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A Constant Influx Model for Dyke Propagation. 1 Implications for Magma Reservoir Dynamics 2

Most observations of seismicity rate during dyke propagation on basaltic volcanoes show: (i) rate stationarity despite possible variations of the dyke tip velocity, (ii) frequent lack of clear and monotonic hypocenter migration following dyke propagation, (iii) event occurrences located backwards with respect to the dyke tip position. On these bases, the origin of the seismicity contemporary to dyke intrusion within basaltic volcanoes cannot be solely related to the crack-tip propagation. Seismicity rather appears to be the response of the edifice itself to the volumetric deformation induced by the magma intruding the solid matrix. This in the unit time being the flux of magma entering the fracture, it argues for the stationary seismicity rate accompanying the intrusion to be a proxy for a constant magma supply rate from the magma reservoir. We consider a two-phase dyke propagation model, including a first vertical propagation followed by a lateral migration along a lithological discontinuity. We explore (i) under which geophysical conditions the vertical dyke is fed at constant flow rate of magma and (ii) dyke propagation patterns. Implications entailed by constant volumetric flux on the Piton de la Fournaise volcano case study suggest a minimum size for the magma reservoir of about 1 km 3 , and a maximum value for the initial magma reservoir overpressure of about 2.2 MPa. Considering similar magma inflow rates during vertical and lateral dyke propagation phases, we reproduce independent estimates of propagation velocities, rising times and injected volumes when applying the model to the August 2003 Piton de la Fournaise eruption.

Introduction

Magma-driven fracture is a commonly observed mechanism that allows to rapidly transport melt through cold and brittle country rock without extensive solidification [START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF]. It therefore differs from porous flow through a deformable and partially molten matrix, which is characteristic of melt generation in the mantle [e.g. [START_REF] Mckenzie | The Generation and Compaction of Partially Molten Rock[END_REF] and from slow diapiric rise of granite through viscous country rock [START_REF] Pitcher | The nature, ascent and emplacement of granitic magmas[END_REF]Rubin, 1993a].

The difficulty of making direct observations of the plumbing system and of the dynamics of conduit formation within volcanoes makes only approximate the knowledge of the parameters and physical balances that govern the propagation of the fissure system.

Previous authors have proposed analytical models of fluid-driven fracture [e.g. Lister , 1990a, b;[START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF][START_REF] Roper | Buoyancy-driven crack propagation from an over-pressured source[END_REF]. These studies suppose that dykes are fed from a reservoir of magma at depth; the crack is initiated within the chamber walls, where favorable conditions promote dyke propagation, leading to magmatic injections.

The competing pressures, whose balance drives the dyke propagation, are:

(i) the elastic stresses generated by deformation of the host rock; (ii) the stresses required to extend the tip against the rock resistance; (iii) the buoyancy forces related to the difference between magma and country rock densities; (iv) the viscous pressure drop due to magma flow; (v) the magma driving overpressure; and (vi) the regional pre-existing stressfield [e.g. Lister , D R A F T August 12, 2009, 3:00pm D R A F T 1990b; [START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF]. In this framework Lister [1990a] concludes that the fracture mechanics only characterise the crack tip zone, while the crack width and the rate of crack propagation are determined by the fluid dynamics. Static or quasi-static solutions for equilibrium crack are therefore inappropriate. It follows that the most important role in the pressure balances is played by (i), (iii), (iv) and (v). Note that (ii) is negligible "soon" away from the crack tip, and (vi) mainly acts on the dyke orientation [Lister , 1990b;[START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF]].

In the literature, dyke propagation has been modeled according to two basic independent boundary conditions. On one hand some authors consider the fluid fracture as driven by a constant overpressure magma chamber at its base [Rubin, 1993b, a;[START_REF] Meriaux | Dike propagation through an elastic plate[END_REF][START_REF] Roper | Buoyancy-driven crack propagation from an over-pressured source[END_REF].

On the other hand Lister [1990a, b] assume a constant influx condition.

The first hypothesis has been claimed geologically more appropriate than the second one [e.g. [START_REF] Meriaux | Dike propagation through an elastic plate[END_REF]. The dyke growth model from a finite size magma chamber proposed by [START_REF] Ida | Effects of the crustal stress on the growth of dikes: Conditions of intrusion and extrusion of magma[END_REF], however, leads the author to conclude that only in the case of extremely large and compressible magma reservoirs the melt pressure is actually able to remain constant as the dyke propagates.

From the observation point of view, we only have indirect access to dyke propagation, the only parameter we can estimate being the propagation velocity, i.e. few meters per second on basaltic volcanoes. These velocities can be deduced either from observations of the seismic signals associated with D R A F T August 12, 2009, 3:00pm D R A F T the advancing crack tip [START_REF] Aki | Source mechanism of volcanic tremor: fluid-driven crack models and their application to the 1963 Kilauea eruption[END_REF][START_REF] Shaw | The fracture mechanisms of magma transport from the mantle to the surface[END_REF][START_REF] Battaglia | Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano D R A F T August 12, 2009, 3:00pm D R A F T (Reunion Island[END_REF],

or inferred from the size and composition of xenolithes carried by the flow [START_REF] Carmichael | High-Temperature Properties of Silicate Liquids: Applications to the Equilibration and Ascent of Basic Magma[END_REF][START_REF] Spera | Aspects of magma transport[END_REF][START_REF] Pasteris | Kimberlites: Complex Mantle Melts[END_REF], or inferred from surface deformation measurements [e.g. [START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF][START_REF] Battaglia | Location of seismic events and eruptive fissures on the Piton de la Fournaise volcano using seismic amplitudes[END_REF][START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Aloisi | Imaging composite dike propagation (Etna, 2002 case)[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF]. As pointed by [START_REF] Battaglia | Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano D R A F T August 12, 2009, 3:00pm D R A F T (Reunion Island[END_REF] and [START_REF] Klein | The seismicity of Kilauea's magma system[END_REF], however, well-documented cases of earthquake hypocenters migrating simultaneously to the injected magma toward the surface are rare. A question mark remains on the fact that this lack of well-documented upward an monotonic earthquake migration contemporary to magma ascent prior to an eruption could simply be an artefact due to a poor station coverage on many of the world's active volcanoes [START_REF] Battaglia | Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano D R A F T August 12, 2009, 3:00pm D R A F T (Reunion Island[END_REF]. Available observations suggest however that, while vertical hypocenter migrations are uncommon, horizontal migrations appear to be more frequent (e.g. the 1978 Krafla intrusion [START_REF] Einarsson | Seismological evidence for lateral magma intrusion during the 1978 deflation of the Krafla volcano in NE Iceland[END_REF], the 2000 Izu Islands magma migration [e.g. [START_REF] Toda | Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity[END_REF]).

From scale-invariance explorations [START_REF] Grasso | Hierarchical organization as a diagnostic approach to volcano mechanics: Validation on Piton de la Fournaise[END_REF] and theoretical considerations [Rubin and Gillard , 1998], the distribution of recorded dyke-induced earthquakes is suggested to map the distribution of rock mass sites that are near to failure, and does not necessarily reflect the extent of the dyke. To note that only in the case of an homogeneous medium the maximum deformation occurs at the dyke head, where we therefore expect most of the seismicity to occur [Lister , 1990a;[START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF]. Besides, D R A F T August 12, 2009, 3:00pm D R A F T earthquakes generated from the tensile propagation of the dyke tip are likely to be too small in magnitude [START_REF] Rubin | Propagation of Magma-Filled Cracks[END_REF]Rubin et al., 1998] and too high in frequency [START_REF] Cornet | Fracture processes induced by forced fluid percolation[END_REF] to be detected by standard seismic network that operate at volcano surface. The shear-type of the generally recorded seismicity accompanying magma movement, moreover, is not compatible with the signal associated to a dynamic propagation of the dyke tip (i.e. a tensile fracture) [START_REF] Cornet | Fracture processes induced by forced fluid percolation[END_REF].

Observations of Volcano-Tectonic (VT) seismicity during dyke propagation on basaltic volcanoes show a constant seismicity rate over time [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF]. This characteristic pattern for the seismic signature of dyke propagation demonstrates to be reproducible on different volcanoes: Piton de la Fournaise (PdlF): 7 dyke intrusions in the period 1988-1992; Etna:

2002 dyke intrusion; and Miyakejima (MI): 2000 dyke intrusion.

For the Piton de la Fournaise dyke intrusions, [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] report diffuse VT seismicity within the shallow edifice. On these bases, [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] argue for the seismicity generated during dyke injection to be a generic response of the volcanic edifice to the intrusion instead of an accurate mapping of the dyke tip propagation. [START_REF] Toda | Evidence from the AD 2000 Izu islands earthquake swarm that stressing rate governs seismicity[END_REF] show that the change in seismicity rate generated by the 2000 dyke intrusion at Izu Islands (Japan) scales with the change in stressing rate induced by the propagation and opening of the dyke. This result demonstrates that the stressing rate governs the seismicity. It moreover
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supports the hypothesis of magma flow rate scaling with the seismicity rate [START_REF] Pedersen | Controlling factors on earthquake swarms associated with magmatic intrusions; Constraints from Iceland[END_REF].

All these argue for the stationary seismicity rate accompanying the dyke propagation to be the response of the brittle lithosphere to a constant volumetric deformation rate (i.e. a constant influx of magma over time) induced by the intrusion [e.g. [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF].

Following [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] observations, the aim of this paper is therefore primarily (i) to analyze how a constant flow rate of magma injected into the dyke from the reservoir is consistent with the dynamics of a fluid-driven fracture propagating under realistic conditions for the magma chamber overpressure, and (ii) to evaluate the implications for the volcano dynamics. This is achieved by considering a two-phase dyke propagation model involving an initial vertical propagation phase followed by a horizontal migration phase.

Such two-phase propagation style for dyke propagating from a magma source at shallow depth to the surface, is commonly observed on basaltic volcanoes worldwide, e.g. Mt. Etna (southern Italy) [e.g. [START_REF] Aloisi | Imaging composite dike propagation (Etna, 2002 case)[END_REF];

Miyakejima (southern Japan) [e.g. [START_REF] Nishimura | Crustal deformation caused by magma migration in the northern Izu Islands, Japan[END_REF]; and in particular on Piton de la Fournaise [e.g. [START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF][START_REF] Bachélery | Le Fonctionnement des volcans boucliers[END_REF][START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF].

For the vertical rise of a buoyant fluid-filled crack from a shallow storage system towards the surface, we consider two boundary conditions at the dyke inlet, constant and variable reservoir overpressure. In the latter case
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the overpressure variation is controlled by the withdrawal of magma from the chamber induced by the dyke growth. Subsequently, the effect of a lithological discontinuity at depth is introduced by reducing the buoyancy of the fluid in the upper layer. This density step induces a slow down of the rising magma and favours melt accumulation and subsequent lateral dyke propagation.

We This application allows us to derive possible generic implications on the mechanisms driving magma movements on basaltic volcanoes. This so-called "proximal" eruption (according to [START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF] classification) is a good example to validate our model, first as being accompanied by a stationary seismicity rate over time, and second as being constituted of a vertical-and lateral-phase dyke propagation, which is the generally accepted feature describing flank eruptions at PdlF volcano [e.g. [START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF][START_REF] Bachélery | Precise Temporal and Mechanical Identification of Dyke Emplacement using Deformation Monitoring at Piton de la Fournaise[END_REF][START_REF] Bachélery | Le Fonctionnement des volcans boucliers[END_REF][START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF].
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Models of dyke propagation

Vertical dyke propagation

In this section we focus on the vertical propagation of a buoyant fluidfilled crack, from a shallow storage system towards the surface (see figure 1).

The crack is fed from a magma reservoir whose overpressure ΔP c is either constant over time, or evolves as a consequence of the withdrawal of magma from the reservoir. In particular, the aim of this section, is to individuate whether and under which conditions, a magma reservoir is able to feed a propagating dyke with constant flux of magma input from the reservoir.

Model description

For simplicity we consider a two-layer elastic half-space, characterized by

Poisson ratio ν and shear modululs G and subject to a lithostatic stress field.

The magma-filled fracture originates from the roof of a magma reservoir located at depth H, which is taken as the reference level. The z-axis is oriented positively upwards, with z = 0 at the reference level, where magma (of density ρ m ) has developed the overpressure ΔP c with respect to the surroundings. A lithological discontinuity is located at depth H b , such that the rock density as a function of depth is given by (see figure 1)

ρ r (z) = ρ rl for z < H -H b (lower layer), (1) 
ρ r (z) = ρ ru for z > H -H b (upper layer).
As demonstrated by previous authors [e.g. Lister , 1990a, b;[START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF], once the dyke length is large enough, the influence of the though-
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ness of rocks on dyke propagation can be neglected. The fluid-filled crack propagation is in fact dominated by fluid dynamics, except during the early nucleation of the crack, [Lister , 1990a]. On these bases, we neglect the strength of the surrounding rocks in the force balance, and hence do not treat stress singularity at the tip. We focus instead on the interplay between buoyancy, viscous head loss and elastic stresses. By considering also flowinduced stresses, the stress induced by the dyke opening is given by [START_REF] Pinel | The effect of edifice load on magma ascent beneath a volcano[END_REF]:

σ o (z) = ΔP c + σ b (z) + p v , (2) 
where p v is the viscous head loss and σ b (z) is the magma overpressure due to buoyancy. σ b (z) is given by:

σ b (z) = z 0 (ρ r (z ) -ρ m )gdz , (3) 
Following [START_REF] Pinel | The effect of edifice load on magma ascent beneath a volcano[END_REF] and [START_REF] Maaløe | Shape of ascending feeder dikes, and ascent modes of magma[END_REF], we fix the dyke breadth a and we assume that the dyke adopts an elliptical cross section with semi-axes a and b characterized by b(z, t) a, see figure 1. In this case, the dyke-induced stress is given by [START_REF] Muskhelishvili | Some Basic Problems of the Mathematical Theory of Elasticity: Fundametal Equations, Plane Theory of Elasticity, Torsion and Bending[END_REF] 

σ o (z, t) ≈ G 1 -ν b(z, t) a , (4) 
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Magma is considered as Newtonian, viscous and incompressible. Flow proceeds in a laminar regime. According to [START_REF] Pinel | The effect of edifice load on magma ascent beneath a volcano[END_REF], we obtain the following equation for the case of null lateral stress variation:

∂b(z, t) ∂t = - 1 4μ ∂ ∂z ∂σ b ∂z b 3 + G 16μa(1 -ν) ∂ 2 b 4 ∂z 2 (5)
where μ is magma viscosity.

We scale the pressures by the initial overpressure within the magma reservoir, ΔP c (t = 0) = ΔP 0 , and the front height z f by the reservoir depth H.

Scales for time, flux and fracture width for the vertical propagation are the following

[t] = 16μH 2 G 2 ΔP 3 0 a 2 (1 -ν) 2 , (6) 
[Q] = (1 -ν) 3 ΔP 4 0 a 4 16G 3 μH , ( 7 
) [b] = ΔP 0 a(1 -ν) G . (8) 
These are the reference quantities in the computation, i.e. [t] is the timescale for opening the crack over a length H with a uniform overpressure ΔP 0 .

Length-scale [b] is the fracture width originated by an overpressure ΔP 0 . The scale for the dyke propagation velocity is then given by:

[v] = H/[t].
The initiation of the fracture on the reservoir walls is imposed a priori with an elliptical profile. This affects the fracture growth only for a duration needed for an initial adjustment stage [START_REF] Ida | Effects of the crustal stress on the growth of dikes: Conditions of intrusion and extrusion of magma[END_REF]. We can define three dimensionless 
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R 1l = (ρ m -ρ rl )g H ΔP 0 (9) 
Dimensionless numbers R 1u and R 2 characterize the lithological discontinuity, as follows:

R 1u = (ρ m -ρ ru )g H ΔP 0 (10) R 2 = H b H (11)
We have therefore the following dimensionless problem to solve

∂b (z, t) ∂t = -4 ∂ ∂z ∂σ b ∂z b 3 + ∂ 2 b 4 ∂z 2 , ( 12 
) b (z=0, t) = ΔP c (t); ( 13 
)
When there is no lithological discontinuity, R 1l = R 1u = R 1 , and equation 12 reduces to:

∂b (z, t) ∂t = 4R 1 ∂b 3 ∂z + ∂ 2 b 4 ∂z 2 , ( 14 
)
This is solved numerically using a semi-implicit finite difference scheme with Dirichlet boundary conditions.

In this framework, equation 12 allows to follow the dynamics of dyke propagation on its way towards the surface. We checked that mass conservation
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was satisfied on the scale of the whole dyke, which requires the instantaneous volume change to be equal to the basal flux, both values being issued from the numerical computation. The dimensions of the fracture at its base (i.e.

the imposed a value and the calculated b(0, t), which depends on the overpressure at the dyke inlet) determine the volume of magma intruding into the fissure per time unit. The velocity of the dyke propagating towards the surface is given by dz f /dt, where z f is the fracture front height (see figure 1).

When magma is injected from the reservoir into the dyke, it induces a decrease of the magma reservoir volume ΔV c , which might in turn induce a decrease of the reservoir overpressure ΔP c as well. Considering the elastic deformation induced by a point source (i.e. the magma reservoir) embedded in an infinite medium, the evolution of the reservoir overpressure follows the equation [V. Pinel and C. Jaupart, 2009, personal communication]:

d ΔP c (t) = dV c (t) V c (t) 4KG 4G + 3K ( 15 
)
where K is the magma bulk modulus. The volume variation in the magma reservoir can be related to the volume of magma injected into the dyke by

dV c (t) = -Q(t)dt, (16) 
with Q the flux of magma entering the dyke. When magma is fully compressible, K = 0 and the magma reservoir overpressure remains constant trough time. For incompressible magma, K → ∞ and equation 15 becomes
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To fully describe the evolution of the reservoir pressure, we introduce two new dimensionless numbers:

R 3 = ΔP 0 a 2 (1 -ν) H G V c , (18) 
which is the inverse dimensioneless reservoir volume, and

R 4 = 4KG ΔP 0 (4G + 3K) . ( 19 
)
which relates the overpressure variation in the reservoir to the initial overpressure value.

Results

We study the propagation of a vertical dyke from a shallow reservoir, according to the geometry illustrated in figure 1. We investigate under which conditions the magma flux injected into the dyke remains constant during dyke growth. Using the dimensionless numbers above described, we discuss the role played by each parameter in determining the regime of magma flux carried by the rising dyke. We solve the problem for three different configurations, described here below.

(i) Dyke rising from a constant overpressure magma reservoir in a homogeneous medium, (ii) Dyke rising from a variable overpressure magma reservoir in a homoge-
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neous medium, (iii) Dyke rising from a variable overpressure magma reservoir in a layered medium.

First we consider the case of a dyke rising from a constant overpressure magma reservoir (ΔP c = ΔP 0 = const.) in a homogeneous medium (i.e.

ρ rl = ρ ru , R 1l = R 1u = R 1 ).
As shown in figure 2, after some numeric adjustment iterations (whose number decreases with R 1 value), the flux of magma in the growing dyke evolves similarly to the propagation velocity (figure 2, A andB). This is related to the fact that, in this case, the dyke growth depends on tip propagation. Since fracture half-breadth a is assumed constant a priori and the medium is homogeneous, the dyke only grows along the propagation direction (figure 2,C). In this first case, the only dimensionless number affecting the regime of magma flux over time is R 1 .

We consider as negligible a flux variation less than 5% between dimensionless dyke heights z f = 0.3 and z f = 0.9. The choice of the first limit is imposed by discarding initial numerical adjustment iterations. As shown in figure 3 (black open squares), the magma flux withdrawn from the reservoir remains constant during dyke rising for R 1 ≤ -3.55. In this constant overpressure case, and for a given reservoir depth, the only parameter determining the regime of the magma flux carried by the growing dyke is the ratio between the buoyancy force and the magma overpressure at the dyke inlet.

Second we consider the same case as above, but with the reservoir overpressure varying as magma is withdrawn. Through the dimensionless numbers As a third case we consider a lithological discontinuity within the volcanic edifice. This discontinuity is intended in terms of rock densities, which are chosen such that magma has intermediate density between the lower and
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upper rock layers (ρ rl < ρ m < ρ ru ). This allows for considering a twofold effect: on one hand the higher fracturation of the solid medium close to the surface, which implies a lower density of the shallow layer and, on the other hand, the fact that magma degasses while rising, becoming more and more dense as approaching the surface. The effect of this density step is to slow down the rise of magma, creating favorable conditions for magma accumulation at the discontinuity depth H b .

Figure 4 illustrates the variation of the dimensionless magma flux, propagation velocity, and dyke shape during dyke propagation from an overpressured magma chamber, in a two-layer medium. After an initial numeric adjustment transient, the magma flux remains constant over time, being blind to the lithological discontinuity (figure 4A). The dyke volume continues therefore to regularly grow as dyke rises. On the other hand, the dyke propagation velocity, computed as dz f /dt, significantly decreases when the dyke reaches the depth of the density step (figure 4B), as also shown by Taisne and Jaupart [in press, 2009].

Reminding that the seismic response of a volcanic edifice to dyke propagation is reported to be stationary over time [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF], this result supports the hypothesis of scaling between seismicity rate accompanying the dyke intrusion and the volumetric flux of magma entering the dyke.

On the other hand, it excludes the possibility of a direct scaling between the seismicity rate and the dyke propagation velocity. The density step does not affect the shape of the fracture at the dyke inlet (figure 4C). In our model,
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for a given magma viscosity, the magma flux supply only depends on the shape of the crack at the junction with the reservoir roof. It can therefore remain constant over time as dyke grows.

While dyke half-breadth a is assumed to be constant over time, the dimensionless numbers R 1rl , R 1ru and R 2 play a role in determining the width of the dyke at the inlet, and therefore the regime of magma flux carried by the propagating dyke. The parameter R 1rl has been discussed above, while figure 5 shows the effect of R 1ru and R 2 dimensionless numbers on the regime of magma flow over time. In analogy with the previous discussion, we consider as negligible a variation in the magma flux less than 5% between dimensionless front heights z f = 0.3 and 0.9. Variation in magma flux during dyke rise are negligibile for R 1ru < 1.5 and for R 2 < 0.5. These imply that, in order for the flux of magma to remain constant over time, the densities of the magma and the upper layer should be quite close in value, and that the discontinuity should not be deeper than half the reservoir depth.

As shown in figure 13C, when magma buoyancy faints, due to a decrease in the surrounding rock density, an inflation starts to grow at the dyke head.

Here elastic stresses may exceed the rock toughness and new fractures may initiate.

Lateral propagation at the Level of Neutral Buoyancy

Exhaustive description of the solution for dyke propagation at a lithological boundary fed by either, constant flux or constant volume of magma is given by Lister [1990b] and [START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF]. They assume that
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buoyancy forces do not depend on horizontal distance. The effects of lateral variations of the stress field induced by a volcanic edifice load on the lateral propagation are studied by [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF]. In this paper we consider an horizontal lithological boundary located within the volcanic edifice.

We therefore adapt the solutions given by [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF] in order to take into account the variation of the external lithostatic pressure induced by the volcano slope along the propagation direction.

Model description

Figure 6 illustrates the geometry and main parameters used in this section. ρ ru and ρ rl are, respectively, the rock densities in the upper and lower layer. For this case, we define the origin of the vertical coordinate z at the discontinuity level, oriented positive upwards. The vertical extension of the dyke is called 2a(x). z u (x) and z l (x) stands for the positions of the upper and lower dyke tips respectively, such that we have:

2a(x) = z u (x) -z l (x) (20) 
We also define

m = z u + z l z u -z l (21)
We neglect the effects of the free surface [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF], so that the stress generated by the pressure difference between the interior and the exterior of the dyke, σ o , is given by
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)
where p is the internal magma pressure, which varies due to viscous friction, and σ l is the lithostatic pressure at the lithological boundary, defined by:

σ o (x) = ρ ru g(H b -θx), (24) 
with θ the volcano slope.

We consider that the lateral dyke length is larger than its height and we neglect vertical pressure gradients due to upward flow within the dyke [START_REF] Lister | Fluid-mechanical models of crack propagation and their application to magma transport in dykes[END_REF][START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF]. In this case, the internal magma pressure p depends only on the lateral position x. As before, the condition for the crack to remain open is σ o > 0.

We consider that the dyke propagates in damaged rocks, and therefore we set to zero the stress intensity factor at both dyke tips [START_REF] Mériaux | Dyke propagation with distributed damage of the host rock[END_REF].

Following [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF], this leads to

arcsin m + m √ 1 -m 2 = π 2 ρ rl + ρ ru -2ρ m ρ rl -ρ ru (25) σ o (x, z = 0) = g π (ρ rl -ρ ru )a(x)(1 -m 2 ) 3/2 (26)
It means that for given values of densities ρ ru , ρ rl and ρ m , once the overpressure at the lithological discontinuity is known at a given lateral distance
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x, there is a unique solution for the half-height a(x) and the tip locations z u (x) and z l (x). This solution can be subsequently used to calculate the dyke width b(x, z) using the solution derived from [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF].

For -1 < s < 1, the half-width b(s) is given by:

b(s, x) = (1-ν)σo(x,z=0) G √ 1 -s 2 + a(x)(1-ν)g(ρ rl -ρru) Gπ [ √ 1 -s 2 (- 1 2 √ 1 -m 2 - 1 2 s arcsin m -m arcsin m) - 1 2 (s + m) 2 ln | 1 + sm + (1 -s 2 )(1 -m 2 ) s + m | + ρ ru + ρ rl -2ρ m ρ rl -ρ ru √ 1 -s 2 ( 1 4 sπ + 1 2 mπ)] ( 27 
)
where s is defined by:

s = z a(x) -m.
From equation 25, we can see that dyke extension in the upper medium is equal the extension in the lower medium (m = 0) just in case ρ rlρ m = ρ mρ ru . As there is no lateral variations of the stress field vertical gradient, m is a constant.

The dyke internal pressure σ o , which keeps the dyke open, varies laterally because of both, the volcano flank slope and the viscous head losses due to horizontal magma flow. Magma is considered as Newtonian, viscous and incompressible. Flow proceedes in laminar regime.

Following [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF] analytical procedure, the dyke halfheight a(x, t), is the solution of the following equation

D R A F T August 12, 2009, 3:00pm D R A F T c 1 g(ρ ru -ρ m ) ∂a(x,t) 3 ∂t = c 3 (1-ν) 2 3μ G 2 ∂ ∂x a(x, t) 7 g 3 (ρ ru -ρ m ) 3 g(ρ rl -ρru) π (1 -m) 3/2 ∂a(x,t) ∂x -ρ ru gθ . ( 28 
)
where

c n = 1 -1 f (s) n ds, (29) 
f (s) = Gb(s) g(1 -ν)(ρ ru -ρ m )a(x) . ( 30 
)
We scale the pressures by the lithostatic load of the rock mass above the density step,

[P ] = ρ ru g H b . (31) 
the flux by the input flux of magma Q in and all length dimensions by the depth of the lithostatic discontinuity H b . The scale for the time refers to the opening of a fissure over a length H b with a magma flux equal to Q in , and is given by the following equation:

[t] = μ (1 -ν) H 9 b G Q 3 in 1/4 , (32) 
As shown by [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF], two dimensionless numbers can be defined:

N 1 = 3Q 3/4 in μ 3/4 G 9/4 H 9/4 b (1 -ν) 9/4 [P ] 3 (33) D R A F T August 12, 2009, 3:00pm D R A F T N 2 = - 2H 3 b (1 -ν) 3 [P ] 4 3μQ in G 3 (34) 
Equation 28 can be rewritten in the dimensionless form:

c 1 c 3 N 1 ρ ru -ρ m ρ ru ∂a 3 ∂t = -θ (ρ ru -ρ m ) 3 ρ 3 ru ∂a 7 ∂x + (1 -m) 3/2 (ρ ru -ρ m ) 3 (ρ rl -ρ ru ) 8πρ 4 ru ∂ 2 a 8 ∂x 2 (35)
The dimensionless flux is given by:

q Q in = N 2 c 3 a(x, t) 7 (1 -m) 3/2 (ρ ru -ρ m ) 3 (ρ rl -ρ ru ) 8πρ 4 ru [ ∂a(x, t) ∂x -θ] (36)
We solve numerically this equation with a semi-implicit finite difference scheme with a Neumann boundary conditions at the source (x = 0).

Results

In this section we discuss the effect of the model parameters on the propagation of a dyke at a lithological boundary, fed by a constant flux of magma.

As discussed in the previous section, the dyke propagation is affected by the variation in the external lithostatic pressure induced by the volcanic slope along the propagation direction, while vertical stress gradients do not vary laterally.

Lister [1990b], discusses the case of a dyke fed by constant flux or constant volume of magma, laterally propagating in a medium with no lateral stress variations. In this case the breadth of the dyke (2a(x) in figure 6) varies in time all along its length, being however always largest at the origin (2a(x = 0)). [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF] consider the effect of the volcanic edifice load
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on the propagation of a lateral dyke at depth. In this case, the breadth of the dyke varies at the head during lateral propagation, due to lateral variations of vertical stress gradients. For the present case, the lateral stress variations are only due to the flank slope of the edifice. Figure 7 shows that, with small flank slopes (θ → 0), the breadth of the dyke grows at the origin as the dyke propagates, reminding the case discussed by Lister [1990b]. With higher flank slopes, the half-breadth a tends to a constant value as the dyke laterally propagates. Such constant value does not depend on the propagation distance from the origin. In this sense, the effect of the volcano flank slope θ is such that it carries back to the previously discussed vertical propagation case, where the breadth 2a of the dyke was assumed to be constant during propagation. during the 1920-1992 period, which considers basaltic volcanoes as complex network of interacting entities at a critical state. A 1-10 x 10 6 m 3 volume has been estimated for such magma batches through spatial extent of seismicity [START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF]. This range spans the volumes of lava emitted by the eruptions occurred at PdlF in the period 1972-1992 [START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF][START_REF] Peltier | Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data[END_REF], while about 32% of eruptions occurred since 1998 emitted lava volumes larger than 10 x 10 6 m 3 [START_REF] Peltier | Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data[END_REF].

Case study: The

Second [START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF], on crystallization arguments point out, however, that in order to produce eruptions with lava volumes of order 1-10 x 10 6 m 3 , the volume of magma in the chamber needs to be larger than the emitted volume. They therefore suggest, as a better candidate for the Piton de la Fournaise magma reservoir, the low seismic-velocity zone identified by [START_REF] Nercessian | Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution[END_REF] at about sea level. This aseismic zone is located just (1980)(1981)(1982)(1983)(1984)(1985)(1986)(1987)(1988)(1989)(1990)(1991)(1992)(1993)(1994)(1995)(1996).

In this paper we focus on the August 2003 dyke intrusion, which has been extensively studied through extensometer, tiltmeter, GPS and INSAR data by [START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF], [START_REF] Froger | The deformation field of the August 2003 eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry[END_REF] and [START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF]. The dyke intrusion is accompanied by a seismic crisis of around 400 volcano-Tectonic (VT) events within 152 min (figure 8).

Seismic data illustrated in figure 8 confirm for the August 2003 case the seismic rate stationarity observed by [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] for the PdlF intrusions in the 1988-1992 period.

Relationships between magma flux regime and initial conditions for magma reservoir

Following the results obtained in section 2.1.2 for the vertical propagation stage, and referring to the parameters listed in table 1, we can calculate an upper bound for the reservoir initial overpressure and a lower bound for the magma reservoir volume values, such that the reservoir is able to sustain a constant influx magmatic intrusion.

The upper bound for the reservoir overpressure able to sustain a constant magma flux injection, can be computed by referring to the vertical propagation stage within a homogeneous medium (i.e. we neglect the effect of the upper layer, dimensionless number R 2 = 0). We choose a large magma reser-

D R A F T August 12, 2009, 3:00pm D R A F T
voir volume with fully compressibile magma (i.e. R 3 → 0, R 4 → 0). The upper limit for the initial reservoir overpressure is given by the dimensionless number R 1 corresponding to less than 5% variation in the magma flux during dyke growth (see figure 3, black empty squares). This is: R 1 < -3.55.

For parameters listed in table 1, this implies an initial reservoir overpressure ΔP 0 < 2.2 MPa. Such upper limit is compatible with the average overpressure a the dyke inlet estimated for the August 2003 PdlF dyke intrusion, i.e. 1.7 MPa using InSAR data [START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF] and at 1.1 MPa using GPS and tiltmeter data [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF]. Dyke inlet overpressure values computed using GPS data for PdlF eruptions between 2004 and 2006 also are in the range 1.1 -2.2 MPa [START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF].

Note that this value is one order smaller than commonly observed rock resistances. It may be characteristic of PdlF volcano, wich endured 25 eruptions in the period 1998-2007 [START_REF] Peltier | Magma transport and storage at Piton de La Fournaise (La Réunion) between 1972 and 2007: A review of geophysical and geochemical data[END_REF].

As regarding to the generic lower bound for the magma reservoir volume able to sustain a constant magma influx intrusion, we already discussed in section 2.1.2 the influence of the dimensionless numbers R 3 and R 4 on the flux regime of the propagating dyke. As shown in figure 9 for the vertical dyke propagation within a homogeneous medium case, a magma compressibility K of about 1 GPa implies that the minimum reservoir volume required for the flux of magma to remain constant over time is > 1 km 3 . The volume of magma mobilized by the lateral injection has the effect of increasing the minimum size of the magma reservoir required in order to keep the flux
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constant over the two-phase dyke propagation. In addition, the smaller the magma chamber volume, the smaller the R 1 value necessary to keep the magma flux constant over time. For given reservoir depth, magma and rock densities, this implies smaller initial overpressures sustaining a constant influx of magma over time will be.

Relationship between magma volumes and reservoir overpressure conditions

Traversa and [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] assimilate the intrusion process on basaltic volcanoes to a strain-driven, variable-loading process, reminiscent of secondary brittle creep. In such a strain-driven process, the loading is free to vary over time. It means that the overpressure at the dyke inlet is free to vary over time.

Most of PdlF eruptions occurring in the last decades, however, are flank eruptions, with eruptive vents located close or within the central cone, [START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF]. According to the model proposed by [START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF] for the magma accumulations and transfers at PdlF since 2000, there is a hierarchy between the so-called 'distal' eruptions (occurring far from the summit cone), which release the reservoir overpressure, and 'proximal' or 'summit' eruptions (occurring close to or within the summit cone), which have negligible effect on the reservoir overpressure state. In this sense, we therefore expect most of PdlF recent eruptions to be accompanied by small variations of the magma reservoir overpressure.
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For the August 2003 PdlF eruption, the total amount of magma withdrawn from the reservoir (i.e. the volume of lava emitted plus the volume of the dyke that keeps stuck at depth) has been estimated by [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF] and [START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF] at 7.2 and 7.8 x 10 6 m 3 , respectively.

The model of small independent magma pockets proposed by [START_REF] Lénat | Structure et fonctionnement de la zone centrale du Piton de la Fournaise[END_REF] implies a substantial emptying of the lens feeding each individual eruption. This is consistent with large overpressure variations accompanying the dyke intrusion. On the other hand, for the other four conceptual models proposed for the PdlF reservoir system, i.e. reservoir volumes of 1.7-4.1 km 3 [START_REF] Nercessian | Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution[END_REF][START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF], 0.1-0.3 km 3 [START_REF] Albarède | Residence time analysis of geochemical fluctuations in volcanic series[END_REF], 0.35 km 3 [START_REF] Sigmarsson | Magma residence time beneath the Piton de la Fournaise Volcano, Reunion Island, from U-series disequilibria[END_REF] and 0.5 km 3 [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF], the magma volume withdrawn from the chamber during the August 2003 eruption represents between ∼ 0.2% and ∼ 2.5% of the reservoir volume. These values argue for very small overpressure variations accompanying the dyke intrusion.

In order to test which of these configurations (i.e. large or small overpressure variations) applies to the PdlF case, we calculate the minimum reservoir size that would be required for the overpressure to vary of a defined small percentage during dyke injection. By integrating equation 15 we obtain:

V c = ΔV c exp ΔP c var 4G+3K 4GK -1 . ( 37 
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where ΔV c is the variation in reservoir volume, ΔP c var is the variation in reservoir overpressure induced by the dyke intrusion, G is the rock shear modulus, and K is the magma bulk modulus.

We assume that the volume variation induced in the magma reservoir from the August 2003 dyke growth corresponds to the estimations of the dyke volume, i.e. ΔV c = 1 -1.6 x 10 6 m 3 [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF].

This is related to the fact that observations of seismicity rate during dyke injection [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF] do not give any information about the flux evolution after the eruptive activity begins. We thus limit the validity of the constant influx model only to the dyke injection, allowing that possible larger pressure and flux variations could occur during lava flow at surface.

The estimated volume of lava erupted during the August 2003 eruption is 6.2 x 10 6 m 3 [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF]. The total volume of magma withdrawn from the chamber is therefore as large as 7.2-7.8 x 10 6 m 3 .

We take as the initial reservoir overpressure the upper bound we calculated previously, i.e. ΔP 0 = 2.2 MPa and we compute the reservoir volume required for the magma overpressure variation ΔP c variation to be the 5% of the initial reservoir overpressure, i.e. ∼ 0.085 MPa. Equation 37gives V c = 5 -8 km 3 as the corrisponding reservoir size.

When applying our model for vertical dyke propagation, computations of overpressure variations induced in a realistic reservoir (V c = 0.5 -5 km 3 [START_REF] Nercessian | Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution[END_REF][START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF]) by a vertical dyke fed at constant flux, are showed in figure 3 legend. These
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variations are < 6%, for reservoir volumes between 0.5 and 5 km 3 and magma compressibility between 1 and 10 GPa.

Relationships between constant magma influx and dyke injection dynamics

In this section we derive the implications of the two-phase model on dyke km before breaching the surface [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF]. On deformation data basis, [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF] estimate an average velocity of 1.3 m s -1 for the vertical rising stage, and of 0.2 -0.6 m s -1 for the lateral injection phase.

The uncertainties related to vertical and horizontal propagation velocities, obtained from deforamtion data inversion, are 0.26 m s -1 and 0.13 m s -1 , respectively [uncertainties from A. Peltier 2009, personal communication].

In the following we calibrate the input parameters for the two-stage dyke propagation model. First we derive the relationships among the parameters at stake for the two steps. Second we obtain calibrations of the same parameters by using indepedent estimates of dyke propagation velocities in the two phases.

We consider a dyke rising vertically within a homogeneous medium (i.e.

R 2 = 0), from a large magma reservoir with fully compressible magma (i.e.

R 3 → 0, R 4 → 0). Reservoir depth H, magma and rock densities ρ m , ρ r are listed in table 1. In this case, the flux of magma injected into the dyke only depends on the initial overpressure at the dyke inlet and is inversely proportional to the magma viscosity,as shown in figure 10:

Q ∝ 1 μ , ( 38 
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When we fix the vertical velocity and we let the dyke half-breadth a free to vary, however, we can write:

Q = A μ, (39) 
where

A = v 2 v Q * 16H G v * v 2 ΔP 2 0 (1 -ν) (40) v v is the vertical propagation velocity, Q * is the dimensionless flux of magma entering into the dyke (i.e. Q/[Q]) and v * v is the dimensionless ver- tical propagation velocity (i.e. v v /[v]
). The vertical propagation velocity, in turn, is given by

v v = C a 2 μ . (41) 
where

C = v * v (1 -ν) 2 ΔP 3 0 16 H G 2 . ( 42 
)
For a given dimensionless number R 1 , the dimensionless flux and velocity (i.e. Q * and v * v ) are fixed. Then, for given values of vertical propagation velocity, depth of the reservoir, and initial magma overpressure, we obtain the A value.
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We take R 1 = -3.55 (i.e. the upper limit for a 5% flux variation in the constant reservoir overpressure, homogeneous medium case as shown in figure 3) and the parameters listed in table 1.

The lateral propagation velocity depends on the magma viscosity and on the amount of magma injected into the dyke in the unit time. We then inject different magma flux and viscosity pairs into the lateral dyke. Figure 11 shows how the magma flux injected in the dyke is related to the lateral propagation velocity. In particular, a dyke lateral propagation velocity between 0.2 and 0.6 m s -1 (shadow box in figure 11), requires the magma flow rate injected into the laterally migrating dyke to be less than about 60 m 3 s -1 .

Through equation 39 this implies a magma viscosity μ = 14 Pa s. This allows to constrain the value of the vertical dyke half-breadth a = 100 m (equation 41).

The value we estimate for viscosity is in good agreement with the values found by Villeneuve et al. For the case of a dyke propagating within a stratified medium from a finite size, compressible magma chamber, more parameters play a role in characterizing the dyke propagation, i.e. magma bulk modulus K, magma
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chamber volume V c , rock densities in the upper ρ u and lower ρ l layers and the depth of the lithological discontinuity H b . We refer to the geometry illustrated in figure 12, and we use the parameters listed in table 2 in the calculations. Table 3 compares results issued from the computation with independent parameter estimates.

From the computation we obtain a dyke which rises vertically at an average velocity of ∼1.2 m s -1 up to the lithological discontinuity. [2007], [START_REF] Froger | The deformation field of the August 2003 eruption at Piton de la Fournaise, Reunion Island, mapped by ASAR interferometry[END_REF] and field observations [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF].

The dyke extends above the discontinuity, but its upward propagation is set back by the negative buoyancy [START_REF] Pinel | Magma storage and horizontal dyke injection beneath a volcanic edifice[END_REF]. At the density step depth, magma overpressure grows as the dyke head inflates. It may eventually exceed rock thoughness and a new fracture may propagate laterally away. Here we set up a lateral dyke, which propagates towards the northern flank. We assume all the magma flux rising through the vertical dyke is injected into the lateral one. The slope of the edifice and the lack of lateral variation in stress gradients, allow for the dyke half-breath a to be constant during the lateral propagation (see figure 7).
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The computed lateral dyke breadth 2a is ∼950 m. The upper bound of the fracture breaches the surface at a height of about 2000 m asl after 2.3 km lateral propagation, in agreement with field observations of eruptive fracture location [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF]. The average propagation velocity we compute for the lateral dyke is ∼ 0.48 m s -1 , in agreement with the upper limit value estimated by [START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF] by deformation data inversion (0.2 to 0.6 m s -1 ).

We remind that the flux of magma injected in the vertical and lateral dykes is related to the respective initial dyke breadth. From the computation we get lateral dyke breath (a = 476 m) about five times the vertical dyke one (a = 100 m). This is related to the fact that horizontal velocity is much lower than the vertical, which has the effect of making the dyke growing less along the propagation direction and to develop crosswise. The propagation velocity ratio, therefore, somehow inversely mimics the dyke breath ratio between the vertical and the lateral phases.

Conclusions

Seismic observations contemporary to dyke propagation on basaltic volcanoes show stationary seismicity rate during dyke propagation in the last phase before an eruption, despite possible variations of the dyke-tip velocity [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF]. Also, a clear and monotonic hypocenter migration of the seismicity contemporary to dyke propagation has been rarely

observed. These suggest that the observed dyke-induced seismicity is the response of the edifice to the volumetric deformation induced by the magma in-
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truding the solid matrix [START_REF] Traversa | Brittle Creep Damage as the Seismic Signature of Dyke Propagations within Basaltic Volcanoes[END_REF]. Accordingly, Traversa and Grasso [2009] argue for the stationary seismicity rate contemporary to the intrusion to be a proxy for a constant flux of magma entering the dyke in the unit time.

In order to test the implications of this assertion with respect to the volcano fluid dynamics, we implement a two-phase dyke propagation model, including a first vertical propagation followed by a lateral migration.

We demonstrate that, although propagation velocity varies of one order of magnitude among the different propagation phases (i.e. 1.3 m s -1 and 0.2 to 0.6 m s -1 for the vertical and lateral propagation, respectively), the flow rate of magma injected into the dyke can remain constant over time under given conditions. This is related both, to the fact that velocity depend on dyke size for the two propagation phases, and to the evolution of dyke growth, The flux value computed in the vertical phase is injected in the lateral propagation phase and it determines, together with static conditions of pressure equilibrium, dyke size and lateral propagation rate. In this way, the model we discuss in this paper allows to constrain the ratio between vertical and horizontal dyke thickness.

We validate the model in an application to the August 2003, Piton de la Fournaise eruption. It consists of two main phases: a vertical propagation, followed by a horizontal migration towards the eruption site [START_REF] Lénat | Structure et fonctionnement de la zone centrale du Piton de la Fournaise[END_REF][START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF][START_REF] Bachélery | Precise Temporal and Mechanical Identification of Dyke Emplacement using Deformation Monitoring at Piton de la Fournaise[END_REF][START_REF] Bachélery | Le Fonctionnement des volcans boucliers[END_REF][START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF]. According to the classification proposed by [START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF], the August 2003 PdlF eruption is a so-called 'proximal' eruption, with eruptive activity concentrated on the volcano flank, close to the central cone.

In this framework, the small values of initial reservoir overpressure (i.e. ≤ et al., 2008]. The small overpressure variations argue for either, the volume of magma withdrawn from the reservoir during the injection to be small compared to the reservoir volume, or the magma flow rate injected into the dyke in the unit time to be small compared to a possible continuous magma flow refilling the shallow reservoir from depth (as proposed by Peltier et al.

[2007]).

The average intrusion velocities we compute for the dykes feeding the 

Reminder: t = t * [t], Q = Q * [Q], v v = v * v [v], b = b * [b], z f = z * f [H],

Stipple-lines in plots A and B indicate z

* f = 0.3. Reminder: t = t * [t], Q = Q * [Q], v v = v * v [v], b = b * [b], z f = z * f [H],
where scales for time [t], flux [Q] and fracture width [b] are given in equations ( 6) to ( 8), lengths are scaled by the reservoir depth H, and scale for propagation velocity is [START_REF] Nercessian | Internal structure of Piton de la Fournaise volcano from seismic wave propagation and earthquake distribution[END_REF][START_REF] Sapin | Stress, failure and fluid flow deduced from earthquakes accompanying eruptions at Piton de la Fournaise volcano[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF] 

[v] = [H]/[t]; R 1u = (ρ m -ρ ru )gH/ΔP 0 , R 1l = (ρ m -ρ rl )gH/ΔP 0 , R 2 = H b /H, R 3 = (ΔP 0 a 2 (1 -ν) H) (G V c ), R 4 = 4KG/(ΔP 0 (4G + 3K)). D R A F T August 12, 2009, 3:00pm D R A F T
ρ ru )gH/ΔP 0 , R 1l = (ρ m -ρ rl )gH/ΔP 0 , R 2 = H b /H, R 3 = (ΔP 0 a 2 (1-ν) H) (G V c ), R 4 = 4KG/(ΔP 0 (4G + 3K)). D R A F T August 12, 2009, 3:00pm D R A F T

  apply the two-phase dyke propagation model to the magmatic intrusion that fed the August 2003 Piton de la Fournaise (PdlF) eruption. The stationary rate of VT earthquakes accompanying the August 2003 PdlF dyke intrusion supports the result found by Traversa and Grasso [2009] in the 1992-1996 period. Accordingly we expect stationary flux of magma to feed the propagating dyke. Besides, the number of works devoted to its study make it one of the best studied intrusive episodes observed on PdlF volcano in the last years.

R

  3 and R 4 , we explore the role of the magma chamber volume V c and of the magma bulk modulus K, which relates changes in reservoir volume with changes in pressure, on the regime of magma flux withdrawn from the reservoir. As illustrated in figure3(plain symbols), the smaller the dimensionless number R 3 , the more the flux tends to remain constant during dyke propagation and viceversa. It means that the larger the chamber volume with respect to the dyke scale volume, the more negligible a withdrawal of magma is in terms of variations in magma flow rate and reservoir overpressure during dyke rising. In the same way, the smaller the dimensionless number R 4 , the smaller the magma flux variation obtained during dyke rising and viceversa. This implies that the more the magma tends to be incompressible, i.e. K → ∞, the more the flow of magma injected into the dyke varies over time as the dyke propagates. As shown in figure3legend, this scenario corresponds to larger variations in the reservoir overpressure (ΔP c variation) face to the withdrawal of magma from the reservoir. Conversely, more compressible magmas, i.e. K → 0, allow for smaller variations in the magma flow rate over time, which correspond to smaller overpressure variations accompanying magma withdrawn from the reservoir. However, only small overpressure variations (ΔP c variation less than ∼ 2%) in the magma reservoir allow for the magma flow rate to remain constant during dyke propagation.

  on PdlF storage and eruptive systemThe Piton de la Fournaise (PdlF), Reunion Island, Indian Ocean, is a well-studied basaltic intraplate strato-volcano, with a supply of magma from hotspots in the mantle [see e.g.[START_REF] Lénat | Structure et fonctionnement de la zone centrale du Piton de la Fournaise[END_REF][START_REF] Aki | Seismic monitoring and modeling of an active volcano for prediction[END_REF][START_REF] Battaglia | Pre-eruptive migration of earthquakes at the Piton de la Fournaise volcano D R A F T August 12, 2009, 3:00pm D R A F T (Reunion Island[END_REF] Peltier et al., 2005, among others]. There are five conceptual models describing the shallow storage system at PdlF volcano. First,[START_REF] Lénat | Structure et fonctionnement de la zone centrale du Piton de la Fournaise[END_REF] propose a model of summit reservoir composed by many small independent shallow magma pockets, located above sea level at a depth of about 0.5-1.5 km beneath Dolomieu crater. This model is supported by the cellular automaton model of Lahaie and[START_REF] D R A F T Lahaie | A fluid-rock interaction cellular automaton of volcano mechanics: Application to the Piton de la Fournaise[END_REF] 

Fourth

  below the depth at which pre-eruptive seismic swarms are generally located, and extends at depths of 1.5-2 km below sea level. It implies a second magma chamber model volume of 1.7-4.1 km 3 . Third,[START_REF] Albarède | Residence time analysis of geochemical fluctuations in volcanic series[END_REF], by applying Fourier analysis of the Ce/Yb fluctuations in the Piton de la Fournaise lavas over the 1931-1986 period, estimates a magma residence time in the reservoir between 10 and 30 years. This result, combined with magma production rates, lead the author to conclude that the maximum size of the PdlF magma chamber may hardly exceed[START_REF] Sigmarsson | Magma residence time beneath the Piton de la Fournaise Volcano, Reunion Island, from U-series disequilibria[END_REF] uses 238 U-series desequilibria of basalts erupted at PdlF during the period 1960-1998 to estimate magma residence time and to infer a volume of 0.35 km 3 for the Piton de la Fournaise shallow magma reservoir.Five,[START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Peltier | Cyclic magma storages and transfers at Piton de La Fournaise volcano (La Réunion hotspot) inferred from deformation and geochemical data[END_REF], on tilt, extensometer and GPS data basis, describe the PdlF eruptions since 2003, as fed from a common magma chamber located at a depth of 2250-2350 m beneath the summit and with a radius of ∼ 500 m. This corresponds to a reservoir volume of about 0.5 km 3 . The eventuality of deeper storage systems has been discussed by Aki and Ferrazzini [2000], Battaglia et al. [2005], Prôno et al. [2009] and Peltier et al. [2009]. Hence, the presence, location and size of reservoirs below Piton de la Fournaise still remain an open question.As discussed in previous studies [e.g.[START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF][START_REF] Bachélery | Precise Temporal and Mechanical Identification of Dyke Emplacement using Deformation Monitoring at Piton de la Fournaise[END_REF][START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF], flank eruptions at Piton de la Fournaise generally consist of two phases: an initial vertical rise of magma followed by a nearsurface lateral migration towards the eruption site.For the2000[START_REF] Tinard | Caractérisation et modélisation des déplacements du sol associés a l'activité volcanique du Piton de la Fournaise, ile de la Réunion[END_REF] period, Peltier et al. [2005] ] observe a correlation between the duration of the lateral propagation stage and the distance of the eruptive vents from the summit. Since the seismic crisis onset coincides with the beginning of the first propagation phase [e.g.[START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF][START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF][START_REF] Aki | Seismic monitoring and modeling of an active volcano for prediction[END_REF],[START_REF] Peltier | Imaging the dynamics of dyke propagation prior to the 2000-2003 flank eruptions at Piton de La Fournaise, Reunion Island[END_REF] calculate a mean vertical speed of about 2 m s -1 , while lateral migration velocities range between 0.2 and 0.8 m s -1 . This results are similar to those reported by[START_REF] Toutain | Real time monitoring of vertical ground deformations during eruptions at Piton de la Fournaise[END_REF] 1990 PdlF eruption (i.e. 2.3 m s -1 for the verical propagation and 0.21 m s -1 for the lateral migration) and[START_REF] Bachélery | Precise Temporal and Mechanical Identification of Dyke Emplacement using Deformation Monitoring at Piton de la Fournaise[END_REF] for the eruptions taking place during the first sixteen years of the PdlF Observatory

  injection dynamics and we test the model for the dyke intrusion that fed the August 2003, Piton de la Fournaise eruption. The August 2003 PdlF eruption involves three eruptive fissures, the first within the summit zone (at 17h20 UTM), the second on the northern flank, at 2475 m asl (at 18h10 UTM), and the third lower on the northern flank, at about 2150 m asl (at 19h30 UTM) [Staudacher, OVPF report]. The eruptive activity of the first two fissures was negligible compared to the last one (the former stopped at the end of the first day of the eruption, while only the third fissure remained active throughout the eruption) [Peltieret al., 2007, and Staudacher OVPF report]. As modeled by deformation data, the intrusion preceding this PdlF eruption includes a ∼20 minutes duration (from 14h55 to 15h15 UTM) vertical dyke propagation followed by a ∼125 minutes (from 15h15 to 17h20 UTM) lateral injection toward the north[START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF]. Although the 17h20 UTM time corresponds to the opening of the first summit fracture [Staudacher OVPF report], tilt data clearly indicate that the lateral dyke has already fully propagated to the flank eruption site by this time. Indeed, no further evolution of the deformation is observed after 17h20 UTM[START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF].By inverting deformation data,[START_REF] Peltier | Constraints on magma transfers and structures involved in the 2003 activity at Piton de La Fournaise from displacement data[END_REF] estimate the origin of the August 2003 dyke at 400 ±100 meters asl, and the origin point of the lateral dyke at 1500 ±350 m asl. The lateral dyke travels 2.4 ±0.1

  [2008] for remolten basalts from the 1998 lava flow of the Piton Kapor, on the northern part of Dolomieu crater. Viscosity measurement experiments conducted at constant stress indicate (i) liquidus temperature of the 1998 sample at about 1200 • C and (ii) viscosities between 49 and 5 Pa s measured at temperatures between 1195 • C (glass transition) and 1386 • C (superliquidus), respectively.

  Figure 13 shows the effect of the density barrier on the propagation of the vertical dyke. It quantifies injected magma flux and volume and dyke vertical propagation velocity over time (figure 13A, B, C). The shape of the vertical dyke for different propagation steps is illustrated in figure 13, D. The flow of magma injected into the vertical dyke over time is ∼35 m 3 s -1 , through a fracture of width b ∼ 30 cm, which matches with the value found by Peltier et al.

  which is not limited only to elongation. It supports the idea of direct scaling between the magma flux intruding the solid and the observed seismicity rate through volumetric deformation. On the other hand it rejects a direct scaling between the seismicity rate and the dyke propagation velocity. In this sense the seismicity rate recorded at low-viscosity volcanoes during dyke intrusion represents the response of the solid matrix to a stationary volumetric deformation induced by the intrusion itself.Obeying the laws governing fluid dynamics, the constant magma flux can be sustained by either, a constant or a slightly variable overpressure at the base of the dyke. The model we propose, however, does not allow for assert-with respect to the other. Indeed it allows to investigate the implications of such a stationary flux hypothesis. For the vertical propagation, once the geometry and the physical parameters are fixed, the constant influx assumption bounds the range of possible initial magma overpressures and volumes of the magma reservoir. Specifically, only a magma reservoir with sufficiently small initial overpressure and sufficiently large volume is able to sustain a dyke injection fed at constant flux.

2. 2

 2 MPa), and the small variations of this overpressure accompanying dyke propagation (i.e. ≤ 6%) we obtain from the computation, argue for this D R A F T August 12, 2009, 3:00pm D R A F T eruption to belong to an early stage of a PdlF refilling cycle [see Peltier

  August 2003 PdlF eruption well reproduce the values estimated by Peltier et al. [2007] on deformation data basis. It further support the validity of our model.In conclusion, the dyke propagation model we propose, allows for validating the constant magma influx initial condition as geophysically realist for volcano processes.
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 1112133 Figure 11. Lateral dyke propagation: average propagation velocity versus influx
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