estimated soil temperature to surface soil moisture.
DisPATCh can be run in the Zone A+B+C mode or in the Zone A only mode.
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Fig. 4. Temperature end-members Ts,min, Ts,max, Tv,min, and Tv,max are estimated from the surface temperature-fractional vegetation cover space
and the surface temperature-surface albedo space within two given SMOS pixels. In (b), the pixel corresponding to the largest MODIS albedo has a fractional
vegetation cover larger than 0.5, so that Tv,max is set to its surface temperature. In (d), the pixel corresponding to the largest MODIS albedo has a fractional
vegetation cover lower than 0.5, so that Tv,max is set to Tv,min.

with Tv,max,1 km being the vegetation temperature associated415

with SEE = 1 (Ts = Ts,min).416

For a given data point located in Zone D, vegetation temper-417

ature is418

Tv,1 km = (Tv,min,1 km + Ts,max,1 km)/2 (12)

3) End-Members: End-members Ts,min, Ts,max, Tv,min419

and Tv,max are estimated by combining the spatial information420

provided by the surface temperature-fractional vegetation cover421

space and the surface temperature-albedo space plotted using422

MODIS data collected in a 40-km resolution SMOS pixel. An423

illustration is provided in Fig. 4 for two given SMOS pixels.424

• Tv,min: the vegetation temperature at minimum vegeta-425

tion water stress is set to the minimum MODIS surface426

temperature in the SMOS pixel [see Fig. 4(a) and (c)].427

• Tv,max: the vegetation temperature at maximum vegeta-428

tion water stress is set to the MODIS surface temperature429

of the pixel with the maximum value of MODIS albedo in430

the SMOS pixel [see Fig. 4(b)]. If the fractional vegetation431

cover of that pixel is lower than 0.5 [see Fig. 4(d)], the veg-432

etation temperature at maximum vegetation water stress433

is alternatively set to Tv,min, meaning that vegetation is434

unstressed within the SMOS pixel. The condition based435

on fractional vegetation cover is lower than 0.5 aims to436

increase the robustness of the determination approach of437

Tv,max, particularly in the SMOS pixels where all surface 438

conditions are not met. 439

• Ts,min: the soil temperature at SEE = 1 is extrapolated 440

along the wet soil edge at fv = 0. The wet soil edge 441

is defined as the line passing through (1,Tv,min) and 442

through the data point such that all the data points with 443

fv < 0.5 are located above the wet soil edge [see Fig. 4(a) 444

and (c)]. 445

• Ts,max: the soil temperature at SEE = 0 is extrapolated 446

along the dry soil edge at fv = 0. The dry soil edge 447

is defined as the line passing through (1,Tv,max) and 448

through the data point such that all the data points with 449

fv < 0.5 are located below the dry soil edge [see Fig. 4(a) 450

and (c)]. 451

B. Atmospheric Correction 452

In MOD11A1 and MYD11A1 products, the land surface 453

temperature is derived from MODIS thermal radiances using 454

the split window algorithm [37] 455

TMODIS = C +

(
A1 +A2

1− ε

ε
+A3

∆ε

ε2

)
Tb31 + Tb32

2

+

(
B1 +B2

1− ε

ε
+B3

∆ε

ε2

)
Tb31 − Tb32

2
(13)
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with Tb31 and Tb32 being the brightness temperatures mea-456

sured in the MODIS bands 31 and 32, respectively, ε31 and ε32457

the surface emissivities estimated in the respective bands, and458

A1, A2, A3, B1, B2, B3, and C regression coefficients. These459

coefficients are available during algorithm execution via a look460

up table stratified by subranges of near surface air temperature461

and total column water vapor. These input field are obtained at462

a 5-km resolution from the MODIS07_L2 product.463

Given that regression coefficients in (13) are provided at464

5-km resolution, the atmospheric corrections on the MODIS465

land surface temperature product are actually made at 5-km466

resolution. To test whether atmospheric corrections on MODIS467

temperature have an impact on disaggregation results, a differ-468

ent procedure is proposed to obtain another temperature data469

set whose atmospheric corrections are operated at the scale470

of a SMOS pixel, i.e., at 40-km resolution (instead of 5-km471

resolution for the official MODIS temperature product). The472

approach is to normalize the mean MODIS radiance-derived473

brightness temperature at the SMOS resolution. Normalization474

is done by adjusting the minimum and maximum mean MODIS475

brightness temperature to the minimum and maximum value476

of the official MODIS land surface temperature product within477

the SMOS pixel, respectively. The new temperature noted478

T unif. corr.
MODIS (uniform atmospheric corrections) is written479

T unif. corr.
MODIS = TMODIS,min + (TMODIS,max − TMODIS,min)

× Tb31 + Tb32 −Min(Tb31 + Tb32)

Max(Tb31 + Tb32)−Min(Tb31 + Tb32)
(14)

with TMODIS,min and TMODIS,max being the minimum and480

maximum MODIS land surface temperature within the SMOS481

pixel, and Min() and Max() the function that returns the mini-482

mum and maximum value within the SMOS pixel, respectively.483

Note that the underlying assumptions of (14) are:484

• near surface air temperature and column water vapor vary485

at scales larger than 40 km (size of a SMOS pixel).486

• surface emissivity is close to 1.487

C. Algorithm488

The steps used in applying DisPATCh include: 1) select-489

ing the SMOS pixels with at least 90% (clear sky) MODIS-490

retrieved land surface temperature coverage; 2) computing491

soil evaporative efficiency over nominal MODIS pixels with492

(4); 3) estimating soil evaporative efficiency over non-nominal493

MODIS pixels; 4) retrieving parameter SMp; 5) applying the494

downscaling relationship of (3); 6) correcting disaggregated495

soil moisture by the SMOS pixel weighting function; and 7)496

compositing on a daily basis the disaggregation output en-497

semble [21]. The input and output data and their link within498

DisPATCh are summarized in Fig. 5.499

1) Selecting Clear Sky SMOS Pixels: A threshold of 90%500

cloud-free MODIS coverage is used to select the SMOS pix-501

els to be disaggregated. In the official MODIS land surface502

temperature product (MOD11A1 for Terra and MYD11A1 for503

Aqua), the data affected by the presence of clouds are already504

masked. Hence, selection of the 90% clear sky SMOS pixels is505

Fig. 5. Schematic diagram presenting the input and output data of DisPATCh.

directly based on the MODIS land surface temperature product 506

masking. 507

2) Non-Nominal Pixels: Nominal MODIS pixels are de- 508

fined as the 1-km resolution pixels that do not include open 509

water and where land surface temperature is actually retrieved. 510

Open water pixels are flagged in the algorithm when MODIS 511

NDVI retrievals yield negative values. The soil evaporative 512

efficiency of open water pixels is set to 1. The emerged pixels 513

where land surface temperature is not retrieved (due to the 514

presence of some clouds within the SMOS pixel) are processed 515

as pixels with mean surface conditions. In practice, the soil 516

evaporative efficiency of cloudy pixels (which represent less 517

than 10% of the surface area within the SMOS pixel) is set to 518

the mean soil evaporative efficiency calculated over the clear 519

sky MODIS pixels. Allocating a soil evaporative efficiency 520

value to non-nominal pixels allows DisPATCh to be run over a 521

wider range of SMOS pixels, including those partially covered 522

by clouds. However, non-nominal 1-km resolution pixels are 523

flagged and discarded from the disaggregation output ensemble. 524

3) Forested Areas: In this study, DisPATCh is applied to all 525

the SMOS pixels where the soil moisture retrieval is successful, 526

even those including forest class, as long as the 1 km MODIS 527

pixels are in Zone A, B or C (see Fig. 3). This choice is 528

relevant here because the AACES extensive data were almost 529

exclusively collected in agricultural areas (cropping/grazing), 530

so forests for this study are not an issue. In the case of a 531

mixed SMOS pixel including a significant fraction of forest, 532

DisPATCh should be applied to the surface area of the dominant 533
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class, thus excluding the surface area of the minority land cover534

classes.535

4) Calibration: The soil moisture parameter SMp used to536

compute ∂SMmod/∂SEE in (3) is estimated by inverting the537

SEE model in (7) at SMOS resolution538

SMp =
π · SMSMOS

cos−1 (1− 2〈SEEMODIS,1 km〉40 km)
(15)

A value of SMp is obtained for each SMOS pixel and each539

input data set. Note that the main assumption limiting validity540

of the calibration approach is the soil evaporative efficiency541

model [26] itself. The soil evaporative efficiency model in [26]542

was chosen for its simplicity (one parameter) and its ability543

to represent the general behavior of soil evaporative efficiency544

over the full range of soil moisture: particularly the null deriva-545

tive at zero and at maximum soil moisture, and an inflexion546

point in between [38]. However, it has some inconsistencies.547

In particular, [38] have indicated that 1) potential evaporation548

is physically reached at soil saturation and not at field capac-549

ity; therefore the model in [26] should be (strictly speaking)550

parameterized by the soil moisture at saturation and not by the551

soil moisture at field capacity, and 2) soil evaporative efficiency552

varies with potential evaporation, meaning that the soil moisture553

parameter (set to the soil moisture at field capacity in [26])554

should theoretically vary in time with atmospheric evaporative555

demand. Consequently, the SMp retrieved from SMOS and556

MODIS data using the model in [26] is definitely not the soil557

moisture at field capacity as in [26], although it could be in part558

related to it. In this study, SMp is therefore considered to be a559

fitting parameter self-estimated by DisPATCh.560

5) Weighting Function: A SMOS pixel WEighting Function561

(WEF) is used to take into account the impact of soil mois-562

ture distribution on the SMOS scale soil moisture as seen by563

SMOS radiometer. A centrosymmetric analytical approxima-564

tion MEAN_WEF is provided in [19], [20]565

MEAN_WEF(ρ)=CMWEF2+WEFA

(
ρ

CMWEF1
· π

CWEF1

)

(16)

with ρ being the distance from the SMOS pixel center, and566

CMWEF1 = 40 km, CMWEF2 = 0.027, CWEF1 = 73.30 and567

WEFA(ρ
′) =

[sinc(CWEF1 · ρ′)]CWEF2

1 + CWEF3 · ρ′CWEF4
(17)

with ρ′ being the distance in the director cosines coordinates,568

sinc(x) = sin(x)/x, and CWEF2 = 1.4936, CWEF3 = 524.5569

and CWEF4 = 2.103.570

A correction is applied to disaggregated soil moisture in (3)571

SMwef corr.
1 km = SM1 km +

∑
MEAN_WEF(ρ) · SM1 km(ρ)∑

MEAN_WEF(ρ)

−SMSMOS (18)

with SMwef corr.
1 km being the WEF-corrected disaggregated572

soil moisture. Mathematically speaking, one should replace573

SMSMOS with
∑

MEAN_WEF · SM1 km/
∑

MEAN_WEF574

in (3) and (15) and run an iteration loop until convergence575

of SMwef corr.
1 km values. However, the impact of the WEF on 576

disaggregated soil moisture is expected to be low so that the 577

simple correction in (18) is considered to be sufficient for the 578

purpose of the study. 579

6) Disaggregation Output: The downscaling relationship in 580

(3) is applied to each input data set, and the disaggregated soil 581

moisture data ensemble is averaged on each 1-km resolution 582

pixel within the study area. Averaging is a way to reduce 583

random uncertainties in the disaggregation output. In [17], [27], 584

disaggregated soil moisture was averaged in space (aggregated) 585

at the expense of downscaling resolution. Herein, temporal 586

averaging [30] is preferred to keep an optimal downscaling 587

resolution. Note that a condition to average disaggregated soil 588

moisture in time is the availability of thermal infrared data 589

at high temporal frequency. Another significant advantage of 590

applying DisPATCh to an input ensemble is to provide an 591

estimate of the uncertainty in 1-km resolution disaggregated 592

soil moisture, e.g., by computing the standard deviation within 593

the output ensemble. 594

IV. APPLICATION 595

To test DisPATCh under various surface and atmospheric 596

conditions, the algorithm is run during AACES-1 and AACES- 597

2 in different modes, by including (or not) a correction for 598

vegetation and atmospheric effects. In each case, disaggregated 599

SMOS soil moisture and HDAS measurements are compared 600

at 1-km resolution for all date-farm units with overlapping 601

HDAS/SMOS/MODIS data. 602

A. Null Hypothesis 603

In this study, the null hypothesis is defined as the application 604

of DisPATCh with parameter SMp set to zero in (8). Hence, 605

the downscaling relationship in (3) becomes 606

SM1 km = SMSMOS (19)

meaning that no 1-km information is used. Defining a null 607

hypothesis is useful to test whether DisPATCh is able to re- 608

produce the subpixel variability within the ∼ 10 km2 sam- 609

pling farms with better skill than simply assuming a uniform 610

moisture condition. Statistical results in terms of root mean 611

square difference, mean difference, correlation coefficient, and 612

slope of the linear regression between the SMOS soil moisture 613

disaggregated with (19) and in situ measurements are listed in 614

Table III. One observes that the root mean square difference 615

is generally explained by a (negative) bias in SMOS data and 616

that none of the correlations evaluated at 1-km resolution for 617

each farm separately is statistically significant (all calculated p- 618

values are larger than 0.10). Thus, the rationale for developing 619

DisPATCh is to improve the correlation at fine scale between 620

SMOS and ground soil moisture and to reduce the bias in 621

disaggregated SMOS data in the specific case where the bias 622

in SMOS data at the farm scale is due to the heterogeneity of 623

soil moisture within the SMOS pixel. 624
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TABLE III
DISPATCH IS RUN WITH NO 1-km INFORMATION (SMpSET TO ZERO) AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE

DIFFERENCE (RMSD), MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN

1-km RESOLUTION DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE MEAN

AND STANDARD DEVIATION OF GROUND MEASUREMENTS (〈SMHDAS〉AND σHDAS), THE NUMBER OF CONSIDERED

1-km PIXELS, AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

B. Visual Assessment of Disaggregation Images625

As an example, DisPATCh is applied on DoY 49 over a 120626

km by 80 km subarea including the farms F16, F17, F18, F19,627

and F20. The images of 1-km resolution disaggregated SMOS628

soil moisture are presented in Fig. 6. DisPATCh is run with629

SMp set to zero (null hypothesis) and in four distinct modes630

corresponding to the combinations of the “LST” (the official631

MODIS land surface temperature product is used) and “RAD”632

[the land surface temperature is derived from MODIS radiances633

using (14)] modes and the “Zone A+B+C” (the vegetation-634

transpiration dominated 1-km pixels are discarded) and “Zone635

A only” (only the soil evaporation-dominated 1-km pixels are636

selected) modes.637

In Fig. 6, the SMOS DGG nodes where level-2 soil moisture638

is successfully retrieved are overlaid on the image correspond-639

ing to the null hypothesis (resampled SMOS data with no 1-km640

information) for 6 am and 6 pm overpass times separately. The641

gaps in SMOS data in the lower middle part of the images642

are due to topography flagging over the Australian Alps. In643

the version-4 SMOS level-2 processor, soil moisture is not644

retrieved at the DGG nodes where the topography effects on645

simulated brightness temperatures exceed a certain threshold,646

so as to prevent large errors in soil moisture values. The appar-647

ent resolution of the null hypothesis image is 20 km because648

it is generated from the composition of four 40-km resolution649

resampled SMOS snapshot images, whose resampling grids are650

separated by 20 km (the SMOS level-2 data resampling strategy 651

was described in Section II-B.). 652

Note that the disaggregation products in the Zone A+B+C 653

mode cover an area larger than the area sampled by SMOS 654

data, because the SMOS resolution (about 40 km) is larger 655

than the SMOS product sampling length (about 15 km), but 656

does not provide disaggregated values at a distance larger than 657

20 km from the successful retrieval nodes. Concerning the Zone 658

A only mode, disaggregation products do not cover an area 659

larger than the SMOS sampling area because the Australian 660

Alps are surrounded by forests where the fraction of bare soil is 661

less than elsewhere in the area, and which correspond to Zone 662

B or C in the hourglass in Fig. 3. 663

When looking at the images obtained in the Zone A+B+C 664

mode in Fig. 6, one observes that the spatial structures of 665

1-km disaggregated SMOS soil moisture encompass, but does 666

not seem to be correlated with, the SMOS data sampling 667

length. However, a “boxy artifact” is still apparent at 20-km 668

resolution, which is the separation length of the SMOS data 669

resampling grids as explained in Section II-B. The notion of 670

“boxy artifact” was introduced by [39] to analyze the quality of 671

a disaggregation approach. The less apparent the low-resolution 672

boxes, the better the disaggregation skill of the algorithm to 673

spatially connect high-resolution disaggregated values between 674

neighboring low-resolution pixels, and thus to derive a realistic 675

high-resolution soil moisture field. When comparing the images 676

obtained in the Zone A+B+C mode with those obtained in the 677
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Fig. 6. Images of disaggregation results over a 120 km by 80 km subarea on DoY 49. The disaggregated soil moisture (SM1 km) and its estimated uncertainty
(σSM,1 km) are compared in the LST and RAD modes and in the Zone A+B+C and Zone A only modes. Sampling farms are overlaid on all images. SMOS DGG
nodes are overlaid on the image corresponding to the null hypothesis (no 1-km resolution information) presented at top.

Zone A only mode, one observes that the 20-km resolution boxy678

artifact is less apparent in the Zone A only mode, consistent679

with the better sensitivity of MODIS-derived SEE with soil-680

dominated pixels (Zone A) than with mixed-surface (Zone B681

and C) pixels. In Fig. 6, the images obtained in the LST and682

RAD mode highlight different spatial structures. In general,683

there are less data gaps in the RAD than in the LST mode.684

However, ground validation data are required to assess their685

relative quality/accuracy.686

As an assessment of the uncertainty in composited soil mois-687

ture disaggregation, the standard deviation within the disaggre-688

gation output ensemble is also reported for each disaggregation689

product in Fig. 6. The same observations can be made as with 690

the soil moisture images: spatial structures are more visible, and 691

the boxy artifact is less apparent in the RAD than in the LST 692

mode. In general, the estimated uncertainty in disaggregated 693

products is larger in the RAD than in the LST mode, regardless 694

of the Zone (A+B+C or A only) mode. 695

C. SMOS Weighting Function 696

To evaluate the impact of the SMOS instrument weighting 697

function on disaggregation results, DisPATCh is run with (and 698

without) the WEF correction in (18). The expected effect of the 699
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Fig. 7. Uncorrected versus WEF-corrected SMOS soil moisture for the entire
data set.

WEF is a bias at 40 km resolution on disaggregated soil mois-700

ture. Fig. 7 plots the uncorrected against WEF-corrected SMOS701

soil moisture for the entire data set including both AACES-1702

and AACES-2 experiments. The WEF correction has very703

little impact on disaggregated soil moisture with a maximum704

difference between uncorrected and WEF-corrected SMOS soil705

moisture of 0.02 m3/m3, a mean difference of approximately706

zero, and a standard deviation of 0.003 m3/m3. Although the707

difference is small with this data set, WEF-corrected products708

are expected to be more realistic. Therefore, the correction in709

(18) is used in all the DisPATCh runs that follow.710

D. Quantitative Comparison With In Situ Measurements711

Fig. 8 presents the scatterplots of 1-km resolution disaggre-712

gated SMOS soil moisture versus 1-km resolution aggregated713

in situ measurements for the ten date-farm units during714

AACES-1. On each graph are plotted the soil moisture dis-715

aggregated in the Zone A+B+C mode (empty squares) and716

the soil moisture disaggregated in the Zone A only mode717

(black squares). At the beginning of AACES-1, conditions are718

very dry so that SMOS retrievals are close to zero and the719

variability of in situ measurements is low (about 0.02 m3/m3).720

In such conditions, no useful information is expected from the721

application of DisPATCh, and the statistical results in terms of722

spatial correlation are not meaningful for DoY 28/F05, DoY723

30/F07 and DoY 30/F08. While wetter conditions occur after724

DoY 30, cloud cover prevents DisPATCh to be run (MODIS725

data are unavailable) until DoY 46. On DoY 46, the average726

and standard deviation of in situ soil moisture measurements is727

0.32 m3/m3 and 0.06 m3/m3, respectively. The spatial variabil-728

ity of 1-km soil moisture is nicely captured by DisPATCh no-729

tably in the RAD mode. On DoY 49, the disaggregated SMOS730

soil moisture is still correlated with the in situ measurements731

made in three farms (F17, F18, and F20). On the last ground732

sampling day, disaggregation results are significantly correlated733

with in situ measurements in F19, but not in F20. The poor734

results obtained with DoY 51/F20 is probably due to the time735

gap (3 days) between ground sampling date (DoY 51) and736

MODIS overpass day (DoY 54).737

Statistical results in terms of root mean square difference,738

mean difference, correlation coefficient, and slope of the linear739

regression between the SMOS soil moisture disaggregated in 740

the Zone A+B+C mode and aggregated in situ measurements 741

are listed in Table IV. Statistical significance (p-value) is also 742

reported for each date-farm unit to select statistically significant 743

(p-value < 0.10) results. Although the disaggregation of SMOS 744

data on extensively dry DoY 30 does not provide any additional 745

information (soil is uniformly dry), the observed correlation 746

between disaggregated (LST mode) and in situ soil moisture 747

is statistically significant, and the correlation coefficient value 748

is negative (−0.70 and −0.95 at F07 and F08, respectively). 749

One plausible explanation is the opposite effect of soil temper- 750

ature on HDAS soil moisture measurements and on MODIS- 751

derived soil evaporative efficiency: a slight undercorrection of 752

the temperature-corrected hydraprobe measurements at high 753

temperature [18] results in a slight increase of soil moisture 754

estimate with soil temperature, while an increase of soil temper- 755

ature makes soil evaporative efficiency decrease. Nevertheless, 756

the possible impact of soil temperature on HDAS measurements 757

is very low with a slope of the linear regression between 758

disaggregated SMOS and in situ soil moisture calculated as 759

−0.08 and −0.03 for F07 and F08, respectively. When selecting 760

statistically significant results (p-value < 0.10) and discarding 761

data for DoY 30, the mean correlation coefficient and slope in 762

RAD mode are 0.75 and 0.58, respectively. 763

Fig. 9 presents the scatterplots of 1-km resolution disaggre- 764

gated SMOS soil moisture versus 1-km resolution aggregated in 765

situ measurements for the five date-farm units during AACES- 766

2. On each graph are plotted the soil moisture disaggregated in 767

the Zone A+B+C mode (empty squares) and the soil moisture 768

disaggregated in the Zone A only mode (black squares). The 769

surface conditions of AACES-2 were relatively wet with a mean 770

soil moisture value estimated as 0.29 m3/m3. The disaggre- 771

gated SMOS soil moisture does not correlate well with in situ 772

measurements with a p-value larger than 0.10 for all sampling 773

days, except for DoY 256/F07 in LST mode (see Table IV). The 774

negative correlation coefficient (−0.73) obtained on DoY 256 is 775

discussed when comparing the Zone A+B+C and Zone A only 776

modes in Section IV-F. In general, statistical results in Table IV 777

indicate that DisPATCh does not succeed in representing the 778

variability of soil moisture at 1-km resolution during AACES- 779

2. In fact, DisPATCh is based on the tight coupling that occurs 780

between soil moisture and evaporation under high evaporative 781

demand conditions [40]. This coupling seems to be weak in 782

September over the study area so that the disaggregation results 783

at 1-km resolution are not reliable. 784

For DoY 264/F13, however, an interesting feature is ob- 785

served on the graph corresponding to the RAD and Zone A 786

only modes. When removing the (three) black squares with 787

the largest errorbars, the correlation coefficient and the slope 788

of the linear regression between disaggregated and in situ 789

observations becomes 0.9 and 0.7, respectively. This suggests 790

that: 1) the standard deviation within the disaggregation output 791

ensemble can be a good estimate of the uncertainty in the 792

composited disaggregation product; and 2) the applicability of 793

DisPATCh is greatly dependent on the quality of MODIS land 794

surface temperature. Note that in this study, a choice was made 795

to maximize the number of data points used in the comparison 796

with in situ measurements. Consequently, all the cloud-free 797
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Fig. 8. Scatterplots of 1-km resolution disaggregated SMOS soil moisture versus 1-km resolution aggregated in situ measurements for each of the ten date-farm
data sets during AACES-1. The filled circles correspond to disaggregation with no 1-km information, empty squares to Zone A+B+C mode and black squares to
Zone A only mode. For the Zone A only mode, the uncertainty in disaggregated soil moisture is represented by vertical errorbars.

MODIS land surface temperature data were used regardless798

of the MODIS land surface temperature quality index. Further799

research should be conducted to assess whether selecting the800

MODIS pixel with the best MODIS land surface temperature801

quality index would improve the disaggregation results. This802

would be possible using the AACES airborne data, which cover803

a much larger area than in situ measurements.804

E. Atmospheric Corrections805

The impact of atmospheric corrections on DisPATCh output806

is analyzed by comparing the disaggregation results obtained807

in the LST and RAD mode. Quantitative comparison between808

LST and RAD modes is provided in Table IV in terms of root809

mean square difference, mean difference, correlation coeffi-810

cient, and slope of the linear regression between disaggregated811

SMOS soil moisture and aggregated in situ measurements.812

Correlation coefficient and slope values are reported only if813

the p-value (statistical significance) is lower than 0.10. It is814

apparent that statistical results are better in the RAD than in815

the LST mode. When including all dates, the mean bias is 816

decreased from −0.05 m3/m3 in LST mode to −0.03 m3/m3 817

in RAD mode during AACES-1. When selecting statistically 818

significant results (p-value < 0.10) and discarding data for 819

DoY 30, the mean correlation coefficient and slope is 0.75 and 820

0.58 in RAD mode, and 0.65 and 1.5 in LST mode, respectively. 821

Note that the improvement is very significant for DoY 46/F16 822

with a correlation coefficient and slope increasing from about 823

zero to 0.7 and 0.8, respectively. 824

The fact that the results obtained in RAD mode are superior 825

to those obtained in LST mode indicates that the atmospheric 826

corrections of the official MODIS land surface temperature 827

add significant uncertainties in the disaggregation products. 828

One rationale may be that the information used in atmospheric 829

corrections (notably air temperature and water vapor profile 830

data) are subjected to large uncertainties at 5-km resolution. 831

As DisPATCh is based on the spatial variations of MODIS 832

temperature relative to the 40 km scale mean, the atmospheric 833

corrections on the land surface temperature data are not nec- 834

essary at 5 km (as it is done in the MODIS temperature 835
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TABLE IV
DISPATCH IS RUN IN THE ZONE A+B+C MODE AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE DIFFERENCE (RMSD),

MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN 1-km RESOLUTION

DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE RESULTS OBTAINED USING

THE RADIANCE-DERIVED LAND SURFACE TEMPERATURE DATA (RAD MODE) AND USING THE OFFICIAL MODIS LAND

SURFACE TEMPERATURE DATA (LST MODE IN PARENTHESIS) ARE COMPARED. THE MEAN AND STANDARD DEVIATION

OF GROUND MEASUREMENTS (〈SMHDAS〉AND σHDAS), THE NUMBER OF CONSIDERED 1-km PIXELS

AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

algorithm). An atmospheric correction at 40-km resolution is836

sufficient and provides even better disaggregation results that837

applying an atmospheric correction at 5-km resolution.838

F. Vegetation Cover839

The impact of vegetation cover on DisPATCh output during840

AACES-1 is analyzed by comparing the disaggregation results841

obtained in the Zone A+B+C and Zone A only mode. Quan-842

titative comparison between Zone A+B+C and Zone A only843

modes is provided in Tables IV and V in terms of root mean844

square difference, mean difference, correlation coefficient, and845

slope of the linear regression between disaggregated SMOS soil846

moisture and aggregated in situ measurements. It is apparent847

that statistical results are generally better in the Zone A only848

than in the Zone A+B+C mode for both LST and RAD modes.849

In the RAD mode for instance, the mean correlation coefficient850

is increased from 0.75 in the Zone A+B+C mode (Table IV) to851

0.89 in the Zone A only mode (Table V). Also the mean slope852

is closer to 1 as it switches from 0.58 in the Zone A+B+C mode853

(Table IV) to 0.91 in the Zone A only mode (Table V). Con-854

sequently, results are consistent with the hourglass approach in855

Fig. 3 that predicts a lower sensitivity of MODIS-derived soil856

temperature to soil moisture in Zone B and C, Zone A having857

the highest potential for estimating soil moisture variability 858

from MODIS temperature. 859

On DoY 256, the negative correlation appearing in Zone 860

A+B+C mode (Table IV) is not significant in Zone A only mode 861

(Table V), suggesting that the contradictory result obtained on 862

DoY 256 is probably an artifact due to the small sample size. 863

Note that one drawback of the Zone A only mode is the larger 864

amount of data gaps in the soil moisture images. Therefore, 865

the use of both modes is a compromise between application 866

coverage and accuracy in the disaggregation output. 867

G. Distinguishing Between SMOS and DisPATCh Errors 868

By solving the extent mismatch between 40-km resolution 869

remote sensing observation and localized in situ measurements, 870

DisPATCh could be used as a tool to help improve the validation 871

strategies of SMOS data in low-vegetated semi-arid regions. It 872

also would reduce the coverage requirements identified by [41] 873

for airborne validation campaigns. However, such a validation 874

approach requires separating the different error sources that 875

may be attributed to SMOS soil moisture and to DisPATCh. 876

One solution is to estimate the errors attributed to DisPATCh 877

and then deduce the errors attributed to SMOS soil moisture. To 878

estimate the errors that are associated with the disaggregation 879
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Fig. 9. Scatterplots of 1-km resolution disaggregated SMOS soil moisture ver-
sus 1-km resolution aggregated in situ measurements for each of the five date-
farm data sets during AACES-2. The filled circles correspond to disaggregation
with no 1-km information, empty squares to Zone A+B+C mode and black
squares to Zone A only mode. For the Zone A only mode, the uncertainty in
disaggregated soil moisture is represented by vertical errorbars.

methodology, it is suggested to analyze the spatial correla-880

tion between 1-km disaggregated SMOS soil moisture and881

in situ measurements. If the correlation is significant, then the882

disaggregation product is likely to be sufficiently accurate for883

validating SMOS data.884

Note that the errors in DisPATCh are in part coupled with885

the errors in SMOS soil moisture, particularly because SMOS886

is an input to DisPATCh. However, any uncertainties in SMOS887

soil moisture should not impact the disaggregation results at a888

distance shorter than the SMOS data sampling length (15 km).889

This is the reason why such a validation strategy should be890

conducted with ground measurements made within a distance891

radius of 15 km.892

In this study case, five date-farm units including DoY 893

46/F15, DoY 46/F16, DoY 49/F17, DoY 49/F18, and DoY 894

49/F20 indicate a significant correlation between disaggregated 895

SMOS soil moisture and in situ measurements. For these units, 896

the root mean square error in disaggregated SMOS soil mois- 897

ture is mainly explained by a bias in disaggregated soil moisture 898

(see Table IV). However, no conclusion can be drawn from 899

these data because: 1) the bias is sometimes positive (DoY 900

46/F15, DoY 49/F20), and sometimes negative (DoY 46/F16, 901

DoY 49/F17, DoY 49/F18); and 2) the comparison is made only 902

once for each farm, which does not allow analyzing the tempo- 903

ral behavior. Such a validation approach could be undertaken 904

in the near future using the OzNet (http://www.oznet.org.au/, 905

[42]) soil moisture monitoring network, providing continuous 906

measurements at 68 sites within the Murrumbidgee catchment 907

area. 908

H. Subpixel Variability and Assimilation Perspectives 909

DisPATCh is successively run in LST or RAD mode and in 910

Zone A+B+C or Zone A only mode during AACES-1. Fig. 10 911

plots for each case the estimated uncertainty in disaggregated 912

soil moisture (computed as the standard deviation of the disag- 913

gregation output ensemble) against the subpixel variability of 914

1-km resolution in situ measurements (computed as the stan- 915

dard deviation of the in situ measurements made within 916

1-km pixels). The data corresponding to DoY 51 are plotted 917

separately because of the time gap between HDAS/SMOS 918

(DoY 51) and MODIS (DoY 54) collection time. It is interest- 919

ing to observe that the estimated uncertainty in disaggregated 920

soil moisture is closely related to the observed subpixel vari- 921

ability of in situ measurements. Hence, σSM,1 km could be used 922

as a proxy for representing the soil moisture variability at scales 923

finer than 1-km resolution. Concerning the data on DoY 51, the 924

linear regression is clearly off the 1:1 line. This is consistent 925

with a decrease of the spatial variability in soil moisture during 926

a dry down period [43]. In particular, the spatial variability 927

in soil moisture is expected to be lower on DoY 54 than on 928

DoY 51. 929

The correlation between the estimated uncertainty in disag- 930

gregated soil moisture and the subpixel soil moisture variability 931

makes an additional link between DisPATCh output and assim- 932

ilation schemes into hydrological models. A number of optimal 933

assimilation methodologies have been developed to combine 934

model predictions with remote sensing observations. However, 935

any so-called optimal assimilation technique stops being opti- 936

mal if the uncertainty in remotely sensed data is unknown or 937

estimated with a large uncertainty. In the perspective of assim- 938

ilating disaggregated SMOS data into land surface models, one 939

should keep in mind that the error information on observable 940

variables is as crucial as the observations themselves, e.g., [44]. 941

V. SUMMARY AND CONCLUSION 942

DisPATCh is an algorithm dedicated to the disaggregation of 943

soil moisture observations using high-resolution soil tempera- 944

ture data. It converts soil temperature fields into soil moisture 945

fields given a semi-empirical soil evaporative efficiency model 946
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TABLE V
DISPATCH IS RUN IN THE ZONE A ONLY MODE, AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE DIFFERENCE (RMSD),

MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN 1-km RESOLUTION

DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE RESULTS OBTAINED USING

THE RADIANCE-DERIVED LAND SURFACE TEMPERATURE DATA (RAD MODE) AND USING THE OFFICIAL MODIS LAND

SURFACE TEMPERATURE DATA (LST MODE IN PARENTHESIS) ARE COMPARED. THE MEAN AND STANDARD

DEVIATION OF GROUND MEASUREMENTS (〈SMHDAS〉ANDσHDAS), THE NUMBER OF CONSIDERED 1-km
PIXELS AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

and a first-order Taylor series expansion around the field-mean947

soil moisture. In this study, the disaggregation approach is ap-948

plied to 40-km resolution version-4 SMOS level-2 soil moisture949

using 1-km resolution MODIS data. The objective is to test950

DisPATCh under different surface and atmospheric conditions951

using the very intensive ground measurements collected in952

southeastern Australia during the 2010 summer and winter953

AACES campaigns. Those measurements are aggregated at954

the downscaling resolution (1 km) and subsequently compared955

to the disaggregated SMOS soil moisture. Over the study956

area, climatic (evaporative demand), meteorologic (presence957

of clouds), and vegetation (cover and water status) conditions958

are strong constraints on disaggregation results. The quality959

of disaggregation products varies greatly according to season:960

while the correlation coefficient between disaggregated and961

in situ soil moisture is 0.7 during the summer AACES, it962

is about zero during the winter AACES, consistent with a963

weaker coupling between evaporation and surface moisture964

in temperate than in semi-arid climate. Moreover, vegetation965

cover prevents the soil temperature to be retrieved from thermal966

infrared data and the vegetation water stress may increase the967

remotely sensed land surface temperature independent of near-968

surface soil moisture. By separating the 1-km pixels where969

MODIS temperature is mainly controlled by soil evaporation,970

from those where MODIS temperature is controlled by both 971

soil evaporation and vegetation transpiration, the correlation 972

coefficient between disaggregated and in situ soil moisture is 973

increased from 0.70 to 0.85 during the summer AACES cam- 974

paign. Also, cloud cover totally obscures the surface during rain 975

events, and on clear sky days, the water vapor in the atmospĥere 976

significantly affects the quality of land surface temperature 977

data. It is found that the 5-km resolution atmospheric correction 978

of the official MODIS temperature data has significant impact 979

on DisPATCh output. An alternative atmospheric correction at 980

40-km resolution increases the correlation coefficient between 981

disaggregated and in situ soil moisture from 0.72 to 0.82 during 982

the summer AACES. 983

The above limitations must be kept in mind when using 984

DisPATCh as a tool for validating SMOS soil moisture. Over 985

semi-arid areas, disaggregation can solve the extent mismatch 986

between the 40-km resolution SMOS data and localized in situ 987

measurements. However, the validation of SMOS using Dis- 988

PATCh requires separation of the errors associated with SMOS 989

data and the errors associated with DisPATCh. As SMOS data 990

are an input to DisPATCh, the errors in DisPATCh are also 991

linked to the uncertainty in SMOS soil moisture. Nevertheless, 992

one way to identify the error sources specifically attributed 993

to DisPATCh is to analyze the spatial correlation between 994
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Fig. 10. Estimated uncertainty in disaggregated soil moisture (σSM, 1 km) versus subpixel variability of 1 km resolution in situ measurements for DisPATCh
run in LST or RAD mode and Zone A+B+C or Zone A only mode.

disaggregated SMOS data and the in situ measurements made995

at a distance larger than the downscaling resolution (1 km with996

MODIS data) and smaller than the SMOS data sampling length997

(15 km).998

Based on the results obtained using the AACES in situ999

measurements, several improvements of DisPATCh can be1000

suggested:1001

• Use of the MODIS land surface temperature quality index1002

to select the SMOS pixels with the highest MODIS data1003

quality.1004

• Correcting the MODIS land surface temperature for to-1005

pography and illumination effects [45]. Within a 40-km1006

SMOS resolution pixel, the elevation range may be very1007

significant and thus induce a variability in land sur-1008

face temperature that is not attributed to surface soil1009

moisture.1010

• Use of ancillary air temperature data to constrain the1011

estimation of end-members. The unstressed vegetation1012

temperature Tv,min could be set to the air temperature1013

instead of the minimum MODIS land surface temperature.1014

This would make the estimation of Tv,min less dependent1015

on the representativeness of the surface conditions met1016

within the SMOS pixel [24].1017

• Accounting for the dependency of soil evaporative effi-1018

ciency to potential evaporation, by replacing the model in1019

[26] with the model in [38].1020

• Estimating an optimal downscaling resolution for each1021

season: as the sensitivity of soil evaporative efficiency to1022

soil moisture is lower in the winter months than in the sum-1023

mer months, aggregating DisPATCh output may improve1024

the quality of disaggregation products at the expense of1025

spatial resolution [17].1026

A robust disaggregation methodology of SMOS soil moisture 1027

at 1-km resolution, which would provide both disaggregated 1028

soil moisture and its uncertainty at 1-km resolution is a crucial 1029

step toward the application of SMOS data to hydrological 1030

studies. 1031
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Disaggregation of SMOS Soil Moisture
in Southeastern Australia

1

2

Olivier Merlin, Christoph Rüdiger, Ahmad Al Bitar, Philippe Richaume, Jeffrey P. Walker, and Yann H. Kerr3

Abstract—Disaggregation based on Physical And Theoretical4
scale Change (DisPATCh) is an algorithm dedicated to the dis-5
aggregation of soil moisture observations using high-resolution6
soil temperature data. DisPATCh converts soil temperature fields7
into soil moisture fields given a semi-empirical soil evaporative8
efficiency model and a first-order Taylor series expansion around9
the field-mean soil moisture. In this study, the disaggregation10
approach is applied to soil moisture and ocean salinity (SMOS)11
data over the 500 km by 100 km AACES (Australian Airborne12
Calibration/validation Experiments for SMOS) area. The 40-km13
resolution SMOS surface soil moisture pixels are disaggregated14
at 1-km resolution using the soil skin temperature derived from15
moderate resolution imaging spectroradiometer (MODIS) data,16
and subsequently compared with the AACES intensive ground17
measurements aggregated at 1-km resolution. The objective is to18
test DisPATCh under various surface and atmospheric conditions.19
It is found that the accuracy of disaggregation products varies20
greatly according to season: while the correlation coefficient be-21
tween disaggregated and in situ soil moisture is about 0.7 during22
the summer AACES, it is approximately zero during the winter23
AACES, consistent with a weaker coupling between evaporation24
and surface soil moisture in temperate than in semi-arid climate.25
Moreover, during the summer AACES, the correlation coefficient26
between disaggregated and in situ soil moisture is increased from27
0.70 to 0.85, by separating the 1-km pixels where MODIS temper-28
ature is mainly controlled by soil evaporation, from those where29
MODIS temperature is controlled by both soil evaporation and30
vegetation transpiration. It is also found that the 5-km resolution31
atmospheric correction of the official MODIS temperature data32
has a significant impact on DisPATCh output. An alternative at-33
mospheric correction at 40-km resolution increases the correlation34
coefficient between disaggregated and in situ soil moisture from35
0.72 to 0.82 during the summer AACES. Results indicate that36
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DisPATCh has a strong potential in low-vegetated semi-arid areas 37
where it can be used as a tool to evaluate SMOS data (by reducing 38
the mismatch in spatial extent between SMOS observations and 39
localized in situ measurements), and as a further step, to derive 40
a 1-km resolution soil moisture product adapted for large-scale 41
hydrological studies. 42

Index Terms—AACES, calibration/validation, disaggregation, 43
Disaggregation based on Physical And Theoretical scale Change 44
(DisPATCh), field campaign, moderate resolution imaging spectro- 45
radiometer (MODIS), soil moisture and ocean salinity (SMOS). 46

I. INTRODUCTION 47

PASSIVE MICROWAVE remote sensing has the capability 48

to provide key elements of the terrestrial hydrological 49

cycle such as surface soil moisture [1], [2] and overland pre- 50

cipitation [3], [4]. Nevertheless, due to the large discrepancy 51

between the observation scale (several tens of km) and the scale 52

of physical interactions with the land surface (one wavelength 53

or several cm), the radiative transfer models applied to passive 54

microwave remote sensing data are only semiphysically based. 55

Consequently, the retrieval process of land surface parameters 56

from microwave brightness temperatures requires ancillary data 57

for calibration and validation purposes [5]. It also requires a 58

strategy to use such ancillary data since ground-based sampling 59

is often made over a small area/point, which constrasts with 60

the large integrated extent of spaceborne passive microwave 61

observations. 62

The soil moisture and ocean salinity (SMOS), [6]) satellite 63

was launched on November 2, 2009. Over land, the SMOS 64

mission aims at providing ∼5 cm surface soil moisture data 65

at a spatial resolution better than 50 km and a repeat cycle of 66

less than 3 days. The payload is a 2-D interferometer equipped 67

with 69 individual L-band antennas regularly spaced along Y- 68

shaped arms. This new concept allows observing all pixels in 69

the 1000 km wide field of view at a range of incidence angles. 70

It also allows reconstructing brightness temperatures on a fixed 71

sampling grid [7]. 72

Since the SMOS launch, various field experiments (the 73

HOBE site in Denmark [8], the Mali site in Western Africa 74

[9], the SMOSMANIA site in Southwestern France [10] just 75

to name a few) have been undertaken to validate SMOS recon- 76

structed brightness temperatures and soil moisture retrievals. 77

The AACES (Australian Airborne Calibration/validation 78

Experiment for SMOS, [11]) is one of the most compre- 79

hensive campaigns worldwide dedicated to SMOS calibra- 80

tion/validation. A series of two experiments were undertaken 81

in 2010, AACES-1 in January-February (Austral summer) and 82

0196-2892/$26.00 © 2011 IEEE
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AACES-2 in September (Austral winter). The data collected83

in AACES include 1-km resolution airborne L-band brightness84

temperature mapped over a 500 km by 100 km area, 20 days85

of very intensive ground measurements and 20 5 km by 2 km86

ground sampling areas.87

Even though the AACES ground measurements are very88

extensive, it is not feasible to cover the whole extent of a89

SMOS pixel by ground sampling alone. This is the reason why90

most validation strategies of spaceborne passive microwave91

data using in situ measurements have been based on the as-92

sumption that local observations are representative of a much93

larger spatial extent (i.e., the size of a microwave pixel). In the94

heterogeneous case where this assumption does not hold, up-95

scaling approaches [12], [13] have been developed to relate the96

available ground observations to satellite scale soil moisture.97

Such approaches are very useful over sites which have been98

monitored for a long time and where extensive measurements99

have been made over a range of spatial scales. However, aggre-100

gation rules are difficult to build over sites which have been set101

up recently, or where no extensive field campaigns have been102

undertaken.103

This study develops a methodology to facilitate the cali-104

bration and validation of SMOS data using localized ground105

measurements, such as those collected during AACES. The106

methodology combines upscaling (aggregation) and downscal-107

ing (disaggregation) approaches to make remote sensing and108

in situ observations match at an intermediate spatial resolution109

of 1 km. The key step in the procedure is a disaggregation110

algorithm of passive microwave soil moisture using kilometric111

optical data [14]–[16]. Disaggregating SMOS soil moisture can112

solve the disparity of spatial scales between satellite and in situ113

observations. However, the validation of spaceborne data by114

means of a disaggregation approach requires the uncertainties115

and potential error sources in downscaled data to be assessed.116

Generally speaking, disaggregation is a compromise between117

downscaling resolution and accuracy. The higher downscaling118

resolution, the more disaggregated values are spatially repre-119

sentative of ground observations, but typically have a lower120

accuracy and vice versa [17]. In this context, a disaggrega-121

tion algorithm named Disaggregation based on Physical And122

Theoretical scale Change (DisPATCh) is applied to 40-km123

resolution SMOS soil moisture over the AACES area using 1-124

km resolution Moderate resolution Imaging Spectroradiometer125

(MODIS) data. The objective is to test DisPATCh under various126

surface and atmospheric conditions. Specifically, the impact127

of climatic (evaporative demand), meteorologic (presence of128

clouds), and vegetation (cover and water status) conditions on129

1-km resolution disaggregated soil moisture is evaluated both130

qualitatively by visual assessment of disaggregation images and131

quantitatively by comparing DisPATCh output with AACES132

intensive ground measurements.133

The AACES, SMOS, and MODIS data used in this study134

are first described. Next, the disaggregation methodology is135

presented followed by a step-by-step description of the Dis-136

PATCh algorithm. Results of the comparison between disag-137

gregated SMOS soil moisture and in situ measurements are138

then reported. To test DisPATCh under various surface and139

atmospheric conditions, the algorithm is run during AACES-1140

and AACES-2 in different modes, by including (or not) a 141

correction for vegetation and atmospheric effects. Finally, some 142

perspectives in the use of DisPATCh for validating SMOS data 143

using ground-based sampling are given. 144

II. DATA COLLECTION AND PREPROCESSING 145

The AACES experiments were planned to provide ground 146

and airborne soil moisture data over an area of approximately 147

500 km by 100 km during the two main seasons in the 148

Murrumbidgee river catchment, in southeastern Australia. The 149

first AACES campaign (AACES-1) was undertaken in summer 150

2010 from January 18 to February 21, and the second campaign 151

(AACES-2) was undertaken in the following Austral winter 152

from September 11 to September 24 [11]. Fig. 1 presents the 153

study area including the 20 5 km by 2 km ground sampling 154

focus areas. The background image is the MODIS 250-m res- 155

olution 16-day normalized difference vegetation index (NDVI) 156

product of February 2, 2010. The climate of the Murrumbidgee 157

catchment area ranges from semi-arid in the west to alpine in 158

the east, with a strong rainfall and potential evapotranspiration 159

gradient in the west-east direction. Land use is extensive graz- 160

ing in the west, cropping in the center, and mostly grazing/forest 161

in the east (refer to [11] for a detailed account of AACES). 162

A. HDAS 163

During both AACES-1 and AACES-2, a spatially enabled 164

platform (Hydraprobe Data Acquisition System, HDAS) was 165

used to collect extensive measurements of near-surface soil 166

moisture. HDAS is a handheld system combining a soil dielec- 167

tric sensor (Hydraprobe) and a pocket PC with GPS receiver, 168

allowing for direct storage of location and measurement within 169

the GIS software. HDAS measurements were calibrated using 170

the approach presented in [18] with a root mean square error 171

of point estimate of about 0.03 m3/m3. The sampling coverage 172

was two 5 km by 2 km farms per day during AACES-1 and one 173

5 km by 2 km farm per day during AACES-2. Within each farm, 174

a total of six adjacent 5 km long transects separated by 330 m 175

were walked to cover each area of 10 km2, and three separate 176

HDAS measurements were made along transects every 50 m. 177

In this study, HDAS soil moisture data are aggregated at 178

1-km resolution by averaging all measurements made within 179

each pixel of the MODIS resolution grid. Out of concern for 180

spatial representativeness of in situ observations, only the 1-km 181

pixels whose ground sampling covers more than two third of 182

its surface area are kept for comparison with disaggregation 183

results. The 1-km average of HDAS measurements is denoted 184

〈SMHDAS〉 and the standard deviation of in situ measurements 185

(denoted σHDAS) computed to estimate the subpixel variability 186

at 1-km resolution. 187

B. SMOS 188

The version-4 SMOS level-2 soil moisture product is used. 189

This product (released on March 24, 2011) was produced from 190

the reprocessed level 1C data, and the version-4 level-2 soil 191

moisture algorithm. SMOS has a 6 am (ascending) and 6 pm 192
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Fig. 1. Overview of the study area. During AACES, ten 100 km by 50 km patches were overflown by an airborne L-band radiometer. Within each patch, two
5 km by 2 km subareas were sampled to collect spatial soil moisture measurements. In this study, DisPATCh is run over a 640 by 240 km area including the whole
AACES area, and disaggregation results are evaluated over the ground sampling areas.

(descending) equator crossing time. The sampling grid of the193

SMOS level-2 soil moisture product is called DGG or discrete194

global grid [19], [20] and has a node separation of about195

15 km. The DGG provides a discretization that is higher than196

the SMOS natural pixel size, which is 40 km on average,197

ranging from 30 km at boresight to 90 km at high incidence198

angles. In this study, the disaggregation procedure takes advan-199

tage of the oversampling of SMOS data to potentially reduce200

(and provide an estimate of) random errors in disaggregated201

SMOS data. Instead of using a single snapshot SMOS im-202

age, DisPATCh uses four (overlapping) independent snapshots,203

which are generated by: 1) sliding a 40-km resolution grid; and204

2) extracting the DGG nodes approximately centered on each205

40 km pixel. The extraction of SMOS DGG nodes is presented206

in [21]. The DGG node(s) that fall(s) near the center of the207

40-km resolution pixels with a +/−10-km tolerance are se-208

lected. If more than one DGG is selected, the associated soil209

moisture values are averaged to produce a single value for each210

40-km resolution pixel. The 40-km resolution grid that fits the211

study area corresponds to what is termed here Resampling 1.212

Similarly, Resampling 2, 3, and 4 are performed by sliding the213

40-km resolution grid to coordinates (+20 km, 0), (0, −20 km),214

and (+20 km, −20 km), respectively. The four 40-km resolu-215

tion SMOS data sets are then used independently as input to216

DisPATCh.217

C. MODIS218

The MODIS data used in this paper are composed of:219

• Version-5 MODIS/Terra land surface temperature and220

emissivity daily level-3 global 1-km grid product221

(MOD11A1) and version-5 MODIS/Aqua land surface222

temperature and emissivity daily level-3 global 1-km grid 223

product (MYD11A1). The land surface temperature data 224

set is the main component of DisPATCh. It is used to 225

estimate 1-km resolution soil evaporative efficiency at 226

10 am (Terra data) and 1 pm (Aqua data) [22]. 227

• Version-5 MODIS/Terra vegetation indices 16-day level-3 228

global 1-km grid product (MOD13A2). The NDVI data set 229

is used in DisPATCh to estimate the fractional vegetation 230

cover at 1-km resolution [23]. 231

• Version-5 MODIS/Terra+Aqua albedo 16-day level-3 232

global 1-km grid product (MCD43B3). The surface albedo 233

data set is used in DisPATCh to estimate the vegetation 234

temperature at maximum water stress from the space land 235

surface temperature albedo [24]. The MCD43B3 product 236

provides 1-km data describing both directional hemispher- 237

ical reflectance (black-sky albedo) at local solar noon 238

and bihemispherical reflectance (white-sky albedo). In this 239

study, surface albedo refers to the MODIS shortwave white 240

sky albedo. 241

• MODIS/Terra level-1B calibrated radiances swath 1-km 242

grid product (MOD021KM) and MODIS/Aqua level- 243

1B calibrated radiances swath 1-km grid product 244

(MYD021KM). The radiance data set is used to derive 245

a land surface temperature data set that differs from the 246

official MOD11A1 and MYD11A1 products with respect 247

to atmospheric correction. 248

Products MOD11A1, MYD11A1, MOD13A2, and 249

MCD43B3 were downloaded through the NASA Warehouse 250

Inventory Search Tool (WIST http://wist.echo.nasa.gov/) and 251

products MOD021KM and MYD021KM were downloaded 252

through the NASA Level 1 and Atmosphere Archive and Dis- 253

tribution System (LAADS http://ladsweb.nascom.nasa.gov). 254
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TABLE I
SCALE AND OFFSET VALUES USED TO CONVERT TERRA (AND AQUA)

MODIS RADIANCE DATA TO PHYSICAL RADIANCE

VALUES OVER THE AACES AREA

All products were projected in UTM 55 South with a sampling255

interval of 1000 m using the MODIS reprojection tool.256

The level-1B calibrated radiance data (R31 and R32 for bands257

31 and 32, respectively) were converted from digital number258

(DN) to radiance in W m−2 sr−1 using the radiance scales and259

offsets provided with each MODIS granule as listed in Table I260

Rλ = Scaleλ × (DNλ − Offsetλ) (1)

The radiance values were then converted to brightness temper-261

ature in K using the inverse of the Planck function [25]262

Tbλ =
c2

λ ln
(
1 + c1

Rλλ5

) (2)

with c1 = 1.19107× 108 µm5 W m−2 sr−1 and c2 =263

1.43883× 104 µm K, for center wavelength of the given band264

(11.0186 µm and 12.0325 µm for 31 and 32 band, respectively).265

D. Overlapping HDAS, SMOS, and MODIS Data and266

Generating an Input Data Set267

As indicated in Table II, HDAS soil moisture, SMOS soil268

moisture, and cloud-free MODIS land surface temperature data269

have overlapped on five days during AACES-1 (on January270

28 and 30 and February 15, 18, and 20) and on five days271

during AACES-2 (on September 11, 13, 21, 22, and 24). On272

each sampling day, two farms were sampled during AACES-1273

(except on February 18 when three farms were sampled), and274

one farm was sampled during AACES-2, so that disaggregation275

results can be evaluated for ten date-farm units during AACES-276

1 and five date-farm units during AACES-2.277

DisPATCh is applied to an input ensemble composed of the278

different combinations of available SMOS (ascending orbit at279

6 am and/or descending orbit at 6 pm) and MODIS (onboard280

Terra platform at 10 am and/or Aqua platform at 1 pm) data. To281

increase the quantity of input data sets, the MODIS data col-282

lected on the day before and the day after the SMOS overpass283

date are also included. For SMOS data on day of year (DoY)284

51, the clear sky MODIS data collected on DoY 54 are used.285

Note that one implicitly assumes that no rainfall occurs between286

MODIS and SMOS overpasses, and that the spatial variability287

captured by MODIS is relatively similar to the actual variabil-288

ity of surface soil moisture at the time of SMOS overpass.289

Moreover, the SMOS data oversampling is used to generate290

four (overlapping) 40-km resolution SMOS grids on which291

DisPATCh is run independently, thus increasing the number292

of downscaled data that could be used in the validation. It is293

reminded that the spacing (about 15 km) between neighboring294

SMOS DGG nodes is smaller than the SMOS resolution (about295

40 km). By combining the four SMOS grids, the two potential 296

SMOS data sets (two orbits in one day) and the six potential 297

MODIS data sets (three days including two overpasses each), 298

the maximum number of input data sets is 48. The generation 299

of input data sets is shown in Fig. 2 and the number of daily 300

input data sets is indicated for each date-farm unit in Table II. 301

III. DISAGGGREGATION ALGORITHM 302

DisPATCh converts 1-km resolution MODIS-derived soil 303

temperature fields into 1-km resolution surface soil moisture 304

fields given a semi-empirical soil evaporative efficiency model 305

[26] and a first-order Taylor series expansion around the 306

40-km resolution SMOS observation. DisPATCh is an im- 307

proved version of the algorithms in [16] and [27], and mainly 308

differs with regard to the representation of the vegetation water 309

status. In previous versions [16], [27], the soil temperature was 310

derived from MODIS land surface temperature by assuming 311

that vegetation was unstressed so that vegetation temperature 312

was uniformly set to the minimum surface temperature ob- 313

served within the SMOS pixel. In this study, the approach in 314

[28] is implemented to take into account vegetation water status 315

in the estimation of soil temperature. 316

A. Disaggregation Methodology 317

The disaggregation procedure decouples the soil evaporation 318

from the 0–5 cm soil layer and the vegetation transpiration 319

from the root-zone soil layer by separating MODIS surface 320

temperature into its soil and vegetation components as in the 321

triangle or trapezoidal method [28], [29]. MODIS-derived soil 322

temperature is then used to estimate soil evaporative efficiency, 323

which is known to be relatively constant during the day on clear 324

sky conditions. MODIS-derived soil evaporative efficiency is 325

finally used as a proxy for surface (0–5 cm) soil moisture 326

variability within the SMOS pixel. The link between surface 327

soil moisture and soil evaporative efficiency at different scales 328

is ensured by a downscaling relationship and a soil evapo- 329

rative efficiency model, as described below in more detail. 330

The originality of DisPATCh relies on a dynamical land cover 331

classification (based on the hourglass approach in [28]) that 332

takes into account the subpixel variability of the sensitivity of 333

soil evaporative efficiency to surface soil moisture. 334

1) Downscaling Relationship: The downscaling relation- 335

ship can be written as 336

SM1 km = SMSMOS +
∂SMmod

∂SEE

× (SEEMODIS,1 km − 〈SEEMODIS,1 km〉40 km) (3)

with SMSMOS being the SMOS soil moisture (for clarity, 337

the variables defined at SMOS scale are written in bold), 338

SEEMODIS the MODIS-derived soil evaporative efficiency (ra- 339

tio of actual to potential evaporation), 〈SEEMODIS〉40 km its 340

average within a SMOS pixel and ∂SMmod/∂SEE the partial 341

derivative evaluated at SMOS scale of soil moisture with re- 342

spect to soil evaporative efficiency. Note that the linearity of (3) 343

implies that a possible bias in SMOS data would produce the 344
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TABLE II
LIST OF OVERLAPPING HDAS, SMOS, AND MODIS (MOD11A1 AND MYD11A1) DATA DURING AACES-1 AND AACES-2. ONLY THE SMOS DATA

COLLECTED ON THE SAME DAY AS GROUND SAMPLING HAVE BEEN CONSIDERED. THE MODIS DATA CONSIDERED AS INPUT TO DISPATCH

HAVE BEEN COLLECTED WITHIN PLUS OR MINUS ONE DAY EITHER SIDE THE GROUND SAMPLING (AND SMOS OVERPASS)
DATE. ON EACH SAMPLING DATE, THE RESULTANT NUMBER OF INPUT DATA SETS TO DISPATCH IS ALSO INDICATED

Fig. 2. Schematic diagram presenting the combination of SMOS and MODIS to generate an ensemble of input data to DisPATCh. The output data are composited
at 1-km resolution by computing the average (SM1 km) and standard deviation (σSM,1 km) of disaggregated SMOS soil moisture.

same bias in disaggregated data [30]. Consequently, although345

the possible presence of a bias in SMOS data limits the accuracy346

in the disaggregated soil moisture, it is not a limiting factor to347

the applicability of DisPATCh. MODIS derived soil evaporative348

efficiency is expressed as a linear function of soil temperature349

SEEMODIS,1 km =
Ts,max − Ts,1 km

Ts,max −Ts,min
(4)

with Ts being the MODIS-derived soil skin temperature,350

Ts,max the soil skin temperature at SEE = 0 and Ts,min351

the soil skin temperature at SEE = 1. The linearity of the352

relationship between soil evaporative efficiency and surface353

soil temperature was verified using the physically based dual354

source energy budget model in [31] using a synthetic data set355

composed of a range of surface soil moisture values and differ-356

ent atmospheric conditions (results not shown). End-members357

Ts,min and Ts,max are estimated from the polygons obtained358

by plotting MODIS surface temperature against MODIS NDVI 359

and MODIS albedo as in [24]. Derivation of soil temperature is 360

based on a linear decomposition of the surface temperature into 361

its soil and vegetation components as a good approximation of 362

the relationship with fourth power for temperatures [32], [33] 363

and consistent with the triangle method. MODIS-derived soil 364

skin temperature is expressed as 365

Ts,1 km =
TMODIS − fv,1 kmTv,1 km

1− fv,1 km
(5)

with TMODIS being the 1-km resolution MODIS land sur- 366

face temperature, fv the MODIS-derived fractional vegetation 367

cover, and Tv the vegetation temperature. In this study, vegeta- 368

tion temperature is estimated using the approach proposed by 369

[28]. In (5), fractional vegetation cover is written as 370

fv,1 km =
NDVIMODIS −NDVIs
NDVIv −NDVIs

(6)
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with NDVIMODIS being the 1-km resolution MODIS NDVI,371

NDVIs the NDVI corresponding to bare soil, and NDVIv the372

NDVI corresponding to full-cover vegetation. Minimum and373

maximum NDVI values are set to 0.15 and 0.90, respectively.374

In [16], the accuracy and robustness of the disaggregation375

methodology were tested using three different formulations of376

soil evaporative efficiency [26], [34], [35]. Results based on the377

NAFE’06 data set [36], which was collected over a 60 km by378

40 km area in the AACES area, indicated that the model in379

[26] was better adapted for conditions where soil properties are380

unknown at high resolution. Consequently, the partial derivative381

in (3) is computed using the soil evaporative efficiency model382

in [26]383

SEEmod =
1

2
− 1

2
cos(π · SM/SMp) (7)

with SMp being a soil parameter (in soil moisture unit). In384

[26], SMp was set to the soil moisture at field capacity. In385

DisPATCh, SMp is retrieved at 40-km resolution from SMOS386

and aggregated MODIS data [16]. By inverting (7), one obtains387

SMmod =
SMp

π
cos−1(1− 2 SEE) (8)

2) Vegetation Temperature: Vegetation temperature in (5) is388

estimated at 1-km resolution with the “hourglass” approach in389

[28]. By plotting the diagonals in the quadrilateral in Fig. 3,390

four areas are distinguished in the space defined by surface391

temperature and fractional vegetation cover. In zone A, land392

surface temperature is mainly controlled by soil evaporation393

leading to optimal sensitivity to surface soil moisture. In zone394

D, land surface temperature is mainly controlled by vegetation395

transpiration with no sensitivity to surface soil moisture. In396

zones B and C, land surface temperature is controlled by both397

soil evaporation and vegetation transpiration with intermediate398

(average) sensitivity to surface soil moisture. Based on this un-399

derstanding, vegetation temperature is estimated in a different400

manner in each zone.401

For a given data point located in Zone A, vegetation temper-402

ature is403

Tv,1 km = (Tv,min +Tv,max)/2 (9)

with Tv,min and Tv,max being the vegetation temperature404

at minimum and maximum water stress, respectively. End-405

members Tv,min and Tv,max are estimated from the poly-406

gons obtained by plotting MODIS surface temperature against407

MODIS NDVI and MODIS albedo as in [24].408

For a given data point located in Zone B, vegetation temper-409

ature is410

Tv,1 km = (Tv,min,1 km +Tv,max)/2 (10)

with Tv,min,1 km being the vegetation temperature associated411

with SEE = 0 (Ts = Ts,max).412

For a given data point located in Zone C, vegetation temper-413

ature is414

Tv,1 km = (Tv,min + Tv,max,1 km)/2 (11)

Fig. 3. Polygon defined in the land surface temperature-fractional vegetation
cover space contains four distinct zones A, B, C, and D. In Zone A (soil-
dominated area), the estimated vegetation temperature is constant leading to
optimal sensitivity of estimated soil temperature to surface soil moisture. In
Zone D, the estimated soil temperature is constant with no sensitivity to surface
soil moisture. In Zone B and C (mixed surface), surface temperature is both
controlled by soil evaporation and vegetation transpiration with intermediate
(average) sensitivity of estimated soil temperature to surface soil moisture.
DisPATCh can be run in the Zone A+B+C mode or in the Zone A only mode.
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Fig. 4. Temperature end-members Ts,min, Ts,max, Tv,min, and Tv,max are estimated from the surface temperature-fractional vegetation cover space
and the surface temperature-surface albedo space within two given SMOS pixels. In (b), the pixel corresponding to the largest MODIS albedo has a fractional
vegetation cover larger than 0.5, so that Tv,max is set to its surface temperature. In (d), the pixel corresponding to the largest MODIS albedo has a fractional
vegetation cover lower than 0.5, so that Tv,max is set to Tv,min.

with Tv,max,1 km being the vegetation temperature associated415

with SEE = 1 (Ts = Ts,min).416

For a given data point located in Zone D, vegetation temper-417

ature is418

Tv,1 km = (Tv,min,1 km + Ts,max,1 km)/2 (12)

3) End-Members: End-members Ts,min, Ts,max, Tv,min419

and Tv,max are estimated by combining the spatial information420

provided by the surface temperature-fractional vegetation cover421

space and the surface temperature-albedo space plotted using422

MODIS data collected in a 40-km resolution SMOS pixel. An423

illustration is provided in Fig. 4 for two given SMOS pixels.424

• Tv,min: the vegetation temperature at minimum vegeta-425

tion water stress is set to the minimum MODIS surface426

temperature in the SMOS pixel [see Fig. 4(a) and (c)].427

• Tv,max: the vegetation temperature at maximum vegeta-428

tion water stress is set to the MODIS surface temperature429

of the pixel with the maximum value of MODIS albedo in430

the SMOS pixel [see Fig. 4(b)]. If the fractional vegetation431

cover of that pixel is lower than 0.5 [see Fig. 4(d)], the veg-432

etation temperature at maximum vegetation water stress433

is alternatively set to Tv,min, meaning that vegetation is434

unstressed within the SMOS pixel. The condition based435

on fractional vegetation cover is lower than 0.5 aims to436

increase the robustness of the determination approach of437

Tv,max, particularly in the SMOS pixels where all surface 438

conditions are not met. 439

• Ts,min: the soil temperature at SEE = 1 is extrapolated 440

along the wet soil edge at fv = 0. The wet soil edge 441

is defined as the line passing through (1,Tv,min) and 442

through the data point such that all the data points with 443

fv < 0.5 are located above the wet soil edge [see Fig. 4(a) 444

and (c)]. 445

• Ts,max: the soil temperature at SEE = 0 is extrapolated 446

along the dry soil edge at fv = 0. The dry soil edge 447

is defined as the line passing through (1,Tv,max) and 448

through the data point such that all the data points with 449

fv < 0.5 are located below the dry soil edge [see Fig. 4(a) 450

and (c)]. 451

B. Atmospheric Correction 452

In MOD11A1 and MYD11A1 products, the land surface 453

temperature is derived from MODIS thermal radiances using 454

the split window algorithm [37] 455

TMODIS = C +

(
A1 +A2

1− ε

ε
+A3

∆ε

ε2

)
Tb31 + Tb32

2

+

(
B1 +B2

1− ε

ε
+B3

∆ε

ε2

)
Tb31 − Tb32

2
(13)
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with Tb31 and Tb32 being the brightness temperatures mea-456

sured in the MODIS bands 31 and 32, respectively, ε31 and ε32457

the surface emissivities estimated in the respective bands, and458

A1, A2, A3, B1, B2, B3, and C regression coefficients. These459

coefficients are available during algorithm execution via a look460

up table stratified by subranges of near surface air temperature461

and total column water vapor. These input field are obtained at462

a 5-km resolution from the MODIS07_L2 product.463

Given that regression coefficients in (13) are provided at464

5-km resolution, the atmospheric corrections on the MODIS465

land surface temperature product are actually made at 5-km466

resolution. To test whether atmospheric corrections on MODIS467

temperature have an impact on disaggregation results, a differ-468

ent procedure is proposed to obtain another temperature data469

set whose atmospheric corrections are operated at the scale470

of a SMOS pixel, i.e., at 40-km resolution (instead of 5-km471

resolution for the official MODIS temperature product). The472

approach is to normalize the mean MODIS radiance-derived473

brightness temperature at the SMOS resolution. Normalization474

is done by adjusting the minimum and maximum mean MODIS475

brightness temperature to the minimum and maximum value476

of the official MODIS land surface temperature product within477

the SMOS pixel, respectively. The new temperature noted478

T unif. corr.
MODIS (uniform atmospheric corrections) is written479

T unif. corr.
MODIS = TMODIS,min + (TMODIS,max − TMODIS,min)

× Tb31 + Tb32 −Min(Tb31 + Tb32)

Max(Tb31 + Tb32)−Min(Tb31 + Tb32)
(14)

with TMODIS,min and TMODIS,max being the minimum and480

maximum MODIS land surface temperature within the SMOS481

pixel, and Min() and Max() the function that returns the mini-482

mum and maximum value within the SMOS pixel, respectively.483

Note that the underlying assumptions of (14) are:484

• near surface air temperature and column water vapor vary485

at scales larger than 40 km (size of a SMOS pixel).486

• surface emissivity is close to 1.487

C. Algorithm488

The steps used in applying DisPATCh include: 1) select-489

ing the SMOS pixels with at least 90% (clear sky) MODIS-490

retrieved land surface temperature coverage; 2) computing491

soil evaporative efficiency over nominal MODIS pixels with492

(4); 3) estimating soil evaporative efficiency over non-nominal493

MODIS pixels; 4) retrieving parameter SMp; 5) applying the494

downscaling relationship of (3); 6) correcting disaggregated495

soil moisture by the SMOS pixel weighting function; and 7)496

compositing on a daily basis the disaggregation output en-497

semble [21]. The input and output data and their link within498

DisPATCh are summarized in Fig. 5.499

1) Selecting Clear Sky SMOS Pixels: A threshold of 90%500

cloud-free MODIS coverage is used to select the SMOS pix-501

els to be disaggregated. In the official MODIS land surface502

temperature product (MOD11A1 for Terra and MYD11A1 for503

Aqua), the data affected by the presence of clouds are already504

masked. Hence, selection of the 90% clear sky SMOS pixels is505

Fig. 5. Schematic diagram presenting the input and output data of DisPATCh.

directly based on the MODIS land surface temperature product 506

masking. 507

2) Non-Nominal Pixels: Nominal MODIS pixels are de- 508

fined as the 1-km resolution pixels that do not include open 509

water and where land surface temperature is actually retrieved. 510

Open water pixels are flagged in the algorithm when MODIS 511

NDVI retrievals yield negative values. The soil evaporative 512

efficiency of open water pixels is set to 1. The emerged pixels 513

where land surface temperature is not retrieved (due to the 514

presence of some clouds within the SMOS pixel) are processed 515

as pixels with mean surface conditions. In practice, the soil 516

evaporative efficiency of cloudy pixels (which represent less 517

than 10% of the surface area within the SMOS pixel) is set to 518

the mean soil evaporative efficiency calculated over the clear 519

sky MODIS pixels. Allocating a soil evaporative efficiency 520

value to non-nominal pixels allows DisPATCh to be run over a 521

wider range of SMOS pixels, including those partially covered 522

by clouds. However, non-nominal 1-km resolution pixels are 523

flagged and discarded from the disaggregation output ensemble. 524

3) Forested Areas: In this study, DisPATCh is applied to all 525

the SMOS pixels where the soil moisture retrieval is successful, 526

even those including forest class, as long as the 1 km MODIS 527

pixels are in Zone A, B or C (see Fig. 3). This choice is 528

relevant here because the AACES extensive data were almost 529

exclusively collected in agricultural areas (cropping/grazing), 530

so forests for this study are not an issue. In the case of a 531

mixed SMOS pixel including a significant fraction of forest, 532

DisPATCh should be applied to the surface area of the dominant 533



IE
EE

Pr
oo

f

MERLIN et al.: DISAGGREGATION OF SMOS SOIL MOISTURE IN SOUTHEASTERN AUSTRALIA 9

class, thus excluding the surface area of the minority land cover534

classes.535

4) Calibration: The soil moisture parameter SMp used to536

compute ∂SMmod/∂SEE in (3) is estimated by inverting the537

SEE model in (7) at SMOS resolution538

SMp =
π · SMSMOS

cos−1 (1− 2〈SEEMODIS,1 km〉40 km)
(15)

A value of SMp is obtained for each SMOS pixel and each539

input data set. Note that the main assumption limiting validity540

of the calibration approach is the soil evaporative efficiency541

model [26] itself. The soil evaporative efficiency model in [26]542

was chosen for its simplicity (one parameter) and its ability543

to represent the general behavior of soil evaporative efficiency544

over the full range of soil moisture: particularly the null deriva-545

tive at zero and at maximum soil moisture, and an inflexion546

point in between [38]. However, it has some inconsistencies.547

In particular, [38] have indicated that 1) potential evaporation548

is physically reached at soil saturation and not at field capac-549

ity; therefore the model in [26] should be (strictly speaking)550

parameterized by the soil moisture at saturation and not by the551

soil moisture at field capacity, and 2) soil evaporative efficiency552

varies with potential evaporation, meaning that the soil moisture553

parameter (set to the soil moisture at field capacity in [26])554

should theoretically vary in time with atmospheric evaporative555

demand. Consequently, the SMp retrieved from SMOS and556

MODIS data using the model in [26] is definitely not the soil557

moisture at field capacity as in [26], although it could be in part558

related to it. In this study, SMp is therefore considered to be a559

fitting parameter self-estimated by DisPATCh.560

5) Weighting Function: A SMOS pixel WEighting Function561

(WEF) is used to take into account the impact of soil mois-562

ture distribution on the SMOS scale soil moisture as seen by563

SMOS radiometer. A centrosymmetric analytical approxima-564

tion MEAN_WEF is provided in [19], [20]565

MEAN_WEF(ρ)=CMWEF2+WEFA

(
ρ

CMWEF1
· π

CWEF1

)

(16)

with ρ being the distance from the SMOS pixel center, and566

CMWEF1 = 40 km, CMWEF2 = 0.027, CWEF1 = 73.30 and567

WEFA(ρ
′) =

[sinc(CWEF1 · ρ′)]CWEF2

1 + CWEF3 · ρ′CWEF4
(17)

with ρ′ being the distance in the director cosines coordinates,568

sinc(x) = sin(x)/x, and CWEF2 = 1.4936, CWEF3 = 524.5569

and CWEF4 = 2.103.570

A correction is applied to disaggregated soil moisture in (3)571

SMwef corr.
1 km = SM1 km +

∑
MEAN_WEF(ρ) · SM1 km(ρ)∑

MEAN_WEF(ρ)

−SMSMOS (18)

with SMwef corr.
1 km being the WEF-corrected disaggregated572

soil moisture. Mathematically speaking, one should replace573

SMSMOS with
∑

MEAN_WEF · SM1 km/
∑

MEAN_WEF574

in (3) and (15) and run an iteration loop until convergence575

of SMwef corr.
1 km values. However, the impact of the WEF on 576

disaggregated soil moisture is expected to be low so that the 577

simple correction in (18) is considered to be sufficient for the 578

purpose of the study. 579

6) Disaggregation Output: The downscaling relationship in 580

(3) is applied to each input data set, and the disaggregated soil 581

moisture data ensemble is averaged on each 1-km resolution 582

pixel within the study area. Averaging is a way to reduce 583

random uncertainties in the disaggregation output. In [17], [27], 584

disaggregated soil moisture was averaged in space (aggregated) 585

at the expense of downscaling resolution. Herein, temporal 586

averaging [30] is preferred to keep an optimal downscaling 587

resolution. Note that a condition to average disaggregated soil 588

moisture in time is the availability of thermal infrared data 589

at high temporal frequency. Another significant advantage of 590

applying DisPATCh to an input ensemble is to provide an 591

estimate of the uncertainty in 1-km resolution disaggregated 592

soil moisture, e.g., by computing the standard deviation within 593

the output ensemble. 594

IV. APPLICATION 595

To test DisPATCh under various surface and atmospheric 596

conditions, the algorithm is run during AACES-1 and AACES- 597

2 in different modes, by including (or not) a correction for 598

vegetation and atmospheric effects. In each case, disaggregated 599

SMOS soil moisture and HDAS measurements are compared 600

at 1-km resolution for all date-farm units with overlapping 601

HDAS/SMOS/MODIS data. 602

A. Null Hypothesis 603

In this study, the null hypothesis is defined as the application 604

of DisPATCh with parameter SMp set to zero in (8). Hence, 605

the downscaling relationship in (3) becomes 606

SM1 km = SMSMOS (19)

meaning that no 1-km information is used. Defining a null 607

hypothesis is useful to test whether DisPATCh is able to re- 608

produce the subpixel variability within the ∼ 10 km2 sam- 609

pling farms with better skill than simply assuming a uniform 610

moisture condition. Statistical results in terms of root mean 611

square difference, mean difference, correlation coefficient, and 612

slope of the linear regression between the SMOS soil moisture 613

disaggregated with (19) and in situ measurements are listed in 614

Table III. One observes that the root mean square difference 615

is generally explained by a (negative) bias in SMOS data and 616

that none of the correlations evaluated at 1-km resolution for 617

each farm separately is statistically significant (all calculated p- 618

values are larger than 0.10). Thus, the rationale for developing 619

DisPATCh is to improve the correlation at fine scale between 620

SMOS and ground soil moisture and to reduce the bias in 621

disaggregated SMOS data in the specific case where the bias 622

in SMOS data at the farm scale is due to the heterogeneity of 623

soil moisture within the SMOS pixel. 624



IE
EE

Pr
oo

f

10 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING

TABLE III
DISPATCH IS RUN WITH NO 1-km INFORMATION (SMpSET TO ZERO) AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE

DIFFERENCE (RMSD), MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN

1-km RESOLUTION DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE MEAN

AND STANDARD DEVIATION OF GROUND MEASUREMENTS (〈SMHDAS〉AND σHDAS), THE NUMBER OF CONSIDERED

1-km PIXELS, AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

B. Visual Assessment of Disaggregation Images625

As an example, DisPATCh is applied on DoY 49 over a 120626

km by 80 km subarea including the farms F16, F17, F18, F19,627

and F20. The images of 1-km resolution disaggregated SMOS628

soil moisture are presented in Fig. 6. DisPATCh is run with629

SMp set to zero (null hypothesis) and in four distinct modes630

corresponding to the combinations of the “LST” (the official631

MODIS land surface temperature product is used) and “RAD”632

[the land surface temperature is derived from MODIS radiances633

using (14)] modes and the “Zone A+B+C” (the vegetation-634

transpiration dominated 1-km pixels are discarded) and “Zone635

A only” (only the soil evaporation-dominated 1-km pixels are636

selected) modes.637

In Fig. 6, the SMOS DGG nodes where level-2 soil moisture638

is successfully retrieved are overlaid on the image correspond-639

ing to the null hypothesis (resampled SMOS data with no 1-km640

information) for 6 am and 6 pm overpass times separately. The641

gaps in SMOS data in the lower middle part of the images642

are due to topography flagging over the Australian Alps. In643

the version-4 SMOS level-2 processor, soil moisture is not644

retrieved at the DGG nodes where the topography effects on645

simulated brightness temperatures exceed a certain threshold,646

so as to prevent large errors in soil moisture values. The appar-647

ent resolution of the null hypothesis image is 20 km because648

it is generated from the composition of four 40-km resolution649

resampled SMOS snapshot images, whose resampling grids are650

separated by 20 km (the SMOS level-2 data resampling strategy 651

was described in Section II-B.). 652

Note that the disaggregation products in the Zone A+B+C 653

mode cover an area larger than the area sampled by SMOS 654

data, because the SMOS resolution (about 40 km) is larger 655

than the SMOS product sampling length (about 15 km), but 656

does not provide disaggregated values at a distance larger than 657

20 km from the successful retrieval nodes. Concerning the Zone 658

A only mode, disaggregation products do not cover an area 659

larger than the SMOS sampling area because the Australian 660

Alps are surrounded by forests where the fraction of bare soil is 661

less than elsewhere in the area, and which correspond to Zone 662

B or C in the hourglass in Fig. 3. 663

When looking at the images obtained in the Zone A+B+C 664

mode in Fig. 6, one observes that the spatial structures of 665

1-km disaggregated SMOS soil moisture encompass, but does 666

not seem to be correlated with, the SMOS data sampling 667

length. However, a “boxy artifact” is still apparent at 20-km 668

resolution, which is the separation length of the SMOS data 669

resampling grids as explained in Section II-B. The notion of 670

“boxy artifact” was introduced by [39] to analyze the quality of 671

a disaggregation approach. The less apparent the low-resolution 672

boxes, the better the disaggregation skill of the algorithm to 673

spatially connect high-resolution disaggregated values between 674

neighboring low-resolution pixels, and thus to derive a realistic 675

high-resolution soil moisture field. When comparing the images 676

obtained in the Zone A+B+C mode with those obtained in the 677
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Fig. 6. Images of disaggregation results over a 120 km by 80 km subarea on DoY 49. The disaggregated soil moisture (SM1 km) and its estimated uncertainty
(σSM,1 km) are compared in the LST and RAD modes and in the Zone A+B+C and Zone A only modes. Sampling farms are overlaid on all images. SMOS DGG
nodes are overlaid on the image corresponding to the null hypothesis (no 1-km resolution information) presented at top.

Zone A only mode, one observes that the 20-km resolution boxy678

artifact is less apparent in the Zone A only mode, consistent679

with the better sensitivity of MODIS-derived SEE with soil-680

dominated pixels (Zone A) than with mixed-surface (Zone B681

and C) pixels. In Fig. 6, the images obtained in the LST and682

RAD mode highlight different spatial structures. In general,683

there are less data gaps in the RAD than in the LST mode.684

However, ground validation data are required to assess their685

relative quality/accuracy.686

As an assessment of the uncertainty in composited soil mois-687

ture disaggregation, the standard deviation within the disaggre-688

gation output ensemble is also reported for each disaggregation689

product in Fig. 6. The same observations can be made as with 690

the soil moisture images: spatial structures are more visible, and 691

the boxy artifact is less apparent in the RAD than in the LST 692

mode. In general, the estimated uncertainty in disaggregated 693

products is larger in the RAD than in the LST mode, regardless 694

of the Zone (A+B+C or A only) mode. 695

C. SMOS Weighting Function 696

To evaluate the impact of the SMOS instrument weighting 697

function on disaggregation results, DisPATCh is run with (and 698

without) the WEF correction in (18). The expected effect of the 699
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Fig. 7. Uncorrected versus WEF-corrected SMOS soil moisture for the entire
data set.

WEF is a bias at 40 km resolution on disaggregated soil mois-700

ture. Fig. 7 plots the uncorrected against WEF-corrected SMOS701

soil moisture for the entire data set including both AACES-1702

and AACES-2 experiments. The WEF correction has very703

little impact on disaggregated soil moisture with a maximum704

difference between uncorrected and WEF-corrected SMOS soil705

moisture of 0.02 m3/m3, a mean difference of approximately706

zero, and a standard deviation of 0.003 m3/m3. Although the707

difference is small with this data set, WEF-corrected products708

are expected to be more realistic. Therefore, the correction in709

(18) is used in all the DisPATCh runs that follow.710

D. Quantitative Comparison With In Situ Measurements711

Fig. 8 presents the scatterplots of 1-km resolution disaggre-712

gated SMOS soil moisture versus 1-km resolution aggregated713

in situ measurements for the ten date-farm units during714

AACES-1. On each graph are plotted the soil moisture dis-715

aggregated in the Zone A+B+C mode (empty squares) and716

the soil moisture disaggregated in the Zone A only mode717

(black squares). At the beginning of AACES-1, conditions are718

very dry so that SMOS retrievals are close to zero and the719

variability of in situ measurements is low (about 0.02 m3/m3).720

In such conditions, no useful information is expected from the721

application of DisPATCh, and the statistical results in terms of722

spatial correlation are not meaningful for DoY 28/F05, DoY723

30/F07 and DoY 30/F08. While wetter conditions occur after724

DoY 30, cloud cover prevents DisPATCh to be run (MODIS725

data are unavailable) until DoY 46. On DoY 46, the average726

and standard deviation of in situ soil moisture measurements is727

0.32 m3/m3 and 0.06 m3/m3, respectively. The spatial variabil-728

ity of 1-km soil moisture is nicely captured by DisPATCh no-729

tably in the RAD mode. On DoY 49, the disaggregated SMOS730

soil moisture is still correlated with the in situ measurements731

made in three farms (F17, F18, and F20). On the last ground732

sampling day, disaggregation results are significantly correlated733

with in situ measurements in F19, but not in F20. The poor734

results obtained with DoY 51/F20 is probably due to the time735

gap (3 days) between ground sampling date (DoY 51) and736

MODIS overpass day (DoY 54).737

Statistical results in terms of root mean square difference,738

mean difference, correlation coefficient, and slope of the linear739

regression between the SMOS soil moisture disaggregated in 740

the Zone A+B+C mode and aggregated in situ measurements 741

are listed in Table IV. Statistical significance (p-value) is also 742

reported for each date-farm unit to select statistically significant 743

(p-value < 0.10) results. Although the disaggregation of SMOS 744

data on extensively dry DoY 30 does not provide any additional 745

information (soil is uniformly dry), the observed correlation 746

between disaggregated (LST mode) and in situ soil moisture 747

is statistically significant, and the correlation coefficient value 748

is negative (−0.70 and −0.95 at F07 and F08, respectively). 749

One plausible explanation is the opposite effect of soil temper- 750

ature on HDAS soil moisture measurements and on MODIS- 751

derived soil evaporative efficiency: a slight undercorrection of 752

the temperature-corrected hydraprobe measurements at high 753

temperature [18] results in a slight increase of soil moisture 754

estimate with soil temperature, while an increase of soil temper- 755

ature makes soil evaporative efficiency decrease. Nevertheless, 756

the possible impact of soil temperature on HDAS measurements 757

is very low with a slope of the linear regression between 758

disaggregated SMOS and in situ soil moisture calculated as 759

−0.08 and −0.03 for F07 and F08, respectively. When selecting 760

statistically significant results (p-value < 0.10) and discarding 761

data for DoY 30, the mean correlation coefficient and slope in 762

RAD mode are 0.75 and 0.58, respectively. 763

Fig. 9 presents the scatterplots of 1-km resolution disaggre- 764

gated SMOS soil moisture versus 1-km resolution aggregated in 765

situ measurements for the five date-farm units during AACES- 766

2. On each graph are plotted the soil moisture disaggregated in 767

the Zone A+B+C mode (empty squares) and the soil moisture 768

disaggregated in the Zone A only mode (black squares). The 769

surface conditions of AACES-2 were relatively wet with a mean 770

soil moisture value estimated as 0.29 m3/m3. The disaggre- 771

gated SMOS soil moisture does not correlate well with in situ 772

measurements with a p-value larger than 0.10 for all sampling 773

days, except for DoY 256/F07 in LST mode (see Table IV). The 774

negative correlation coefficient (−0.73) obtained on DoY 256 is 775

discussed when comparing the Zone A+B+C and Zone A only 776

modes in Section IV-F. In general, statistical results in Table IV 777

indicate that DisPATCh does not succeed in representing the 778

variability of soil moisture at 1-km resolution during AACES- 779

2. In fact, DisPATCh is based on the tight coupling that occurs 780

between soil moisture and evaporation under high evaporative 781

demand conditions [40]. This coupling seems to be weak in 782

September over the study area so that the disaggregation results 783

at 1-km resolution are not reliable. 784

For DoY 264/F13, however, an interesting feature is ob- 785

served on the graph corresponding to the RAD and Zone A 786

only modes. When removing the (three) black squares with 787

the largest errorbars, the correlation coefficient and the slope 788

of the linear regression between disaggregated and in situ 789

observations becomes 0.9 and 0.7, respectively. This suggests 790

that: 1) the standard deviation within the disaggregation output 791

ensemble can be a good estimate of the uncertainty in the 792

composited disaggregation product; and 2) the applicability of 793

DisPATCh is greatly dependent on the quality of MODIS land 794

surface temperature. Note that in this study, a choice was made 795

to maximize the number of data points used in the comparison 796

with in situ measurements. Consequently, all the cloud-free 797
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Fig. 8. Scatterplots of 1-km resolution disaggregated SMOS soil moisture versus 1-km resolution aggregated in situ measurements for each of the ten date-farm
data sets during AACES-1. The filled circles correspond to disaggregation with no 1-km information, empty squares to Zone A+B+C mode and black squares to
Zone A only mode. For the Zone A only mode, the uncertainty in disaggregated soil moisture is represented by vertical errorbars.

MODIS land surface temperature data were used regardless798

of the MODIS land surface temperature quality index. Further799

research should be conducted to assess whether selecting the800

MODIS pixel with the best MODIS land surface temperature801

quality index would improve the disaggregation results. This802

would be possible using the AACES airborne data, which cover803

a much larger area than in situ measurements.804

E. Atmospheric Corrections805

The impact of atmospheric corrections on DisPATCh output806

is analyzed by comparing the disaggregation results obtained807

in the LST and RAD mode. Quantitative comparison between808

LST and RAD modes is provided in Table IV in terms of root809

mean square difference, mean difference, correlation coeffi-810

cient, and slope of the linear regression between disaggregated811

SMOS soil moisture and aggregated in situ measurements.812

Correlation coefficient and slope values are reported only if813

the p-value (statistical significance) is lower than 0.10. It is814

apparent that statistical results are better in the RAD than in815

the LST mode. When including all dates, the mean bias is 816

decreased from −0.05 m3/m3 in LST mode to −0.03 m3/m3 817

in RAD mode during AACES-1. When selecting statistically 818

significant results (p-value < 0.10) and discarding data for 819

DoY 30, the mean correlation coefficient and slope is 0.75 and 820

0.58 in RAD mode, and 0.65 and 1.5 in LST mode, respectively. 821

Note that the improvement is very significant for DoY 46/F16 822

with a correlation coefficient and slope increasing from about 823

zero to 0.7 and 0.8, respectively. 824

The fact that the results obtained in RAD mode are superior 825

to those obtained in LST mode indicates that the atmospheric 826

corrections of the official MODIS land surface temperature 827

add significant uncertainties in the disaggregation products. 828

One rationale may be that the information used in atmospheric 829

corrections (notably air temperature and water vapor profile 830

data) are subjected to large uncertainties at 5-km resolution. 831

As DisPATCh is based on the spatial variations of MODIS 832

temperature relative to the 40 km scale mean, the atmospheric 833

corrections on the land surface temperature data are not nec- 834

essary at 5 km (as it is done in the MODIS temperature 835
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TABLE IV
DISPATCH IS RUN IN THE ZONE A+B+C MODE AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE DIFFERENCE (RMSD),

MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN 1-km RESOLUTION

DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE RESULTS OBTAINED USING

THE RADIANCE-DERIVED LAND SURFACE TEMPERATURE DATA (RAD MODE) AND USING THE OFFICIAL MODIS LAND

SURFACE TEMPERATURE DATA (LST MODE IN PARENTHESIS) ARE COMPARED. THE MEAN AND STANDARD DEVIATION

OF GROUND MEASUREMENTS (〈SMHDAS〉AND σHDAS), THE NUMBER OF CONSIDERED 1-km PIXELS

AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

algorithm). An atmospheric correction at 40-km resolution is836

sufficient and provides even better disaggregation results that837

applying an atmospheric correction at 5-km resolution.838

F. Vegetation Cover839

The impact of vegetation cover on DisPATCh output during840

AACES-1 is analyzed by comparing the disaggregation results841

obtained in the Zone A+B+C and Zone A only mode. Quan-842

titative comparison between Zone A+B+C and Zone A only843

modes is provided in Tables IV and V in terms of root mean844

square difference, mean difference, correlation coefficient, and845

slope of the linear regression between disaggregated SMOS soil846

moisture and aggregated in situ measurements. It is apparent847

that statistical results are generally better in the Zone A only848

than in the Zone A+B+C mode for both LST and RAD modes.849

In the RAD mode for instance, the mean correlation coefficient850

is increased from 0.75 in the Zone A+B+C mode (Table IV) to851

0.89 in the Zone A only mode (Table V). Also the mean slope852

is closer to 1 as it switches from 0.58 in the Zone A+B+C mode853

(Table IV) to 0.91 in the Zone A only mode (Table V). Con-854

sequently, results are consistent with the hourglass approach in855

Fig. 3 that predicts a lower sensitivity of MODIS-derived soil856

temperature to soil moisture in Zone B and C, Zone A having857

the highest potential for estimating soil moisture variability 858

from MODIS temperature. 859

On DoY 256, the negative correlation appearing in Zone 860

A+B+C mode (Table IV) is not significant in Zone A only mode 861

(Table V), suggesting that the contradictory result obtained on 862

DoY 256 is probably an artifact due to the small sample size. 863

Note that one drawback of the Zone A only mode is the larger 864

amount of data gaps in the soil moisture images. Therefore, 865

the use of both modes is a compromise between application 866

coverage and accuracy in the disaggregation output. 867

G. Distinguishing Between SMOS and DisPATCh Errors 868

By solving the extent mismatch between 40-km resolution 869

remote sensing observation and localized in situ measurements, 870

DisPATCh could be used as a tool to help improve the validation 871

strategies of SMOS data in low-vegetated semi-arid regions. It 872

also would reduce the coverage requirements identified by [41] 873

for airborne validation campaigns. However, such a validation 874

approach requires separating the different error sources that 875

may be attributed to SMOS soil moisture and to DisPATCh. 876

One solution is to estimate the errors attributed to DisPATCh 877

and then deduce the errors attributed to SMOS soil moisture. To 878

estimate the errors that are associated with the disaggregation 879
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Fig. 9. Scatterplots of 1-km resolution disaggregated SMOS soil moisture ver-
sus 1-km resolution aggregated in situ measurements for each of the five date-
farm data sets during AACES-2. The filled circles correspond to disaggregation
with no 1-km information, empty squares to Zone A+B+C mode and black
squares to Zone A only mode. For the Zone A only mode, the uncertainty in
disaggregated soil moisture is represented by vertical errorbars.

methodology, it is suggested to analyze the spatial correla-880

tion between 1-km disaggregated SMOS soil moisture and881

in situ measurements. If the correlation is significant, then the882

disaggregation product is likely to be sufficiently accurate for883

validating SMOS data.884

Note that the errors in DisPATCh are in part coupled with885

the errors in SMOS soil moisture, particularly because SMOS886

is an input to DisPATCh. However, any uncertainties in SMOS887

soil moisture should not impact the disaggregation results at a888

distance shorter than the SMOS data sampling length (15 km).889

This is the reason why such a validation strategy should be890

conducted with ground measurements made within a distance891

radius of 15 km.892

In this study case, five date-farm units including DoY 893

46/F15, DoY 46/F16, DoY 49/F17, DoY 49/F18, and DoY 894

49/F20 indicate a significant correlation between disaggregated 895

SMOS soil moisture and in situ measurements. For these units, 896

the root mean square error in disaggregated SMOS soil mois- 897

ture is mainly explained by a bias in disaggregated soil moisture 898

(see Table IV). However, no conclusion can be drawn from 899

these data because: 1) the bias is sometimes positive (DoY 900

46/F15, DoY 49/F20), and sometimes negative (DoY 46/F16, 901

DoY 49/F17, DoY 49/F18); and 2) the comparison is made only 902

once for each farm, which does not allow analyzing the tempo- 903

ral behavior. Such a validation approach could be undertaken 904

in the near future using the OzNet (http://www.oznet.org.au/, 905

[42]) soil moisture monitoring network, providing continuous 906

measurements at 68 sites within the Murrumbidgee catchment 907

area. 908

H. Subpixel Variability and Assimilation Perspectives 909

DisPATCh is successively run in LST or RAD mode and in 910

Zone A+B+C or Zone A only mode during AACES-1. Fig. 10 911

plots for each case the estimated uncertainty in disaggregated 912

soil moisture (computed as the standard deviation of the disag- 913

gregation output ensemble) against the subpixel variability of 914

1-km resolution in situ measurements (computed as the stan- 915

dard deviation of the in situ measurements made within 916

1-km pixels). The data corresponding to DoY 51 are plotted 917

separately because of the time gap between HDAS/SMOS 918

(DoY 51) and MODIS (DoY 54) collection time. It is interest- 919

ing to observe that the estimated uncertainty in disaggregated 920

soil moisture is closely related to the observed subpixel vari- 921

ability of in situ measurements. Hence, σSM,1 km could be used 922

as a proxy for representing the soil moisture variability at scales 923

finer than 1-km resolution. Concerning the data on DoY 51, the 924

linear regression is clearly off the 1:1 line. This is consistent 925

with a decrease of the spatial variability in soil moisture during 926

a dry down period [43]. In particular, the spatial variability 927

in soil moisture is expected to be lower on DoY 54 than on 928

DoY 51. 929

The correlation between the estimated uncertainty in disag- 930

gregated soil moisture and the subpixel soil moisture variability 931

makes an additional link between DisPATCh output and assim- 932

ilation schemes into hydrological models. A number of optimal 933

assimilation methodologies have been developed to combine 934

model predictions with remote sensing observations. However, 935

any so-called optimal assimilation technique stops being opti- 936

mal if the uncertainty in remotely sensed data is unknown or 937

estimated with a large uncertainty. In the perspective of assim- 938

ilating disaggregated SMOS data into land surface models, one 939

should keep in mind that the error information on observable 940

variables is as crucial as the observations themselves, e.g., [44]. 941

V. SUMMARY AND CONCLUSION 942

DisPATCh is an algorithm dedicated to the disaggregation of 943

soil moisture observations using high-resolution soil tempera- 944

ture data. It converts soil temperature fields into soil moisture 945

fields given a semi-empirical soil evaporative efficiency model 946
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TABLE V
DISPATCH IS RUN IN THE ZONE A ONLY MODE, AND STATISTICAL RESULTS ARE LISTED IN TERMS OF ROOT MEAN SQUARE DIFFERENCE (RMSD),

MEAN DIFFERENCE (BIAS), CORRELATION COEFFICIENT (R), AND SLOPE OF THE LINEAR REGRESSION BETWEEN 1-km RESOLUTION

DISAGGREGATED SMOS SOIL MOISTURE AND 1-km AGGREGATED IN SITU MEASUREMENTS. THE RESULTS OBTAINED USING

THE RADIANCE-DERIVED LAND SURFACE TEMPERATURE DATA (RAD MODE) AND USING THE OFFICIAL MODIS LAND

SURFACE TEMPERATURE DATA (LST MODE IN PARENTHESIS) ARE COMPARED. THE MEAN AND STANDARD

DEVIATION OF GROUND MEASUREMENTS (〈SMHDAS〉ANDσHDAS), THE NUMBER OF CONSIDERED 1-km
PIXELS AND STATISTICAL SIGNIFICANCE (P-VALUE) ARE ALSO LISTED FOR EACH DATE-FARM UNIT

and a first-order Taylor series expansion around the field-mean947

soil moisture. In this study, the disaggregation approach is ap-948

plied to 40-km resolution version-4 SMOS level-2 soil moisture949

using 1-km resolution MODIS data. The objective is to test950

DisPATCh under different surface and atmospheric conditions951

using the very intensive ground measurements collected in952

southeastern Australia during the 2010 summer and winter953

AACES campaigns. Those measurements are aggregated at954

the downscaling resolution (1 km) and subsequently compared955

to the disaggregated SMOS soil moisture. Over the study956

area, climatic (evaporative demand), meteorologic (presence957

of clouds), and vegetation (cover and water status) conditions958

are strong constraints on disaggregation results. The quality959

of disaggregation products varies greatly according to season:960

while the correlation coefficient between disaggregated and961

in situ soil moisture is 0.7 during the summer AACES, it962

is about zero during the winter AACES, consistent with a963

weaker coupling between evaporation and surface moisture964

in temperate than in semi-arid climate. Moreover, vegetation965

cover prevents the soil temperature to be retrieved from thermal966

infrared data and the vegetation water stress may increase the967

remotely sensed land surface temperature independent of near-968

surface soil moisture. By separating the 1-km pixels where969

MODIS temperature is mainly controlled by soil evaporation,970

from those where MODIS temperature is controlled by both 971

soil evaporation and vegetation transpiration, the correlation 972

coefficient between disaggregated and in situ soil moisture is 973

increased from 0.70 to 0.85 during the summer AACES cam- 974

paign. Also, cloud cover totally obscures the surface during rain 975

events, and on clear sky days, the water vapor in the atmospĥere 976

significantly affects the quality of land surface temperature 977

data. It is found that the 5-km resolution atmospheric correction 978

of the official MODIS temperature data has significant impact 979

on DisPATCh output. An alternative atmospheric correction at 980

40-km resolution increases the correlation coefficient between 981

disaggregated and in situ soil moisture from 0.72 to 0.82 during 982

the summer AACES. 983

The above limitations must be kept in mind when using 984

DisPATCh as a tool for validating SMOS soil moisture. Over 985

semi-arid areas, disaggregation can solve the extent mismatch 986

between the 40-km resolution SMOS data and localized in situ 987

measurements. However, the validation of SMOS using Dis- 988

PATCh requires separation of the errors associated with SMOS 989

data and the errors associated with DisPATCh. As SMOS data 990

are an input to DisPATCh, the errors in DisPATCh are also 991

linked to the uncertainty in SMOS soil moisture. Nevertheless, 992

one way to identify the error sources specifically attributed 993

to DisPATCh is to analyze the spatial correlation between 994
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Fig. 10. Estimated uncertainty in disaggregated soil moisture (σSM, 1 km) versus subpixel variability of 1 km resolution in situ measurements for DisPATCh
run in LST or RAD mode and Zone A+B+C or Zone A only mode.

disaggregated SMOS data and the in situ measurements made995

at a distance larger than the downscaling resolution (1 km with996

MODIS data) and smaller than the SMOS data sampling length997

(15 km).998

Based on the results obtained using the AACES in situ999

measurements, several improvements of DisPATCh can be1000

suggested:1001

• Use of the MODIS land surface temperature quality index1002

to select the SMOS pixels with the highest MODIS data1003

quality.1004

• Correcting the MODIS land surface temperature for to-1005

pography and illumination effects [45]. Within a 40-km1006

SMOS resolution pixel, the elevation range may be very1007

significant and thus induce a variability in land sur-1008

face temperature that is not attributed to surface soil1009

moisture.1010

• Use of ancillary air temperature data to constrain the1011

estimation of end-members. The unstressed vegetation1012

temperature Tv,min could be set to the air temperature1013

instead of the minimum MODIS land surface temperature.1014

This would make the estimation of Tv,min less dependent1015

on the representativeness of the surface conditions met1016

within the SMOS pixel [24].1017

• Accounting for the dependency of soil evaporative effi-1018

ciency to potential evaporation, by replacing the model in1019

[26] with the model in [38].1020

• Estimating an optimal downscaling resolution for each1021

season: as the sensitivity of soil evaporative efficiency to1022

soil moisture is lower in the winter months than in the sum-1023

mer months, aggregating DisPATCh output may improve1024

the quality of disaggregation products at the expense of1025

spatial resolution [17].1026

A robust disaggregation methodology of SMOS soil moisture 1027

at 1-km resolution, which would provide both disaggregated 1028

soil moisture and its uncertainty at 1-km resolution is a crucial 1029

step toward the application of SMOS data to hydrological 1030

studies. 1031
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