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Satellite remote sensing for an ecosystem approach to fisheries management
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Satellite remote sensing (SRS) of the marine environment has become instrumental in ecology for environmental monitoring and impact assessment and it is a promising tool for conservation issues. In the context of an ecosystem approach to fisheries management (EAFM), global, daily, systematic, high-resolution images obtained from satellites constitute a major data source for the incorporation of habitat considerations into marine fish population dynamics. An overview of the most common SRS datasets available to fishery scientists and state-of-the-art data-processing methods are first presented, focusing on recently developed techniques for detecting mesoscale features, such as eddies, fronts, filaments, and river plumes of major importance in productivity enhancement and associated fish aggregation. Second, we provide a comprehensive review of remotely sensed data applications in fisheries over the past three decades for investigating the relationships between oceanographic conditions and marine resources. Third, we emphasize how synoptic and information-rich SRS data have become instrumental in ecological analyses at community and ecosystem scales. Finally, we demonstrate how SRS data, in conjunction with automated in situ data-acquisition systems, provide the scientific community with a major source of information for ecosystem modelling, a key tool for implementing an ecosystem approach to fisheries management.

Introduction

Since the birth of the space age in the late 1950s, developments in platform and sensor technology, data storage and transfer, combined with an increasing demand for satellite data products, have all concurred to the rapid expansion of satellite remote sensing (SRS) civil applications: meteorology, aviation, positioning, and communication. In addition, remotely sensed satellite data have proven to be valuable tools in different applied fields, such as agriculture, land use, and hydrology. Satellites have now become instrumental in ecology for environmental monitoring (e.g. biogeochemistry and physical oceanography) and are promising tools for conservation issues [START_REF] Turner | Remote sensing for biodiversity science and conservation[END_REF][START_REF] Mumby | Remote sensing of coral reefs and their physical environment[END_REF].

Although conventional fisheries management has mainly focused on single-species approaches in recent decades, the ecosystem approach to fisheries management (EAFM), promoted by the Food and Agriculture Organization of the United Nations (FAO), recognizes the importance of maintaining the complexity, structure, and function of marine ecosystems and of ensuring the sustainability of the fisheries and human communities they support [START_REF] Garcia | The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook[END_REF]. In particular, a major objective of the EAFM is to expand the consideration of fish population dynamics to their marine habitats, to move progressively toward an end-to-end ecosystem approach [START_REF] Cury | Ecosystem oceanography for global change in fisheries[END_REF].

The EAFM aims to improve our understanding of the determinants of changes in the abundance and spatial distribution of exploited fish stocks, to disentangle fishing effects from environmental forcing and eventually to implement most-effective management systems [START_REF] Botsford | The management of fisheries and marine ecosystems[END_REF][START_REF] Garcia | The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook[END_REF][START_REF] Cury | Ecosystem oceanography for global change in fisheries[END_REF].

In this context, the availability of global, daily, systematic, high-resolution images obtained from satellites constitutes a major data source for elucidating the relationships between exploited marine organisms and their habitat [START_REF] Polovina | Ecosystem indicators derived from satellite remotely sensed oceanographic data for the North Pacific[END_REF][START_REF] Dulvy | Climate change, ecosystem variability and fisheries productivity[END_REF]. Some past reviews have addressed the use of SRS of the marine environment, but mainly focused on specific case studies of applied fishery oceanography where short-term forecasting systems were developed in support of fishing activities [START_REF] Tomczak | Environmental analyses in marine fisheries research-fisheries environmental services[END_REF][START_REF] Yamanaka | The fisheries forecasting system in Japan for coastal pelagic fish[END_REF][START_REF] Gall | Télédétection satellitaire et pêcheries thonières océaniques[END_REF]. [START_REF] Butler | The application of remote sensing technology to marine fisheries: an introductory manual[END_REF] provided a comprehensive report on the use of remote sensing in marine fisheries during the 1980s, which describes satellite platforms, sensor systems, and digital image-processing techniques and provides a synthesis of more than 20 case studies based on airborne and spacecraft remote-sensing data. Since then, considerable progress has been made in SRS data acquisition and processing and substantial amounts of new high-resolution datasets have become fully accessible for analyses in addition to in situ survey and fishery data. During the past decade, the application of satellite datasets has been progressively extended to encompass both data-driven and ecosystem-modelling approaches in marine ecology. The objectives of the current paper are to: (i) provide an overview of current satellite platforms and sensors, dataset availability/accessibility, and image-processing techniques for studying mesoscale features of particular relevance to EAFM [START_REF] Cury | Ecosystem oceanography for global change in fisheries[END_REF]; (ii) conduct a comprehensive review of satellite remotely sensed data applications by investigating the relationships between oceanographic conditions and marine resources, including the geolocation of marine species and characterization of preferred habitats along migration routes using satellite tags; (iii) demonstrate how synoptic and information-rich SRS data have become instrumental in ecological analyses at community and ecosystem scales; and (iv) discuss assumptions, limits, and caveats associated with the use of SRS data and challenges for the near future.

SRS data acquisition and products from global to mesoscale

Sensors, datasets, and processing

A large number of satellites and remote sensors provide data on oceanographic parameters that are now available to the scientific community as standard products. The most common time-series datasets and the main principles of image-processing algorithms and data formats are presented below.

In the context of SRS, a sensor is an electronic device that detects emitted or reflected electromagnetic radiation and converts it to a physical value that can be recorded and processed. With respect to the type of energy source, radiometers can be divided into passive sensors, which detect the reflected or emitted electromagnetic radiation from natural sources (temperature, ocean colour), and active sensors (radars, scatterometers, and lidars), which detect reflected responses from irradiated objects [START_REF] Butler | The application of remote sensing technology to marine fisheries: an introductory manual[END_REF]. Sensors can be classified into four types according to the spectral regions of solar radiation: (i) visible and reflective (or "near") infrared (domain of ocean-colour radiometry), (ii) mid-infrared, (iii) thermal infrared, and (iv) microwave [START_REF] Martin | An Introduction to Ocean Remote Sensing[END_REF]. Practically, the wavelength intervals or "spectral bands" are chosen according to their relatively low atmospheric absorption, which is spectrally highly variable. For example, the main "atmospheric windows" for the measurement of sea surface temperature (SST) in the mid-and far-infrared part of the solar spectra are ~3.7 and 11-12 micrometres, respectively. SRS imaging systems are generally characterized according to spatial, temporal, and spectral resolutions [START_REF] Campbell | Introduction to Remote Sensing[END_REF]; Table 1). The spatial resolution specifies the nominal pixel size of the satellite image and the temporal resolution specifies the revisiting frequency of observation for a specific location. A sensor's spectral resolution specifies the number, width, and position in the electromagnetic spectrum of spectral bands where it can collect reflected radiance.

An exhaustive list of the available SRS datasets is beyond the scope of this review; therefore, we present only the most common and useful relevant parameters: SST, sea surface salinity, windspeed, sea surface height (SSH), chlorophyll a (Chl a,), and Chl a-derived primary production (Table 2). SRS data products are classified according to the processing level, from raw to end-user data (Table 3). Raw data constitute the first level, called level 0, which contain all the orbital telemetry information, calibration coefficients, and various ancillary data, as well as the raw data from the sensors, often in a complex multiplexed form. These data cannot be easily processed outside specialized centres. Level 1 data contain the same data as level 0, but are reorganized by channel and are in various sublevels, from raw measurements to geophysical units (top of atmosphere irradiance and brightness temperature). Data are in orbit form, i.e. satellite coordinates. Level 2 data are still in orbit form, but include geolocation and atmospheric corrections. For many scientific users, this is the first exploitable data level. Level 2 data contain the end-user geophysical parameters (i.e. normalized water-leaving radiance or reflectance, SST) and make use of meteorological information from ancillary sources. In addition, this level contains a number of variables of scientific interest that can be retrieved from various sensors on board different satellites and computed with specific algorithms. For SST retrieval, Figure 1 summarizes the main processing steps applied to the signal measured by the sensor to obtain first a measured radiance (expressed in W m -2 sr -1 μm -1 ), then the top-of-atmosphere "brightness temperature" (theoretical temperature if atmosphere and ocean were black bodies, i.e. absorbing and re-emitting all the energy they receive), and finally a valid SST measurement. This last and most critical step consists of inverting a radiative transfer model that theoretically describes the alteration of the original signal through the atmosphere before it reaches the sensor. These models are complex; they assume a precise knowledge of the emissivity of the atmosphere and ocean, which is lower than from a black body. Practically, this step is generally done with empirical algorithms that take advantage of differences in the atmospheric alteration of the signal within two (or more) distinct wavelengths. SST is computed as a sum of linear combinations of the brightness temperature measured in these different wavelengths. The coefficients of the relationship are determined by a minimization process using match-up in situ measurements from buoys. Similar data processing is applied to ocean-colour (OC) measurements, whose most important optical component is the upward water-leaving radiance just above the sea surface (Lw), a value that depends on the absorption and backscattering properties (referred to as inherent optical properties) of marine components (pure seawater, suspended, or dissolved constituents). The concentration of Chl a, the dominant pigment in marine phytoplankton that makes the sea green, is computed from specific OC algorithms, usually from the remote-sensing reflectance (the sunlight reflected from below the sea surface, computed as the ratio of the normalized Lw to the solar irradiance in 3-5 wavelengths).

The data processing of a thermal signal for computing SST initially depends on the radiance measured by the sensors. Hence, different satellites and sensors will result in different spatial coverage and SST estimates (Figure 2). For instance, the high observation frequency of the geostationary METEOSAT satellite (15 min) allows better declouding through data processing, whereas the microwave sensor TMI is unaffected by cloud cover (except for heavy rain) at the cost of lower resolution (25 km), lack of coastal data, and narrow swathes that result in observation gaps between 50°S and 50°N. The SST product combining data from several sensors is fully cloud free (Figure 2), but the blending process could make it less useful for describing mesoscale features and for climatological studies.

Level 3 data are the most widely distributed to the scientific community and are available from various archive sources. This level may contain a large number of parameters, including, for example, Chl a concentration from various algorithms, chlorophyll fluorescence efficiency, total suspended matter, and SST with quality levels. All data are gridded using a cartographic projection and often are averaged temporally and spatially. Level 4 includes higher-level composite products that require parameters and model applications not necessarily extracted from SRS (e.g. primary production, composite SST). To use the most relevant SRS product for any scientific application, it must be emphasized that numerous uncertainties linked to the intrinsic nature of the physical models result in consequent uncertainties in the geophysical variables obtained, even more so for those derived through empirical algorithms. Table 3 gives an indication of the typical errors associated with the most common SRS geophysical parameters. For many of these, the companion information is often available as gridded values, in the form of either quality flags or a root-mean-square (RMS) error estimate associated with each value. This proviso is even more important for level 4 products, such as primary production, where the errors of component parameters are accumulated. Furthermore, many models incorporate empirical or semi-analytical relationships based on regional datasets that cannot be extrapolated spatially. Even commonly used generic models display variable errors in space and time that users might consider.

Level 2-4 processed data are sometimes still in raw binary formats that come with external information about the data structure, but currently they are more often available in self-describing machine-independent formats. The latter are in two main formats: the HDF (Hierarchical Data Format) from the HDF Group of the University of Illinois and the NetCDF (Network Common Data Form) from the University Corporation for Atmospheric Research (UCAR). Both are open standards and are dedicated to multidimensional gridded datasets. They come with their own software libraries; in their latest version (HDF5 and NetCDF4), they are quite similar and have been adopted by a large number of research institutions and space agencies. Several dedicated viewers exist for both formats and most computing platforms and programming languages, such as R, IDL/GDL, Matlab/Octave, and Ferret include libraries for reading them. Current projects in computer science aim to define standard formats and protocol accesses to reconcile the different SRS data formats through Unidata's Common Date Model (http://www.unidata.ucar.edu/software/netcdf-java/CDM/).

SRS and the detection of mesoscale oceanographic features

In this subsection, we focus on state-of-the-art methods for detecting mesoscale oceanographic structures, such as fronts, eddies, and filaments that span spatio-temporal scales from one to hundreds of kilometres and from hours to weeks. Mesoscale structures are important ecosystem features, often associated with enhanced productivity and fish aggregation [START_REF] Olson | Life on the edge: marine life and fronts[END_REF][START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. They were initially studied with conductivity-temperature-depth surveys, acoustic Doppler current profilers and ocean circulation models; then more directly and synoptically by SRS. SRS observations are also at the origin of feature-oriented regional modelling of oceanic fronts [START_REF] Gangopadhyay | Feature-oriented regional modeling of oceanic fronts[END_REF].

SRS for the detection of oceanic structures, using the thousands of easily accessible global, daily, satellite images, is a powerful tool for studying the spatio-temporal patterns of mesoscale activity in the ocean. Several objective methods have been developed for the automatic detection of mesoscale SST frontal activity. The two prevailing approaches include: (i) gradient-measurement and (ii) histogram-based methods.

Horizontal-gradient approaches are suited for the detection of fronts where the use of timeaveraged data and a spatial resolution higher than 4 km are appropriate (e.g. offshore fronts). Typical edge-detection methods are discrete approximations of an image-intensity-function gradient [START_REF] Canny | A computational approach to edge detection[END_REF]. However, gradient approximations can reveal spurious oceanic structures when applied to noisy, partially uncorrected data [START_REF] Holyer | Edge detection applied to satellite imagery of the oceans[END_REF]. New gradient-based algorithms have been developed to improve front detection and preserve frontal structure using noise-reduction filters (Oram et al., 2008;[START_REF] Belkin | An algorithm for oceanic front detection in chlorophyll and SST satellite imagery[END_REF].

The histogram-based method is the basis of the single-image edge-detection (SIED) algorithm of [START_REF] Cayula | Edge detection algorithm for SST images[END_REF], which relies on boundary detection between water masses. This algorithm is robust and distinguishes genuine ocean fronts from spurious gradients on SST images [START_REF] Miller | Composite front maps for improved visibility of dynamic sea-surface features on cloudy SeaWiFS and AVHRR data[END_REF]. It has been the most widely and successfully applied front-detection method [START_REF] Kahru | Distributions of the sea-surface temperature fronts in the Baltic Sea as derived from satellite imagery[END_REF]. The image is divided into independent subwindows and the probability of an edge occurrence is evaluated in each subwindow by detecting bimodality in an SST histogram. The method therefore finds the threshold temperature that best separates two water masses [START_REF] Cayula | Edge detection algorithm for SST images[END_REF][START_REF] Cayula | Multi-image edge detection for SST images[END_REF]. Although the SIED algorithm performs well, [START_REF] Nieto | Variabilidad oceánica de mesoescala en los ecosistemas de afloramiento de Chile y Canarias: una comparación a partir de datos satelitales[END_REF] improved edge detection by more than 100% in upwelling areas using sliding windows and an optimal combination of the detected segments considered as fronts, allowing the identification of most fronts in the Canary and Chilean Humboldt systems (Figure 3). In addition to gradient and histogram-based methods, other techniques, including the entropic [START_REF] Gómez-Lopera | An analysis of edge detection by using the Jensen-Shannon divergence[END_REF], Canny edge detector [START_REF] Canny | A computational approach to edge detection[END_REF][START_REF] Castelao | Sea surface temperature fronts in the California Current System from geostationary satellite observations[END_REF], and neural network approaches [START_REF] Tejera | Observations of oceanic mesoscale features and variability in the Canary Islands area from ERS-1 altimeter data, satellite infrared imagery and hydrographic measurements[END_REF] have been applied for detecting SST fronts.

Although research has focused on thermal fronts, the detection of ocean-colour fronts has been limited [START_REF] Miller | Multi-spectral front maps for automatic detection of ocean colour features from SeaWiFS[END_REF][START_REF] Royer | Association between bluefin tuna schools and oceanic features in the western Mediterranean[END_REF]. Chlorophyll fronts arise from physical, chemical, and biological interactions within complex spatial patterns and features, such as blooms, which are more difficult to detect than SST fields [START_REF] Belkin | An algorithm for oceanic front detection in chlorophyll and SST satellite imagery[END_REF]; nevertheless, the same edge-detector methods can be applied. Thermal and ocean-colour fronts can also be combined into a single map for assessing biophysical interactions in specific ecosystems [START_REF] Miller | Multi-spectral front maps for automatic detection of ocean colour features from SeaWiFS[END_REF]. SRS data have also been used to detect mesoscale circulation features, such as filaments, eddies, and river plumes. Based on the SIED algorithm [START_REF] Cayula | Edge detection algorithm for SST images[END_REF], [START_REF] Nieto | Variabilidad oceánica de mesoescala en los ecosistemas de afloramiento de Chile y Canarias: una comparación a partir de datos satelitales[END_REF] recently developed a method for identifing upwelling filaments based on their orientation and distance from the coastline. Mesoscale indicators related to coastal upwelling, such as frontal intensity, filament, wind-induced turbulence, upwelling enrichment, and coastal retention indices allow investigation of their relationships with fish abundance [START_REF] Faure | Octopus recruitment success and retention processes in upwelling areas: The example of the Arguin bank (Mauritania)[END_REF]. Remotely sensed SSH data provide information on sea level anomalies (SLA) and geostrophic currents that blend pressuregradient forces and the Coriolis force. SLA and geostrophic currents allow identification of cyclonic and anticyclonic eddies [START_REF] Tew-Kai | Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel[END_REF]. Several indicators, such as vorticity, stretch, shear, and deformation rate [START_REF] Testor | Large scale flow separation and mesoscale eddy formation in the Algerian Basin[END_REF] can then be computed to describe eddies. The Okubo-Weiss criterion has been widely used to determine the relative contribution of distortion vs. vorticity. Finite-size Lyapunov exponents (FSLE) permit the detection of Lagrangian coherent structures that cannot be detected with the Okubo-Weiss criterion (d'Ovidio et al., 2004;Tew-Kai et al., 2009). The eddy kinetic energy (EKE) indicates the intensity of the water flow and can be considered a proxy for the boundary between two eddies [START_REF] Heywood | Eddy kinetic energy of the North Atlantic subpolar gyre from satellite altimetry[END_REF]. All of these indicators allow the characterization of fronts or mesoscale eddies, where the energy of the physical system is transferred to biological processes [START_REF] Olson | Life on the edge: marine life and fronts[END_REF][START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. Several studies have also focused on estuarine areas and associated river plumes, which constitute essential habitats sustaining part of the life cycle of coastal species, particularly nursery grounds [START_REF] Beck | The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates[END_REF].

SRS data have been used to detect the spatial extents of plumes, either from the SST signature [START_REF] Jiang | Remote sensing for the identification of coastal plumes: case studies of Delaware Bay[END_REF][START_REF] Otero | River plume fronts off NW Iberia from satellite observations and model data[END_REF] or from ocean-colour-derived properties [START_REF] Molleri | Space-time variability of the Amazon River plume based on satellite ocean color[END_REF]. The November 2009 launch of the Soil Moisture and Ocean Salinity (SMOS) satellite, which directly derives salinity from microwave radiometer measurements [START_REF] Font | SMOS: The challenging sea surface salinity measurement from space[END_REF], could be instrumental in detecting plume extension without using products dependent on biological processes, such as ocean colour.

In summary, recent advances in satellite sensors and technology allow the scientific community access to a variety of datasets from different wavelengths of the light spectrum. These data have a global coverage at fine spatial and temporal scales and are available in open-access formats that can be imported into most statistical software. Numerous products have been derived from the raw satellite data, including important variables, such as SST, SSH, and Chl a concentrations. These products are being used to improve our understanding of mesoscale features important in the biological and ecological functioning of marine ecosystems. The study of the mesoscale ocean features, such as fronts, filaments, eddies, Lagrangian coherent structures, and river plumes, is facilitated by a variety of techniques and algorithms that are available or under development.

Detection, study, and understanding of these features is now an important component of operational oceanography and ecosystem modelling.

Identifying habitat preferences for marine fish populations

SRS measurements are the basis for a large set of indicators describing the oceanographic conditions that determine preferred habitats for feeding, spawning, maturation, and predator avoidance. The physical and biological properties of pelagic habitats affect the distribution and abundance of fish populations through environmental constraints on prey availability, larval survival, and migration [START_REF] Cushing | Climate and Fisheries[END_REF][START_REF] Bakun | Patterns in the Ocean: Ocean Processes and Marine Population Dynamics[END_REF]. In addition, oceanographic conditions may influence accessibility and vulnerability to fishing by modifying gear catchability [START_REF] Bertrand | Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability[END_REF]. Initially used as fisheryaid products, SRS data are now essential to describing and understanding the habitats of marine species and their relationships with oceanographic conditions.

SRS and fishery-aid products

Interest in SRS for marine fish harvesting has been recognized since the advent of satellite sensors measuring water temperature and colour in the early 1960s. Over the 1970s and 1980s, several national scientific projects (reviewed by [START_REF] Santos | Fisheries oceanography using satellite and airborne remote sensing methods: a review[END_REF] were conducted to (i) assess the potential of airborne and satellite oceanographic data for forecasting favourable fishing grounds and (ii) develop distribution services to fishing vessels for remotely sensed products [START_REF] Montgomery | Commercial applications of satellite oceanography[END_REF][START_REF] Petit | Aerospatial remote sensing as catalyst of an operational marine fishery (halieutic) science[END_REF][START_REF] Stretta | Forecasting models for tuna fishery with aerospatial remote sensing[END_REF]. Support of fishing activities with public funds was advocated to facilitate the development and optimal utilization of fishery resources by decreasing fuel costs, sea time, and ship maintenance costs [START_REF] Santos | Fisheries oceanography using satellite and airborne remote sensing methods: a review[END_REF]. Commercial products derived from satellite imagery as an aid to fish harvesting expanded rapidly and currently include SSH anomaly and ocean-colour data, in addition to meteorological and SST maps. SRS data are provided as processed datafiles in near real time (one to a few days from acquisition). The information is layered with computerized navigation and geographic information systems, allowing fishers to visualize maps and store data (including their own) in a user-friendly way [START_REF] Simpson | Remote sensing and geographical information systems: Their past, present and future use in global marine fisheries[END_REF]. With the recognition that overfishing is a global phenomenon [START_REF] Pauly | The future of fisheries[END_REF][START_REF] Worm | Rebuilding global fisheries[END_REF], applied fishery research has moved increasingly from fishery-aid projects toward ecological and conservation issues; the exception being countries with developing fisheries [START_REF] Solanki | Cover: Application of remotely sensed closely coupled biological and physical processes for marine fishery resources exploration[END_REF].

The two major ecological processes underlying the relationships between oceanographic features and marine resources in the literature are: (i) prey availability and (ii) development, growth, and survival of early life-history stages. Several studies since the 1980s have investigated the relationships between oceanographic conditions derived from SRS data and fisheries for large and small pelagic fish, shrimps, cephalopods, and sharks in the world oceans [START_REF] Maul | Remotely sensed oceanographic patterns and variability of bluefin tuna catch in the Gulf of Mexico[END_REF][START_REF] Klimley | Immigration and emigration of a pelagic fish assemblage to seamounts in the Gulf of California related to water mass movements using satellite imagery[END_REF][START_REF] Herron | Satellite-detected fronts and butterfish aggregations in the northeastern Gulf of Mexico[END_REF][START_REF] Yang | Satellite remote sensing prediction of Japanese pilchard fishing ground in the Huanghai Sea and the East China Sea[END_REF][START_REF] Bigelow | Environmental effects on swordfish and blue shark catch rates in the US North Pacific longline fishery[END_REF][START_REF] Valavanis | Development of a marine information system for cephalopod fisheries in eastern Mediterranean[END_REF]Fuentes-Yaco et al., 2007;[START_REF] Ouellet | Spring oceanographic conditions and northern shrimp Pandalus borealis recruitment success in the north-western Gulf of St. Lawrence[END_REF][START_REF] Kumari | Whale shark habitat assessments in the northeastern Arabian Sea using satellite remote sensing[END_REF]. A large set of SRS indicators have been used to describe the physical properties of water masses (e.g. SST) and dynamic oceanographic features, such as eddies, filaments, and upwellings, at various spatio-temporal scales (Table S1; [START_REF] Lasker | The use of satellite infrared imagery for describing ocean processes in relation to spawning of the northern anchovy (Engraulis mordax)[END_REF][START_REF] Saitoh | Satellite infrared observations of Kuroshio warm-core rings and their application to study of Pacific saury migration[END_REF][START_REF] Fiedler | Tuna aggregation and feeding near fronts observed in satellite imagery[END_REF][START_REF] Demarcq | Coastal upwelling and associated retention indices derived from satellite SST. Application to Octopus vulgaris recruitment[END_REF].

Overall, Chl a concentration and SST have been the most frequent indicators used to explain fish occurrence and abundance, generally based on catch per unit effort (cpue). In all cases, Chl a concentration, used to describe habitat productivity, was derived from Coastal Zone Colour Scanner (CZCS) and SeaWiFS data for 1979-1986 and 1997-2009, respectively. SST was derived from the Advanced Very High Resolution Radiometer (AVHRR) data that represent the most consistent timeseries of SST available on a long-term and global scale. AVHRR-SST products were used to compute SST means, temporal changes, and gradients, as well as to detect thermal fronts [START_REF] Belkin | An algorithm for oceanic front detection in chlorophyll and SST satellite imagery[END_REF]. Indicators describing the occurrence and dynamics of oceanic structures, such as front distance and upwelling intensity, used as early as the 1980s, recognized the strong physical-biological interactions within mesoscale features that provide favourable conditions for marine organisms [START_REF] Olson | Life on the edge: marine life and fronts[END_REF][START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. Methods for analysing the functional relationship between pelagic habitats and marine resources have evolved from qualitative approaches consisting of overlaying cpue data on oceanographic maps [START_REF] Laurs | Albacore tuna catch distributions relative to environmental features observed from satellites[END_REF] to multiple linear and non-linear regression methods [START_REF] Zainuddin | Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[END_REF]. However, despite the increasing complexity of statistical approaches, few studies account for spatial and temporal autocorrelations when relating gridded (e.g. Chl a fields) and point data (e.g. cpue). Statistical tools for analysing spatial processes are available and should be used when possible [START_REF] Royer | Association between bluefin tuna schools and oceanic features in the western Mediterranean[END_REF].

Epipelagic predators, such as tuna (Thunnus spp.) and tuna-like species, are a particular focus of analyses involving SRS data. The strong relationship between tuna abundance and mesoscale structures, such as upwelling filaments, was recognized early and it is explained mainly by the associated enrichment and increases in tuna prey, such as euphausiids [START_REF] Laurs | Albacore tuna catch distributions relative to environmental features observed from satellites[END_REF][START_REF] Maul | Remotely sensed oceanographic patterns and variability of bluefin tuna catch in the Gulf of Mexico[END_REF][START_REF] Fiedler | Tuna aggregation and feeding near fronts observed in satellite imagery[END_REF]. Tunas are continuous swimmers, constantly seeking concentrated prey patches to satisfy their high energy requirements [START_REF] Olson | Apex predation by yellowfin tuna (Thunnus albacares): independent estimates from gastric evacuation and stomach contents, bioenergetics, and cesium concentrations[END_REF]. Mesoscale structures enhance productivity and forage opportunities through complex physical mechanisms [START_REF] Olson | Life on the edge: marine life and fronts[END_REF]. In particular, eddies favour the concentration and aggregation of the micronekton that constitutes the main prey of tunas [START_REF] Ed | Yellowfin tuna (Thunnus albacares) aggregations along the shelf break off south-eastern Australia: links between inshore and offshore processes[END_REF][START_REF] Sabarros | Mesoscale eddies influence distribution and aggregation patterns of micronekton in the Mozambique Channel[END_REF]. Other analyses have focused on the influence of oceanographic conditions on larval survival based on recruitment indices, particularly in upwelling areas [START_REF] Demarcq | Coastal upwelling and associated retention indices derived from satellite SST. Application to Octopus vulgaris recruitment[END_REF][START_REF] Faure | Octopus recruitment success and retention processes in upwelling areas: The example of the Arguin bank (Mauritania)[END_REF]. In such cases, the underlying processes are described by the Bakun ocean triad, i.e. enrichment-retention-concentration [START_REF] Bakun | Patterns in the Ocean: Ocean Processes and Marine Population Dynamics[END_REF][START_REF] Bakun | Fronts and eddies as key structures in the habitat of marine fish larvae: opportunity, adaptive response and competitive advantage[END_REF]. Such bottom-up control might result in non-linear dynamics [START_REF] Cury | Optimal environmental window and pelagic fish recruitment success in upwelling areas[END_REF]; appropriate statistical methods, such as generalized additive models, should be used accordingly [START_REF] Faure | Octopus recruitment success and retention processes in upwelling areas: The example of the Arguin bank (Mauritania)[END_REF].

SRS and preferred habitats during migrations

The field of biologging, i.e. the deployment of recording and transmitting tags on animals to study their movements, behaviour, physiology, and habitat usage, has rapidly expanded over the past decade, because of advances in miniaturization of electronic tags [START_REF] Bograd | Biologging technologies: new tools for conservation[END_REF]. SRS oceanographic data combined with tracking data can greatly increase our understanding of an animal's habitat and behaviour. SRS data provide both the meso-and larger-scale oceanographic context for each available animal position and time. The types of SRS data most commonly used with animal tracking include SST, surface Chl a, and geostrophic currents. Before linking tracking and SRS data, it is preferable to estimate the most likely tracks using a state-space modelling approach [START_REF] Patterson | State-space models of individual animal movement[END_REF]. In addition, improved tag position data is obtained by including satellite-derived SST in the estimation process [START_REF] Nielsen | Improving light-based geolocation by including sea surface temperature[END_REF]. A recently developed alternative modelling approach validated with GPS data consists of bootstrapping random walks generated from the probability distributions of animal locations and trajectories for the geolocation of tagged animals [START_REF] Tremblay | A parsimonious approach to modeling animal movement data[END_REF]. The method provides a flexible framework for including remotely sensed datasets and has the advantage of being easier to implement than state-space models.

SSTs are the most commonly SRS data used in combination with tagging data. These can be analysed to determine whether an animal uses mesoscale features, including temperature fronts and cyclonic eddies, and to characterize its habitat regarding preferred SSTs [START_REF] Polovina | Turtles on the edge: movement of loggerhead turtles (Caretta caretta) along oceanic fronts, spanning longline fishing grounds in the central North Pacific, 1997-1998[END_REF][START_REF] Kobayashi | Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997-2006): Insights from satellite tag tracking and remotely sensed data[END_REF]. For loggerhead sea turtles (Caretta caretta), preferred habitat north of Hawaii constitutes a temperature and chlorophyll front delineated by a SST of 18°C. Daily maps of probable turtle habitat, defined by a narrow band around the 18°C SST isotherm, are distributed to longline fishers to help them avoid the area and reduce turtle bycatch [START_REF] Howell | TurtleWatch: a tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery[END_REF].

SRS chlorophyll data often serve as a valuable proxy for water mass boundaries and may identify upwelling associated with mesoscale features (see section on detecting these features). The range of surface chlorophyll values used by an animal may help characterize its habitats [START_REF] Polovina | Turtles on the edge: movement of loggerhead turtles (Caretta caretta) along oceanic fronts, spanning longline fishing grounds in the central North Pacific, 1997-1998[END_REF][START_REF] Kobayashi | Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997-2006): Insights from satellite tag tracking and remotely sensed data[END_REF]. For example, by combining turtle tracking with SeaWiFS chlorophyll data, [START_REF] Polovina | The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources[END_REF] characterized and described interannual changes in the position and dynamics of a North Pacific basin-wide chlorophyll front, the Transition Zone Chlorophyll Front (TZCF), which has proven to be an important migration and forage habitat for a variety of species.

Geostrophic currents can be estimated from satellite altimetry and are especially useful in identifying major ocean currents, mesoscale eddies, and meanders [START_REF] Polovina | The Kuroshio Extension Bifurcation Region: A pelagic hotspot for juvenile loggerhead sea turtles[END_REF], see section on mesoscale structures). For example, SRS chlorophyll and altimetry together provided insight into the importance of the Kuroshio Extension Current as a key forage habitat for juvenile loggerhead turtles [START_REF] Polovina | The Kuroshio Extension Bifurcation Region: A pelagic hotspot for juvenile loggerhead sea turtles[END_REF]. When sufficient tracks are available, SRS oceanographic and tracking data can be integrated in statistically rigorous ways. For example, one approach to defining an animal's habitat begins by selecting a number of relevant environmental variables. Then, for each variable, statistical tests are conducted to determine whether the frequency distribution occupied by the animal is statistically different from the distribution constructed from an envelope around its track [START_REF] Kobayashi | Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997-2006): Insights from satellite tag tracking and remotely sensed data[END_REF]. For variables with significant differences between the two distributions, it can be inferred that the animal is selecting a subset of the available range of values; that subset is then used to define its habitat [START_REF] Kobayashi | Pelagic habitat characterization of loggerhead sea turtles, Caretta caretta, in the North Pacific Ocean (1997-2006): Insights from satellite tag tracking and remotely sensed data[END_REF]. A second statistical approach determines whether an animal is actively associating with an ocean feature, such as an eddy or front. This approach constructs the frequency distribution of the distance between the animal and the feature for all available animal positions. A randomization test then determines whether this distance is statistically significant [START_REF] Kobayashi | Loggerhead turtle (Caretta caretta) movement off the coast of Taiwan: characterization of a hot spot in the East China Sea and investigation of mesoscale eddies[END_REF].

In summary, understanding and identification of habitat preferences is crucial to management and conservation of marine populations. Initially used as fishery-aid products, SRS data provide an invaluable source of information for unveiling the relationships between marine resources and oceanographic conditions. Since the advent of SRS data acquisition, many studies have focused on the impact of the physical environment on marine species through the relationships between physical indicators and prey availability and the development, growth, or survival of early life stages. The relationship between thermal fronts and the location of large pelagic species has been demonstrated since the early 1980s. SRS data also cover a wide range of applications for improving our knowledge of marine species ecology, in particular their movements and migrations. The combination of data collected by electronic tags and SRS-derived oceanographic data has improved our understanding of the impact of oceanic features on marine species' behaviours while foraging and migrating.

Satellite remote-sensing data for ecosystem analyses and models

SRS and ocean partitioning

An ecosystem can be defined as a system of complex interactions of populations between themselves and their environment [START_REF] Garcia | The ecosystem approach to fisheries. Issues, terminology, principles, institutional foundations, implementation and outlook[END_REF]. The first step in any ecosystem approach to fisheries management (EAFM) is the definition of the spatio-temporal extent of the system of interest. A major objective of the discipline of biogeography is to investigate the structure, composition, and links between different ecosystems of interest to regroup them at larger scales [START_REF] Lomolino | Biogeography[END_REF].

Consequently, biogeography requires a large amount of data that are homogeneously distributed in space and time [START_REF] Ducklow | Biogeochemical provinces: towards a JGOFS synthesis[END_REF]. Because of the dynamic nature of the oceanic realm and logistic difficulties of sampling the marine environment [START_REF] Richardson | Under-resourced, under threat[END_REF], advances in marine biogeography have been constrained by data availability and coverage [START_REF] Longhurst | Ecological Geography of the Sea[END_REF].

Several attempts were made in the past century to partition the global ocean using biological observations [START_REF] Ekman | Zoogeography of the Sea[END_REF][START_REF] Margalef | Correlations entre certains caractères synthétiques des populations de phytoplancton[END_REF] and physical variables [START_REF] Cushing | A difference in structure between ecosystems in strongly stratified waters and in those that are only weakly stratified[END_REF][START_REF] Fanning | Nutrient provinces in the sea-concentration ratios, reaction rate ratios, and ideal covariation[END_REF].

It was only in the mid-1980s that [START_REF] Yentsch | Patterns of phytoplankton abundance and biogeography[END_REF] suggested that major oceanographic patterns might be approximated by primary production derived from satellite observations. Based on this hypothesis, the CZCS dataset and parameters known to control algal blooms were used to implement a methodology for defining ecological units [START_REF] Sathyendranath | Regionally and seasonally differentiated primary production in the North Atlantic[END_REF]. Subsequently, [START_REF] Longhurst | An estimate of global primary production in the ocean from satellite radiometer data[END_REF] proposed partitioning the global ocean into four biomes, subdivided into approximately 50 biogeochemical provinces (BGCP), each province representing an ecological entity with specific and predictable environmental conditions During the past decade, Longhurst-type partitioning has been the dominant paradigm in marine biogeography. Several analyses have questioned the relevance of BGCP provinces by focusing on physical conditions and particular components of the pelagic foodweb, i.e. in situ temperature and salinity [START_REF] Hooker | An objective methodology for identifying oceanic provinces[END_REF], bacterial abundance [START_REF] Li | Macroecological limits of heterotrophic bacterial abundance in the ocean[END_REF], plankton abundance, composition, and diversity [START_REF] Gibbons | Pelagic biogeography of the south Atlantic Ocean[END_REF][START_REF] Beaugrand | Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography[END_REF][START_REF] Alvain | Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery[END_REF], surface ocean Chl a (Hardman-Mountford et al., 2008), and distribution of top predators [START_REF] Fonteneau | Atlas of tropical tuna fisheries[END_REF]. Overall, results revealed a good match between the spatio-temporal distribution and composition of marine organisms and Longhurst's provinces. The emergent hypothesis was that the physiological and behavioural characteristics of marine organisms were adapted to their ecological provinces; the physical and biogeochemical environment may constrain the abundance and production of lower trophic levels in ways that affect the entire foodweb [START_REF] Beaugrand | Diversity of calanoid copepods in the North Atlantic and adjacent seas: species associations and biogeography[END_REF]. The use of ecological provinces has been proposed as a useful tool for time-series analysis, management, and conservation planning at global scales [START_REF] Pauly | Mapping fisheries onto marine ecosystems: a proposal for a consensus approach for regional, oceanic and global integrations[END_REF]. Alternative partitions have also been proposed for economic and conservation applications in coastal regions [START_REF] Spalding | Marine ecoregions of the world: A bioregionalization of coastal and shelf areas[END_REF][START_REF] Sherman | The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world's large marine ecosystems[END_REF]. In all cases, however, static partitioning appears too simplistic for operational management of the dynamic marine environment, which can respond quickly to changes in physical forcing [START_REF] Platt | Spatial structure of pelagic ecosystem processes in the global ocean[END_REF][START_REF] Cullen | Physical influences on marine ecosystem dynamics[END_REF]. Recent work, based on SRS data in conjunction with other datasets, has attempted to implement dynamic biogeography at regional scales [START_REF] Devred | Delineation of ecological provinces using ocean colour radiometry[END_REF]G. Reygondeau, pers. comm.; Figure 4). These methods display promise in tracking spatial changes in ecosystem boundaries and might eventually be able to delineate regions displaying early signs of anthropogenic pressures requiring management measures. The use of biogeography as a spatial reference to identify and monitor specific ecosystems appears to be a useful tool for ecosystem management and biodiversity conservation [START_REF] Pauly | Mapping fisheries onto marine ecosystems: a proposal for a consensus approach for regional, oceanic and global integrations[END_REF].

SRS and ecosystem carrying capacity

The relative role of top-down (consumer-driven) and bottom-up (resource-driven) controls in regulating animal populations and structuring ecosystems has been a subject of debate among ecologists for some time. Pacific-Atlantic cross-system comparisons reveal evidence of bottom-up control through the dependence of long-term fishery production on SRS-derived phytoplankton production [START_REF] Ware | Bottom-up ecosystem trophic dynamics determine fish production in the Northeast Pacific[END_REF][START_REF] Frank | Reconciling differences in trophic control in mid-latitude marine ecosystems[END_REF][START_REF] Chassot | Bottom-up control regulates fisheries production at the scale of eco-regions in European seas[END_REF]. At global scales, i.e. across large marine ecosystems (LMEs), SRS-derived primary production estimates are also related to fisheries catches [START_REF] Chassot | Global marine primary production constrains fisheries catches[END_REF][START_REF] Sherman | The application of satellite remote sensing for assessing productivity in relation to fisheries yields of the world's large marine ecosystems[END_REF]. The relationship between primary production and catches is complex and varies among LMEs; a large portion of the variance results from differences in life histories (and hence productivities) of fish (as indexed by maximum length), ecosystem type, and fishing pressures [START_REF] Chassot | Global marine primary production constrains fisheries catches[END_REF]. Ecosystems fished at unsustainable levels are less efficient at converting primary production into fisheries catches and the exploitation of smaller-bodied (lower trophic level) fish increases the catch per unit of primary production. The importance of the potential link between primary and fisheries production was realized more than half a century ago, but the recent detailed exploration of this issue was only made possible by the advent of SRS ocean-colour and primary productivity. Past large-scale studies relied on in situ datasets resulting from different sampling and processing methods and were generally characterized by low spatiotemporal sampling coverage. SRS of the marine environment is now fundamental to cross-trophiclevel analyses of ecosystem production, structure, and function only because of the availability of a comprehensive, fine-scale, and consistent sampling framework [START_REF] Platt | Biological oceanography and fisheries management: perspective after 10 years[END_REF].

SRS and ecosystem models

Ecosystem models are considered a necessary part of EAFM implementation [START_REF] Cury | Ecosystem oceanography for global change in fisheries[END_REF].

Estimation of primary production is common to most modelling approaches, as an integral part of the model or as a forcing function. Primary production is a typical level 4 SRS product requiring the use of non-SRS parameters, such as mixed-layer depth and photosynthetically active radiation, in addition to SRS Chl a (and often SST) in a model [START_REF] Longhurst | An estimate of global primary production in the ocean from satellite radiometer data[END_REF][START_REF] Behrenfeld | Photosynthetic rates derived from satellite-based chlorophyll concentration[END_REF].

SRS-derived primary production has been used as an initial forcing at the base of the modelled foodweb to investigate energy transfers from lower to upper trophic levels. For instance, an Ecopath with Ecosim (EwE) model was applied to the eastern tropical Pacific to explore the effects of climate change on open-sea communities [START_REF] Watters | Physical forcing and the dynamics of the pelagic ecosystem in the eastern tropical Pacific: simulations with ENSO-scale and global-warming climate drivers[END_REF]. Size-spectrum modelling approaches have been used to estimate fish production and biomass in the absence of fishing, based on satellite-derived primary production allocated to phytoplankton weight classes, to track energy fluxes through marine foodwebs at global scale [START_REF] Jennings | Global-scale predictions of community and ecosystem properties from simple ecological theory[END_REF]. These size-spectra approaches, coupled with SRS Chl a and SST data, have great power for exploring the relative impacts of fishing against an unfished baseline at an ecosystem level [START_REF] Jennings | Fish abundance with no fishing: predictions based on macroecological theory[END_REF], as well as elucidating biogeochemical processes [START_REF] Wilson | Contribution of fish to the marine inorganic carbon cycle[END_REF].

An alternative approach is to estimate primary production using coupled physicalbiogeochemical models (for a review, see [START_REF] Plagányi | Models for an ecosystem approach to fisheries[END_REF]). This has the potential for reconstructing past (pre-SRS) and forecasting future ocean states, in particular to address the potential effects of climate change. However, SRS products are again essential, either for model initialization, parameter estimation of the biogeochemical model from ocean colour data [START_REF] Friedrichs | Assimilation of JGOFS EqPac and SeaWiFS data into a marine ecosystem model of the Central Equatorial Pacific Ocean[END_REF][START_REF] Huret | Use of SeaWiFS data for light availability and parameter estimation of a phytoplankton production model of the Bay of Biscay[END_REF]), or for assimilation into operational systems. So far, the latter has happened only with SST and SSH [START_REF] Cummings | Ocean data assimilation systems for GODAE[END_REF]. As biogeochemical and ecological considerations are incorporated into ocean data assimilation systems [START_REF] Brasseur | Integrating biogeochemistry and ecology into ocean data assimilation systems[END_REF], different SRS products, allied with automated in situ data, will become a major source of information for these operational systems and will help meet the challenges of an EAFM.

To conclude, the complexity of marine ecosystems and the large spatio-temporal scales involved in their functioning are difficult to grasp using point and regional observations. SRS provides daily high-resolution data at global scales not feasible by any other means. Such a synoptic view has allowed ocean partitioning based on objective physical and biological criteria and specific functioning.

The continuing daily production of satellite images can also be used to track temporal variations in the marine provinces and predict how their structure and spatial extent might be affected by climate change. SRS data and their derived products, such as temperature and primary production, are also invaluable sources of information as inputs for ecosystem models that are fully part of the implementation of an ecosystem approach to fisheries management.

Discussion

Computing SRS-derived indicators for fishery science SRS data have been used in fishery sciences since the availability of the first SST and colour datasets at the end of the 1970s. Over time, the diversity and resolution of datasets and SRS-derived indicators have increased, allied with our understanding of the complex spatio-temporal relationships between oceanographic conditions and individual, population, and community dynamics [START_REF] Polovina | Ecosystem indicators derived from satellite remotely sensed oceanographic data for the North Pacific[END_REF]. However, the majority of the published papers reviewed here rely on short data time-series and relatively few remotely sensed indicators: SST and primary production derived from AVHRR and SeaWiFS sensors, respectively. Some recent studies included indicators derived from several SRS sources and used non-linear statistical models [START_REF] Zainuddin | Albacore (Thunnus alalunga) fishing ground in relation to oceanographic conditions in the western North Pacific Ocean using remotely sensed satellite data[END_REF][START_REF] Tew-Kai | Influence of mesoscale eddies on spatial structuring of top predators' communities in the Mozambique Channel[END_REF].

New indicators have been proposed to characterize the oceanographic features involved in the ecological processes determining fish distribution and occurrence, e.g. for feeding and spawning; these include the duration of spring blooms, the size composition of phytoplankton, and the degree of persistence and recurrence of oceanic structures [START_REF] Palacios | Oceanographic characteristics of biological hot spots in the North Pacific: A remote sensing perspective[END_REF][START_REF] Platt | Ecological indicators for the pelagic zone of the ocean from remote sensing[END_REF]. These indicators aim to describe better the ecological processes of interest, e.g. for northern pink shrimp (Pandalus borealis), they elucidate the mechanisms governing egg hatching times and recruitment in the North Atlantic [START_REF] Koeller | Basin-scale coherence in phenology of shrimps and phytoplankton in the North Atlantic Ocean[END_REF]. Although the period for which SRS data are available now spans 12 and 30 years for Chl a and SST, respectively, few studies deal with such temporal scales. However, longer periods with contrasting environmental conditions and fish abundance are required to derive robust relationships between oceanographic features and the population dynamics of marine species. Future studies should also account better for the spatial dimension of satellite SRS data by making use of appropriate geostatistical methods.

Different satellites, sensors, processing techniques, and models can be used to compute SRS indicators. Comparative analyses of remotely sensed Chl a and depth-integrated primary production derived from different models and sensors have revealed large differences in processed data on both global and regional scales [START_REF] Carr | A comparison of global estimates of marine primary production from ocean color[END_REF][START_REF] Friedrichs | Assessing the uncertainties of model estimates of primary productivity in the tropical Pacific Ocean[END_REF][START_REF] Djavidnia | Comparison of global ocean colour data records[END_REF]. However, throughout the literature reviewed, sensitivity analyses were never conducted to assess the robustness of the relationships relative to the method used to compute the various indicators. In addition, information on the uncertainties associated with SRS-processed data, e.g. standard deviation around Chl a [START_REF] Mélin | Global Distribution of the random uncertainty associated with satellite-derived Chl a[END_REF], was never provided and remotely sensed indicators were always treated as data measured without error. Although cpue was used to describe marine population abundance, these data are often characterized by large uncertainties and they might not reflect fish abundance accurately, particularly for pelagic species [START_REF] Hilborn | Quantitative Fisheries Stock Assessment. Choice, Dynamics and Uncertainty[END_REF]. Future studies using SRS data should recognize all sources of uncertainty associated with SRS and population abundance indicators and assess the sensitivity of results to uncertainty in input parameters.

Including the vertical dimension in SRS approaches

SRS data have mainly been used to describe surface environmental conditions and detect bidimensional oceanographic structures when cloud cover and water turbidity are not restrictive. For large pelagic fish, direct observations using archival tagging and ultrasonic transmitter data have corroborated extended vertical movements in the water column that are mainly related to feeding behaviour [START_REF] Bertrand | Hydrological and trophic characteristics of tuna habitat: consequences on tuna distribution and longline catchability[END_REF]. Consequently, investigations of SST horizontal gradients and large pelagic fish distribution could result in spurious results, because SST might have no direct influence on movements and aggregations [START_REF] Brill | Understanding environmental influences on movements and depth distributions of tunas and billfish can significantly improve population assessments[END_REF]. Here, using SRS Chl a and water turbidity might be more relevant, because they account better for the vertical dimension of fish habitats [START_REF] Brill | Understanding environmental influences on movements and depth distributions of tunas and billfish can significantly improve population assessments[END_REF]. [START_REF] Takano | A method to estimate three-dimensional thermal structure from satellite altimetry data[END_REF] recently developed an empirical method to estimate the three-dimensional structure of physical features in time and space based on satellite altimetry data and in situ temperature and salinity profiles. The method demonstrated good agreement between observed and estimated isothermal depths and was useful for predicting the vertical habitat utilization of bigeye tuna (Thunnus obesus).

In open-ocean ecosystems, pelagic environmental conditions derived from SRS often reflect prey distribution and abundance that are generally poorly known and difficult to monitor. Information on mid-trophic-level prey in open-ocean ecosystems can be collected with (i) scientific trawl and acoustic surveys, (ii) diet composition of predators that can be used as biological samplers of micronekton, and (iii) outputs from end-to-end ecosystem models. Investigating the relationships between SRS-derived oceanographic conditions and prey might then provide useful insights into predator habitat preferences.

Ecosystem models that use SRS and in situ data as inputs include the vertical dimension and overcome the limitations of surface-restricted SRS data. SRS data have now become a major source of information for ocean observation programmes, such as the Global Ocean Observing System (GOOS), necessary for operational oceanography in an EAFM context. A better understanding of ocean dynamics from environment to fisheries at a global scale requires the ability to combine data collected with a wide range of sensors, both in situ and remote, deployed on both mobile and stationary platforms. The development of common data formats and access protocols, such as SensorML (see http://www.opengeospatial.org/projects/groups/sensorweb), is instrumental in addressing these issues.

Studies combining SRS-detected mesoscale structures with three-dimensional ocean circulation models may also further understanding of the physical mechanisms involved in the generation of oceanographic features, such as eddies and meanders, and the associated enhanced productivity [START_REF] Kurien | Mesoscale variability along the east coast of India in spring as revealed from satellite data and OGCM simulations[END_REF].

SRS and fisheries management

In the context of an EAFM, SRS of the marine environment provides a major source of information on the interactions between fish species and their environment. Including environmental effects on fish catchability, abundance, and distribution in the process of abundance index estimation would be a first step to improving scientific advice on the state and management of fish stocks. Identifying spawning and/or feeding grounds based on SRS is also a prerequisite for spatially oriented management measures, such as the implementation of marine protected areas [START_REF] Druon | Habitat mapping of the Atlantic bluefin tuna derived from satellite data: Its potential as a tool for the sustainable management of pelagic fisheries[END_REF]. In the Pacific, the Hawaii-based swordfish (Xiphias gladius) longline fishery was closed in 2006, because of excessive loggerhead sea turtle bycatch rates. Knowledge of turtle habitats gained from tracking and SRS data (see above) was used to assist fishers in avoiding areas with high turtle bycatch. Launched in 2006, TurtleWatch provided three-day SST composite maps and weekly ocean currents estimated from SRS altimetry for the fishing ground and the region with the highest probability of loggerhead and longline gear interactions [START_REF] Howell | TurtleWatch: a tool to aid in the bycatch reduction of loggerhead turtles Caretta caretta in the Hawaii-based pelagic longline fishery[END_REF]; Figure 5). TurtleWatch was revised in 2008, based on experience with the product in 2007, feedback from fishers, and analysis of 2007 fishery and bycatch data; revisions reflect the temporally dynamic feature of the high bycatch zone.

The ability to track and predict the spatial dynamics of marine species using key environmental parameters will likely become increasingly important as climate change alters phenological and geographical distribution patterns of many marine populations [START_REF] Cury | Ecosystem oceanography for global change in fisheries[END_REF].

Consequently, many habitat and niche models have been developed in the past few years to depict and predict the spatial distribution and temporal fluctuations of keystone species. Environmental-niche models attempt to reproduce the current distribution and temporal fluctuations of a given species by estimating suitable physical and biological conditions. SRS constitutes an essential data source for niche-and habitat-model implementation by providing worldwide coverage at high temporal resolutions of key environmental parameters (e.g. temperature) affecting marine organisms. Chl a is currently the only biotic parameter monitored at the macroscale; consequently, several studies have attempted to include it in environmental-niche models [START_REF] Polovina | The transition zone chlorophyll front, a dynamic global feature defining migration and forage habitat for marine resources[END_REF]. However, because of several inherent biases in SRS data, this remains a challenging task (Reygondeau and Beaugrand, 2010). Recently, [START_REF] Cheung | Projecting global marine biodiversity impacts under climate change scenarios[END_REF][START_REF] Cheung | Large-scale redistribution of maximum fisheries catch potential in the global ocean under climate change[END_REF] have used model outputs derived from post-processed SRS data to predict the effects of climate change on marine biodiversity and on maximum fisheries catch potential under some Intergovernmental Panel on Climate Change (IPCC) scenarios. Such approaches could help implement adaptive fisheries management plans that respond to predicted changes in the spatial distribution and productivity of fish populations. → Table 3. Conceptual scheme of the data processing of the most common oceanic parameters, from the raw (level 0) data to geophysical variables (upper part) and post-processing of variables data to compute specialized level 4 parameters (lower part). PE = photosynthetic efficiency. [START_REF] Cayula | Edge detection algorithm for SST images[END_REF] and (b) its modified version using sliding windows [START_REF] Nieto | Variabilidad oceánica de mesoescala en los ecosistemas de afloramiento de Chile y Canarias: una comparación a partir de datos satelitales[END_REF]. The modified algorithm allows for improving front detection by more than 100% in upwelling areas. 

  Clim. = climatology; SLA = sea level anomaly; SSH = sea surface height; SST = sea surface temperature; AMI = active microwave instrument; AMSR-E = advanced microwave scanning radiometer for the Earth Observing System; AVHRR = advanced very high rate radiometer; AVISO = archiving, validation, and interpretation of satellite oceanographic data; CERSAT = Centre ERS d'Archivage et de Traitement; CLS = collecte localisation satellites; DMSP = Defense Meteorological Satellite Program; EOS = Earth Observing System; ENVISAT = ENVIronmental SATellite; ERS = European remote sensing; ESA = European Space Agency; IFREMER = Institut Français de REcherche pour l'exploitation de la MER; GOES = geostationary operational environmental satellite; HDF = hierarchical data format; MODIS = MODerate resolution Imaging Spectrometer; MSG = Meteosat second generation; NASA = National Aeronautics and Space Administration; NetCDF = network common data form; NOAA = National Oceanic and Atmospheric Administration; OBPG = Ocean Biology Processing Group; OSI-SAF = Ocean and Sea Ice Satellite Application Facility; PAR = photosynthetically active radiation; PO-DAAC = Physical Oceanography Distributed Active Archive Centre; QuickScat = quick scattermetre; REMSS = remote sensing system; SeaWiFs = Sea-viewing Wide Field-of-view Sensor; SEVIRI = spinning enhanced visible and infrared imager; SSM/I = special sensor microwave/imager; TMI = TRMM microwave imager; TOPEX = The Ocean Topography Experiment; TRMM = Tropical Rainfall Measuring Mission.
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 1 Figure 1. Typical processing steps of a thermal signal measured by a satellite remote-sensing sensor according to its physical transformations. Case of sea surface temperature (SST) measured by the AVHRR sensor.

Figure 2 .

 2 Figure 2. Example of daily sea surface temperature (SST) products over the Atlantic Ocean on 18 June 2010 from three thermal-infrared sensors: (a) MODIS/AQUA, (b) AVHRR/METOP, (c) SEVERI/METEOSAT-MSG, (d) a microwave sensor AMSR/ADEOS, and (e) a 9 km resolution level 4 blended product from remote-sensing system combining two microwave sensors (AMSR and TMI) and one infrared sensor (MODIS).

Figure 3 .

 3 Figure 3. Example of front detection of sea surface temperature (SST) in the Chilean Humboldt Current System based on the (a) single-image edge detection (SIED) of[START_REF] Cayula | Edge detection algorithm for SST images[END_REF] and (b) its modified version using sliding windows[START_REF] Nieto | Variabilidad oceánica de mesoescala en los ecosistemas de afloramiento de Chile y Canarias: una comparación a partir de datos satelitales[END_REF]. The modified algorithm allows for improving front detection by more than 100% in upwelling areas.
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 4 Figure 4. (a) Map of Longhurst (2007) biogeochemical provinces, and (b) map of the dynamic biogeochemical provinces for 2005. Dynamic biogeochemical provinces were derived from sea surface temperature based on the AVHRR series, SeaWiFS Chl a, salinity (World Ocean database), and bathymetry (GEBCO) datasets (G. Reygondeau, pers. comm.).
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 5 Figure 5. Example of the TurtleWatch mapping product identifying the region with the highest probability of loggerhead turtle and longline gear interactions, distributed daily in near real time to fishers. The area with the highest probability of loggerhead bycatch that fishers should avoid (delineated by solid black lines) represents the area between the 63.5 and 65.5°F SST isotherms.

  

Table 1 .

 1 Main ranges of spatial, temporal, and spectral resolutions used in terrestrial and global environment, including marine and atmospheric domains.

	Resolution Environment	Low resolution	Medium resolution	High resolution
	Spatial	Terrestrial Marine	30-1000 m 10-50 km	4-30 m 2-10 km	0.4-4 m ≤1 km
	Temporal	Terrestrial Marine	>16 d >5 d	4-16 d 1-5 d	1-3 d ≤1 d
	Spectral	-	1 channel (e.g. panchromatic	3-10 channels	≥10 channels (hyperspectral)

Table 2 .

 2 Main sensors and datasets of interest for oceanographers and fishery scientists. All products are level 3 gridded, except explicit mention.

	Parameter	Institution	Sensor	Platform	Temporal Resolution	Spatial resolution	Time period
	SST	NASA OBPG	MODIS	EOS AQUA	d, wk, month, Clim	9 km, 4.5 km	2002/07 →
	SST	NASA PO-DAAC	Pathfinder V5	NOAA AVHRR	d, wk, month, season, Clim.	4.5 km	1985/01 → 2005/12
	SST	NASA PO-DAAC	Pathfinder V4, V5	NOAA AVHRR	wk, month, Clim.	9 km	1985/01 → 2003/08
	SST	OSI-SAF EUMETSAT	SEVIRI	MSG, GOES-east	3-12 h, hourly	1/10°, 1/20°	2004/07 →
	SST	OSI-SAF EUMETSAT	METOP	AVHRR	d, (2 d -1 : 00-12 h)	1/20°2007/07 →
	SST	OSI-SAF EUMETSAT	METOP (Level 2)	AVHRR	d (2 d -1 ), 3-mn granule orbit	1 km	2009/11 →
	SST	NASA REMSS	AQUA	AMSR-E	d, 3-d, wk, month, Clim.	1/4°S 2002/08 →
	SS Chl a	ESA CNES NASA OBPG	MIRAS (Level 1/2) MODIS	SMOS EOS AQUA	10-30 d d (1 d -1 ) 3-d, 8-d, month, Clim.	4 km 50-200 km	2010/01 → 2002/07 →
	Chl a	NASA OBPG	SeaWiFS	SeaStar	8-d, month, Clim.	9 km	1997/12 →
	Chl a	NASA OBPG	MODIS (Level2)	EOS AQUA	d, 5 mn orbit	250 m, 500 m, 1 km 2002/07 →
	Chl a	ESA GLOBCOLOR	MERIS	ENVISAT	d, wk, month	300 m, 1 km	2002/03 →
	Wind direction	IFREMER CERSAT	QuickScat	Seawind	8-d, month, Clim.	1/2°1999/12 → 2009/11
	Wind direction	NASA REMSS NASA REMSS	QuickScat AMSR-E	Seawind EOS-AQUA	d, 3-d, wk, month	1/2°1999/12 → 2009/11 1/4°C 2002/08 →
	SLA	LS AVISO	ERS-TOPEX-JASON		d J-1, J-6 (real time)	1/3°1992/10 →
	PP	NASA OBPG	Seawifs (Chl a , PAR, SST)		8-d, month	9, 18 km	1997/10 → 2008/12
	PP	NASA OBPG	MODIS (Chl a , PAR, SST)		8-d, month	9, 18 km	2002/07 → 2007/12

Table 2 .

 2 Main sensors and datasets of interest for oceanographers and fisheries scientists. All products are Level-3 gridded except explicit mention.
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