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Assessing the SMOS Soil Moisture Retrieval
Parameters With High-Resolution NAFE’06 Data
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Olivier Merlin, Jeffrey Phillip Walker, Rocco Panciera, Maria José Escorihuela, and Thomas J. Jackson3

Abstract—The spatial and temporal invariance of Soil Moisture4
and Ocean Salinity (SMOS) forward model parameters for soil5
moisture retrieval was assessed at 1-km resolution on a diurnal ba-6
sis with data from the National Airborne Field Experiment 2006.7
The approach used was to apply the SMOS default parameters8
uniformly over 27 1-km validation pixels, retrieve soil moisture9
from the airborne observations, and then to interpret the differ-10
ences between airborne and ground estimates in terms of land use,11
parameter variability, and sensing depth. For pastures (17 pixels)12
and nonirrigated crops (5 pixels), the root mean square error13
(rmse) was 0.03 volumetric (vol./vol.) soil moisture with a bias of14
0.004 vol./vol. For pixels dominated by irrigated crops (5 pixels),15
the rmse was 0.10 vol./vol., and the bias was −0.09 vol./vol.16
The correlation coefficient between bias in irrigated areas and17
the 1-km field soil moisture variability was found to be 0.73,18
which suggests either 1) an increase of the soil dielectric roughness19
(up to about one) associated with small-scale heterogeneity of20
soil moisture or/and 2) a difference in sensing depth between an21
L-band radiometer and the in situ measurements, combined with22
a strong vertical gradient of soil moisture in the top 6 cm of23
the soil.24

Index Terms—Airborne experiment, calibration, L-band ra-25
diometry, National Airborne Field Experiment (NAFE), retrieval26
algorithm, soil moisture, Soil Moisture and Ocean Salinity27
(SMOS).28

I. INTRODUCTION29

THE SOIL Moisture and Ocean Salinity (SMOS, [1])30

retrieval algorithm for soil moisture is based on an31

L-band emission (forward) model calibrated for different soil32

and vegetation classes [2], [3]. The main parameters involved33

in the model are the near-surface soil moisture, soil texture, soil34

surface roughness, soil effective temperature, and vegetation35

optical depth. In the SMOS level 2 processor [4], brightness36

temperature is simulated at a 1–4-km resolution by the forward37

model (land use and land cover are assumed to be uniform38

at 1–4-km resolution), aggregated to the SMOS observation39

scale (∼40 km), and then compared with the SMOS observed40

brightness temperature. The angular and polarization capa-41

bilities of the SMOS antenna will allow retrieval of several42

additional parameters (e.g., vegetation optical depth and soil43
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roughness). However, the performance of multiparameter re- 44

trieval approaches [5] depends on how well the parameters 45

bounds are estimated, i.e., a priori knowledge of minimum and 46

maximum values. Retrieval assumes that the parameters are 47

rather stable at 1–4-km resolution. However, few experiments 48

have provided multiple angle and polarization L-band data at 49

the intermediate resolution of ∼1 km to verify this assumption. 50

One objective of the National Airborne Field Experiment 51

2006 (NAFE’06) was to map L-band brightness temperature 52

at 1-km resolution over a range of surface conditions includ- 53

ing grassland (pasture and fallow), dry land cropping (wheat, 54

barley, and oats) and irrigated cropping (wheat, alfalfa, canola, 55

rice, and corn) [6]. During NAFE’06, ground measurements of 56

the 0–6-cm soil moisture were made coincident with 1-km res- 57

olution flights on ten days during the three-week campaign that 58

included two rainfall events of about 7 and 13 mm. NAFE’06 59

provided a unique data set to test the spatial invariance of 60

retrieval parameters over various land uses, vegetation covers, 61

and surface conditions at 1-km resolution. The approach used 62

was to apply SMOS default parameters uniformly over 27 1-km 63

validation pixels, retrieve surface soil moisture from the air- 64

borne observations, and then to interpret differences between 65

airborne and ground estimates in terms of land use, parameter 66

variability, and sensing depth. 67

II. L-BAND EMISSION MODEL 68

The SMOS forward model is based on the L-band Mi- 69

crowave Emission of the Biosphere model described in [2]. It 70

includes the tau-omega formulation [7] to express the polarized 71

(H or V) brightness temperature as a function of incidence 72

angle, soil effective temperature, soil emissivity, and nadir op- 73

tical depth (τ) and single-scattering albedo (ω) of the canopy. 74

The soil microwave emissivity is calculated using the incidence 75

angle, the Fresnel equations, and the soil dielectric permittivity 76

that is computed using the Dobson model [8] and ancillary soil 77

texture. The soil roughness is accounted for using the approach 78

described in [9], which is based on two best fit parameters H 79

and Q. The nadir optical depth τ is related to vegetation water 80

content (VWC) by τ = b × VWC [10] with b a coefficient that 81

is generally obtained from field measurements. In this letter, 82

only the H-polarization (and H-polarized parameters) will be 83

considered. 84

Since the main objective of this letter is to assess the stability 85

of SMOS forward model parameters at a 1-km resolution, 86

the SMOS default parameters were used. The soil effective 87

temperature was computed based on the parameterization of 88

[11] using soil temperature in the 0–5-cm soil layer, deep 89

soil temperature (50 cm), and the default parameter values 90

presented in [2]. The effects of temperature gradients within the 91
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TABLE I
MEAN 1-km FIELD VARIABILITY OF GROUND MEASUREMENTS AND RMSE, CORRELATION COEFFICIENT, SLOPE OF THE LINEAR

REGRESSION, AND MEAN DIFFERENCE (BIAS) BETWEEN 1-km RESOLUTION RETRIEVALS AND 1-km FIELD AVERAGES FOR

EACH OF THE 27 VALIDATION PIXELS. THE NUMBER OF SAMPLING DAYS IS ALSO LISTED

canopy were assumed to be minimal by assuming the vegetation92

temperature throughout the canopy is equal to the near-surface93

soil temperature. The soil roughness parameter H was set to94

0.1 and the polarization-mixing parameter Q to 0 [2]. The b95

parameter was set to a value 0.15, which is representative of96

most agricultural crops [10], and the single scattering albedo ω97

to 0.05 [2]. Water interception in vegetation was assumed to be98

negligible. Note that one pixel included 20% of rice under flood99

irrigation. The contribution of standing water was removed100

from the total emission by simulating the L-band emission over101

water as a function of surface water temperature and incidence102

angle [12].103

III. DATA104

NAFE’06 was undertaken during three weeks in Novem-105

ber 2006 over a 40 by 60 km area in southeastern Australia106

(−34.9◦ N; 146.1◦ E). In this letter, the study area is composed107

of 27 1-km resolution pixels included in three farms noted as108

Y2, Y9, and Y12. Land use and land cover are listed in Table I.109

Within each 1-km area, the 0–6-cm soil moisture was measured110

on a 250-m resolution grid using a Hydraprobe. An average of111

three successive measurements ∼1 m apart was made at each112

node of the sampling grid, resulting in about 50 measurements113

within each 1-km pixel. Note that the calibration equation that114

was applied to all measurements is site specific [13].115

TABLE II
MEAN AND STANDARD DEVIATION OF 0–6-cm SOIL MOISTURE,

H-POLARIZED BRIGHTNESS TEMPERATURE, AND NEAR-SURFACE SOIL

TEMPERATURE FOR EACH OF THE TEN SAMPLING DAYS AT TIME OF

AIRCRAFT OVERPASS. TWO RAINFALL EVENTS OCCURRED DURING

THE THREE-WEEK CAMPAIGN WITH ∼7 mm ON JD 306-307
AND ∼13 mm ON JD 316-317

Concurrently with ground observations, the H- and 116

V-polarized brightness temperature was measured at 1-km res- 117

olution by the airborne Polarimetric L-band Multibeam Ra- 118

diometer (PLMR). Flights were undertaken in the window 119

8:00 A.M.–10:30 A.M. on Julian day (JD) 304, 306, 308, 120
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Fig. 1. (Left) Ground-based measurement of VWC versus LAI for each vegetation type in the study area, and (right) time series of MODIS eight-day LAI
product extracted for each 1-km pixel.

309, 311, 313, 320, and 322 and in the window 11:00 A.M.–121

1:30 P.M. on JD 317 and 318. The same flight lines were122

kept across the campaign to obtain approximately the same123

incidence angle over each pixel. Note that changes in aircraft124

attitude were accounted for during processing by correcting the125

zero tilt and roll incidence angle of the six beams (which are126

±7◦, ±21.5◦, ±38.5◦) with respect to the topography. Details127

about PLMR and its calibration can be found in [14]. Some128

minor occurrences of sunglint were detected in the NAFE’06129

area, but not over the sampling areas [15].130

To compare ground and airborne observations, the point-131

scale soil moisture measurements were averaged at 1-km res-132

olution within each of the 27 validation pixels. The along133

track 1-km resolution radiometric measurements (together with134

incidence angle) were also averaged within each 1-km pixel.135

Note that the mean number of PLMR acquisitions along a136

1-km run was about 30 (with a time step of about 1.5 s and an137

aircraft speed of 200 km/h). During the three-week experiment,138

the mean soil moisture ranged from about 0.05 to 0.20 vol./vol.139

corresponding to a mean brightness temperature of 270 K and140

220 K, respectively (see Table II).141

VWC was estimated from MODIS/Terra 1-km resolution142

eight-day LAI products on JD 297, 305, 313, and 312 using143

the relationship VWC = 0.5 LAI [16]. VWC maps were then144

linearly interpolated between dates and regridded on the same145

1-km grid as processed PLMR brightness temperature. The146

relationship between VWC and LAI during NAFE’06 is shown147

in Fig. 1(a) using ground observations obtained during the148

campaign. The slope 0.5 appears to hold for all vegetation types149

encountered except for corn, which has a slope of about three.150

However, there was very little corn in the study area. The time151

series of MODIS LAI for grazing and cropping pixels is shown152

in Fig. 1(b). At 1-km resolution, LAI ranged from 0.4 to 0.8153

and generally decreased by about 0.1 during the three-week154

experiment.155

To compute effective soil temperature, near-surface soil tem-156

perature was estimated by the MODIS/Terra 1-km resolution157

daily temperature on clear sky days (JD 304, 309, 311, 313,158

318, 320, and 322) and by the average of the 12 (six stations159

distributed in the study area with two replicates per station)160

simultaneous −1-cm soil temperature measurements on cloudy161

days (JD 306, 308, and 317). Note that the mean ground soil162

temperature was extracted for each pixel at the time of aircraft163

overflight (ranging from 8:30 A.M. to 12:30 A.M.). Table II 164

presents the time series of the mean and standard deviation of 165

near-surface soil temperature. Soil temperature at 50-cm depth 166

was also estimated from permanent monitoring stations in the 167

study region. 168

Soil texture was analyzed for 12 0–5-cm soil samples col- 169

lected in the study area. The mean and standard deviation of 170

sand and clay fractions were estimated as 0.26 ± 0.10 and 171

0.27 ± 0.11, respectively. The highest measured sand fraction 172

was 0.59 (with a clay fraction of 0.11) and the highest clay 173

fraction was 0.49 (with a sand fraction of 0.11). In this letter, 174

the sand and clay fractions are assumed to be uniform and 175

set to 0.3. 176

Soil surface roughness was measured with a pin profiler 177

at five locations within each farm. As the link between the 178

measured geometrical roughness and H parameter is not well 179

known [2], those measurements were not used in this letter. 180

IV. RETRIEVAL RESULTS 181

Airborne soil moisture was retrieved by minimizing a cost 182

function. This cost function is defined as the root mean square 183

difference between the H-polarized brightness temperature 184

modeled by the radiative transfer model and that observed by 185

the aircraft. All parameters were uniformly set to the values 186

presented above, i.e., soil moisture was the only free parameter 187

in the minimization. The V-polarized brightness temperature 188

was not included in the cost function to simplify the interpreta- 189

tion of retrieval results due to the uncertainty of polarization 190

dependence on the parameters (e.g., roughness). Note that 191

the retrieval was done at the 1-km resolution and the effects 192

of mixed surface in the 1-km resolution footprint were not 193

accounted for except in the presence of standing water. 194

Fig. 2 compares the 1-km field soil moisture average (cross) 195

and variability (whisker) with the soil moisture retrieval for 196

farms Y2, Y9, and Y12. The 1-km field variability of soil 197

moisture was computed as the standard deviation of the ground 198

measurements within the 1-km PLMR pixel. In most cases, 199

the difference between ground measurements and airborne 200

estimates was smaller than the 1-km field variability (see 201

Table I). However, a significant bias was apparent for the five 202

irrigated pixels (labeled Y9g, Y12a,d,e,g), although only one 203

pixel (Y9g) contained a measurable fraction (20%) of standing 204

water. Table I lists for each of the 27 validation pixels the root 205
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Fig. 2. One-kilometer (cross) field average and (whisker) variability of
in situ measurements versus retrievals at the 27 1-km resolution validation
pixels. Pixel label and mean incidence angle are also indicated.

mean square error (rmse), the correlation coefficient, and the206

bias between airborne retrievals and ground measurements. For207

the 22 nonirrigated pixels, the rmse is 0.033 (±0.009) vol./vol.208

with a correlation coefficient of 0.85 (±0.07) and a bias of 0.004209

(±0.010) vol./vol. when using the SMOS default parameters.210

For the five irrigated pixels, the rmse is 0.10 (±0.032) vol./vol.211

with a correlation coefficient of 0.81 (±0.10) and a bias of212

−0.093 (±0.034) vol./vol.213

The bias observed for the airborne soil moisture estimates in214

the five irrigated pixels could be explained by several factors:215

The spatial variability of soil texture, soil roughness and/or216

vegetation. First, soil texture (i.e., sand and clay fractions)217

impacts the modeled soil emissivity, which in turn impacts the218

retrieved soil moisture. However, when using the parameters219

of the soil with the highest measured sand fraction and then220

those with the highest measured clay fraction in the retrieval221

algorithm (results not shown), the root mean square difference222

between the two output data sets was only 0.027 vol./vol.,223

which is much smaller than the observed bias (0.09 vol./vol.).224

Soil geometric roughness impacts the slope of the relation-225

ship between soil moisture retrievals and ground measurements.226

In order to assess the variability of soil geometric roughness at227

1-km resolution, we examined the slope of the linear regression 228

between airborne and ground estimates (Table I). The slope 229

is 0.87 ± 0.21 for grazing pixels, 0.56 ± 0.13 for dry land 230

cropping pixels, and 0.65 ± 0.20 for irrigated cropping pixels. 231

The difference in the slopes between the grazing and cropping 232

classes was associated with an increase in roughness with 233

agricultural practices in cropped fields (e.g., plowing, irrigation 234

rows, etc.). However, no significant difference in the slopes 235

was observed between the irrigated and nonirrigated areas. 236

Consequently, soil geometric roughness is not considered to be 237

the main cause of the bias observed in the irrigated pixels. 238

The last factor considered was vegetation. The different 239

effects (attenuation, scattering and emission) of vegetation at L- 240

band generally result in an increase of the surface emission. An 241

increase of vegetation optical depth would thus make the soil 242

moisture retrieval lower. However, vegetation cannot explain a 243

0.09 vol./vol. decrease in retrieved soil moisture because vege- 244

tation cover was relatively low at 1-km resolution (LAI ranged 245

from 0.4 to 0.8). Moreover, the b parameter was fixed in the 246

higher range for crops (0.05–0.20), which already maximizes 247

the vegetation impact on the modeled brightness temperature. 248

As an illustration, the irrigated canola in Y12e was harvested 249

during the middle of the campaign, but harvesting did not 250

remove the bias on retrievals (see Fig. 2). 251

If none of the parameters of the L-band emission model 252

can provide an obvious explanation of the bias found for the 253

airborne estimates, then one may argue that perhaps the ground 254

sensor calibration is not valid in irrigated areas. Four out of the 255

five irrigated pixels are located in the most clayey farm Y12, 256

and it is known that clay fraction can potentially increase the 257

ground sensor response [13]. However, soil type was similar 258

at the farm scale, and no significant bias was observed for the 259

five nonirrigated pixels of Y12 (see Fig. 2). Consequently, the 260

calibration of the ground sensor, which mainly depends on soil 261

type, is considered to be reliable for irrigated areas as well. 262

Having considered the uncertainty in retrieval model inputs 263

and ground measurement data, it was concluded that the poor 264

retrieval results in irrigated areas was due to either a difference 265

in sensing depth between ground and airborne measurements 266

and/or an error in the modeling of soil roughness. The first 267

hypothesis was to consider the different depths of soil involved 268

in the direct and remote measurements. During or immediately 269

after irrigation, the soil moisture of the first layer sensed by 270

the L-band radiometer (0–3 cm according to [17]) could be 271

different to the soil moisture of the lower layer (3–6 cm) that 272

instead affects the soil moisture measurements carried out by 273

using 0–6-cm Hydraprobes. This hypothesis is supported by 274

the relatively high correlation (estimated to 0.73) between the 275

bias on retrievals and the 1-km field soil moisture variability 276

[see Fig. 3(a)]. However, no information on the soil moisture 277

profile in the top 6 cm was available to confirm the link between 278

vertical and horizontal variability. The second hypothesis was 279

to consider an increase of the “dielectric roughness” with the 280

variability of moisture within the soil. To illustrate the possible 281

impact of the soil moisture variability on soil dielectric rough- 282

ness, parameter H was retrieved in the four irrigated pixels of 283

Y12 by setting soil moisture to ground measurements. Fig. 3(b) 284

shows that the retrieved effective roughness does increase (up 285

to about one) as a function of the 1-km field soil moisture 286

variability with a correlation coefficient estimated to 0.67. 287
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Fig. 3. Difference between (a) airborne and ground estimates and (b) retrieved
soil roughness parameter H versus 1-km field soil moisture variability includ-
ing data from the four irrigated pixels in Y12.

V. CONCLUSION288

The temporal and spatial invariance of the SMOS forward289

model parameters was assessed at a 1-km resolution on a290

diurnal basis using the NAFE’06 data. The approach used291

was to apply the SMOS default parameters uniformly over 27292

1-km pixels, retrieve soil moisture from the airborne observa-293

tions, and then to interpret differences between airborne and294

ground estimates in terms of land use, parameter variability, and295

sensing depth. For nonirrigated (grazing and cropping) areas,296

the rmse on retrievals was 0.03 vol./vol. and the correlation297

coefficient with ground measurements was 0.85. The impact298

of soil geometric roughness was noted by correlating the slope299

of the linear regression between airborne and ground estimates300

with agricultural practices. A roughness parameter H = 0.1301

was found to be appropriate for grazing areas (slope was302

about one), while a slightly higher roughness was identified303

for cropping areas (slope was about 0.7). A significant mean304

difference of −0.09 vol./vol. between airborne and ground305

estimates was observed in the five irrigated pixels. As no306

parameter (soil texture, soil geometric roughness, vegetation)307

could explain this bias, it is suggested that either a strong308

vertical gradient of near-surface soil moisture in irrigated areas309

made the 0–6-cm ground measurements generally wetter than310

the 0–3-cm retrievals and/or the small-scale variability of soil311

moisture made the effective soil roughness increase up to312

about one.313
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