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Abstract— The emission of bare soils at microwave L-band (1 

– 2 GHz) frequencies is known to be correlated with surface soil 
moisture. Roughness plays an important role in determining soil 
emissivity although it is not clear which roughness length scales 
are most relevant. Small-scale (i.e. smaller than the resolution 
limit) inhomogenities across the soil surface and with soil depth, 
caused by both, spatially varying soil properties and topographic 
features may affect soil emissivity. In this study, roughness 
effects were investigated by comparing measured brightness 
temperatures of well-characterized bare soil surfaces with the 
results from two reflectivity models. The selected models are the 
Air-to-Soil (A2S) transition model and Shi’s parameterization of 
the Integral Equation Model (IEM). The experimental data taken 
from the Surface Monitoring Of the Soil Reservoir Experiment 
(SMOSREX) consist of surface profiles, soil permittivities and 
temperatures, and brightness temperatures at 1.4 GHz with 
horizontal and vertical polarization. 

The types of correlation functions of the rough surfaces were 
investigated as required to evaluate Shi’s parameterization of the 
IEM. The correlation functions were found to be clearly more 
Exponential than Gaussian. Over the experimental period the 
diurnal mean RMS-height decreased, while the correlation length 
and the type of correlation function did not change. Comparing 
the reflectivity models with respect to their sensitivities to the 
surface RMS-height and correlation length revealed distinct 
differences. Modeled reflectivities were tested against 
reflectivities derived from measured brightness, which showed 
that the two models perform differently depending on the 
polarization and the observation angle. 
 

Index Terms— electromagnetic scattering by rough surfaces, 
microwave radiometry, permittivity, soil moisture 
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I. INTRODUCTION 
nergy fluxes through the terrestrial surface layer are 

major drivers of climate. For land areas with sparse or no 
vegetation, the amount of this energy exchange is 
fundamentally linked with the moisture in the soil. Techniques 
for monitoring the surface moisture on the spatial scales 
relevant for climate and meteorological research are therefore 
of particular interest [1-5]. One such technique is passive 
microwave remote sensing at L-band (1 - 2 GHz), which has 
an almost 25-year long history [6, 7]. It is used in the 
European Space Agency’s (ESA) Soil Moisture and Ocean 
Salinity (SMOS) mission, which deduces soil surface moisture 
from thermal brightness at 1.4 GHz with near global coverage 
every three days and a spatial resolution of approximately 
40 × 40 km2 [8, 9]. NASA’s Soil Moisture Active and Passive 
(SMAP) mission will use a combined radiometer and high-
resolution radar to measure surface soil moisture and freeze-
thaw state. The mission is recommended by the U.S. National 
Research Council Committee on Earth Science and 
Applications from Space for launch between 2010 and 2013 
[10]. 

Retrieving soil moisture from thermal microwave radiation 
is significantly affected by soil roughness [11-16]. Hence, the 
surface emission model used for interpreting measured 
radiance is one of the essential components in a retrieval 
algorithm. The text books [17-20] give an exhaustive review 
of the commonly used surface emission models relevant for 
passive microwave remote sensing. Most of the physical 
models, however, require significant computing effort and 
detailed ground truth information, which hampers their 
operative usage in retrieving algorithms. For this reason, easy 
to use semi-empirical approaches such as the Q/H model [21, 
22] are usually employed in retrieval algorithms. 

This study aims to test the application of two surface 
reflectivity models for retrieving the surface moisture of bare 
soils from measured L-band radiation. The two approaches 
studied are the so-called Air-to-Soil (A2S) transition model 
([12] and chapter 4.7 in [23]) and the physical Integral 
Equation Model (IEM) [17]. With regard to the application in 
a retrieval algorithm, the IEM model is evaluated using Shi’s 
parameterization of a large database of IEM simulations. The 
A2S model describes the effect of soil roughness by matching 
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the impedance between the dielectric constants of air and the 
topsoil. The gradual dielectric transition from air to soil is 
represented using a semi-empirical effective medium 
approach. As demonstrated in [24-26], a similar approach can 
also be used for modeling the reflectivity of soils covered with 
sparse vegetation or litter provided that scattering is not 
dominant. 

The A2S and the IEM model are compared in this study and 
the model results are tested against the L-band signatures 
measured. The steps involved in the comparison are explained 
in section II, and the experimental dataset is presented in 
section III. Results and discussion are the content of section 
IV and conclusions are provided in section V.  

II. MODELS AND METHODS 

A. Review of Existing Surface Reflectivity Models 
The emissivity of a bare soil surface at horizontal (p = H) or 

vertical polarization (p = V) is described as 1 – Rp
RM, where 

Rp
RM is the surface reflectivity determining the brightness 

temperature Tp
B measured with a RadioMeter (RM). Two 

categories of surface reflectivity model can be distinguished: 
i) physical approaches that seek solutions to Maxwell’s 
equations by considering the boundary conditions on the 
rough surface; ii) empirical approaches that rely exclusively 
on observations. 

The fast model developed by Shi et al. (2002) [27] can be 
considered physical, as it is a representation of reflectivities 
computed with the physical Integral Equation Model (IEM) 
[17]. The Air-to-Soil (A2S) transition model ([12] and chapter 
4.7 in [23]) can be classified somewhere in between the 
physical and the empirical approaches. The physical aspect of 
the A2S model is the concept of a vertically extended 
dielectric transition zone to model the gradual increase from 
the air to the bulk soil permittivity (impedance matching). The 
more empirical part of the A2S model is the representation of 
this dielectric transition zone by considering exclusively 
topographic features smaller than the resolution limit in 
combination with an empirical dielectric (refractive) mixing 
model. 

According to [27] soil moisture can be retrieved with an 
accuracy of ≈ 3 % if Shi’s fast model is used. An analysis of 
horizontally polarized L-band signatures by means of the Shi 
reflectivity model and the A2S transition model is described in 
[12]. Mean deviations between the modeled and measured soil 
reflectivities were found to be 0.079 if the Shi model is 
applied and 0.029 if the A2S transition model is applied. 

1) Shi’s Parameterization of the IEM Model 
Shi’s fast model is used for the efficient computation of 

surface reflectivities predicted by the Integral Equation Model 
(IEM). The fast model uses simulated reflectivity data derived 
from an advanced version of the IEM [28]. The IEM-
simulated database consists of rough surface reflectivities for 
1.4 GHz with horizontal (p = H) and vertical (p = V) 
polarization and of reflectivities computed for Exponential (S 
= E) and Gaussian (S = G) auto-correlation functions CS(r) of 

the rough surfaces. Further input parameters to Shi’s fast 
model are the surface Root Mean Square (RMS) height h, the 
correlation length lc, the surface permittivity εs, and the 
observation angle α relative to the vertical. The ranges of the 
IEM model parameters included in Shi’s parameterization are: 
2.5 mm ≤ h ≤ 35 mm; 25 mm ≤ lc ≤ 300 mm; 20° ≤ α ≤ 60°; 
and 3.3 ≤ εs ≤ 28.9 (corresponding to the soil moisture range 
0.02 m3m-3 ≤ θ ≤ 0.44 m3m-3 if the empirical relation [29] is 
used). 

Shi fast model uses a parameterization of IEM-simulated 
reflectivities Rp

IEM, consisting of a coherent (Rp
coh.) and a non-

coherent term (Rp
non-coh.) [27]: 

IEM coh. non-coh. F F
4exp cos

pp p p p p p BR R R R h A Rπ α
λ

⎡ ⎤⎛ ⎞= + = ⋅ − +⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 (1) 

Rp
F is the Fresnel reflectivity, λ is the wavelength (≈ 

0.21 m), and Ap, Bp are parameters given in [27] that depend 
on p, α, h, lc and on the type of correlation function. As can 
be seen from (1), the coherent part Rp

coh. does not depend on 
the correlation length lc while the non-coherent part Rp

non-coh. 
depends on h and lc. 

The hexagons depicted in the flow chart in Fig. 1 show the 
inputs h, S, lc, εs, α, and p to be specified in Shi’s 
parametrization and how they relate to the A2S model 
described below. 

2) Air-to-Soil Model (A2S) 
The uppermost soil horizon exhibits a highly complex 

three-dimensional structure in terms of the dielectric 
properties with feature sizes in the range of centimeters. These 
dielectric heterogeneities result not only from the surface 
roughness, but also from spatial variations in moisture, 
texture, and structure. 

The evaluation procedure and the basic ideas implemented 
in the A2S transition model are shown in the diagrams in Fig. 
1 and 2. The model takes into account how many of the soil 
topographic features are smaller than the resolution limit at L-
band frequencies, which can be estimated by the Bragg limit 
ΛBragg (λ = wavelength, α = observation angle): 

Bragg 2 sin
λ

α
Λ =  (2) 

The Bragg limit ΛBragg, however, is not a sharp criterion to 
distinguish between the small features to be treated in the 
sense of full wave electromagnetism and the larger features 
that can be modeled with geometric optics. The resolution 
limit ΛBragg gives the order of magnitude of the spatial 
dimension in which the intermediate method of physical 
optics applies. From now on the expression “small-scale” is 
used for feature sizes with dimensions smaller than the 
resolution limit. 

Dielectric small-scale heterogeneities (cross-section shown 
in Fig. 2a) can therefore be treated in the sense of the quasi-
static limit, where the mean field is homogeneous and extends 
over a region much larger than the feature size. This makes it 
possible to postulate an A2S transition zone (Fig. 2b) 
matching the impedance between the air and bulk soil. Within 
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this zone, the effective permittivity ε(z) [30] gradually 
increases from the air value (εa = 1) to the permittivity εs > εa 
of the bulk surface soil.  

The apparent dielectric profile ε(z) depicted in Fig. 2d is 
modeled with the refractive mixing model [30, 31], taking into 
account the bulk soil and air phases: 

( ) ( ) ( )[ ] 21 2 1 2
s a1z z zε ν ε ν ε⎡ ⎤= ⋅ + − ⋅⎣ ⎦  (3)

 Thereby, the volume fraction ν(z) of the bulk soil phase 
(Fig. 2c) increases with depth z, whereas the air fraction 
1 - ν(z) decreases to zero within the air-to-soil transition zone. 
In [23] (chapter 4.7), where the A2S model is explained in 
detail, ν(z) is represented by an empirical relation comprising 
its vertical extent. For our study, either measured or 
synthetically generated topography data are available, 
allowing ν(z) to be modeled as the cumulated probability 
density of the small-scale surface height (see section C). 

Imaginary parts of bulk soil permittivities εs used in (3) 

were not considered as only real parts were available from the 
capacitive in-situ measurements (see section III). Finally, once 
the dielectric depth profile ε(z) is modeled from the small-
scale topography, the rough soil reflectivities Rp

A2S (p = H, V) 
are calculated by applying a coherent radiative-transfer model 
for layered dielectric media. A matrix formulation of the 
boundary conditions at the layer interfaces derived from 
Maxwell’s equations is used [32]. This coherent model was 
evaluated for dielectric layers with thickness d = 0.1 mm << λ, 
making the reflectivities Rp

A2S independent of d. 

B. Microwave Radiative Transfer 
L-band brightness temperatures Tp

B with horizontal (p = H) 
and vertical (p = V) polarization measured with the 
RadioMeter (RM) are used for deriving soil reflectivities Rp

RM 
(thin-line boxes in Fig. 1). This requires a radiative transfer 
model expressing Tp

B by means of Rp
RM, the effective physical 

temperature T [33] of the soil surface layer, and the mean sky 
brightness temperature TB,sky ≈ 6.3 K [34]: 

( )B RM B,sky RM1p p pT T R T R= − +  (4)
 Equation (4) fulfills Kirchhoff’s law and can easily be 

solved for Rp
RM. Validations of the reflectivity models 

presented in section IV.C are performed by means of daily 
mean values 〈Rp

RM〉 computed from instantaneous Rp
RM. This 

approach was chosen as reliable topography information, 
which is required as input to the reflectivity models, was 
available on a daily basis only. 

C. Rough Surfaces 
The purpose of the following sub-sections 1) - 5) is to 

describe the modeling steps depicted in Fig. 1. Following this, 
reflectivities Rp

M (p = H, V; M = A2S, IEM) at the observation 
angles α are modeled from topography profiles f(x) of random 
rough soil surfaces with permittivities εs. The surface 
topography f(x) is either measured directly (see section III), or 
artificially generated (see section II.C.1)). To derive Rp

A2S, the 
small-scale (SS) topography fss(x) is extracted from f(x) 
(section II.C.2)), and then the soil fraction profile ν(z) is 
determined (section II.C.3)), leading to the dielectric profile 
ε(z) (3) used for computing Rp

A2S. The computation of the 
RMS-height h, the correlation function C(r), and the 

Fig. 1.  Illustration of the procedures applied for deriving rough surface 
reflectivities Rp

M (p = H, V; M = IEM, A2S, RM). Hexagons indicate model 
inputs. Reflectivities Rp

IEM computed with the IEM model (dashed-line
boxes) require the topography parameters h, lc, S = E, G (either pre-set or 
derived from topography profiles f(x)). Reflectivities Rp

A2S computed with the 
A2S model (solid-line boxes) directly use f(x) as input. Reflectivities Rp

RM

(thin-line boxes) are derived from measured brightness and soil temperatures
Tp

B and T. 

Fig. 2.  Illustration of the ideas implemented in the A2S transition model. A 
cross-section of the small-scale topography is shown as a sketch in a); the 
postulated air-to-soil transition zone is shown in b); the volumetric soil 
fraction ν(z) and the dielectric profile ε(z) computed with (3) are shown in c) 
and d), respectively. 
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correlation length lc of f(x) required for computing Rp
IEM is 

described in section  II.C.4). Section II.C.5) introduces the 
quantity EG used for rating the type of measured correlation 
function to be specified in Shi’s fast model. 

1) Generating Surface Topographies 
As the flow-chart in Fig. 1 shows with the solid-line boxes, 

modeling Rp
A2S requires the topography data of a rough 

dielectric surface. For this purpose, one-dimensional random 
rough surface profiles fS(x) with either Gaussian (S = G) or 
Exponential (S = E) correlation functions CS(r) are generated: 

( )
2

G 2
exp rC r

lc
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 and ( )E exp
r

C r
lc

⎛ ⎞
= −⎜ ⎟⎜ ⎟

⎝ ⎠
 (5) 

Thereby, r denotes the horizontal distance in x between two 
points of the surface and CS(r) evaluated at r expresses the 
statistical correlation between the surface heights fS(x) and 
fS(x + r). From CG(lc) = CE(lc) = e-1 ≈ 0.37, it follows that the 
correlation between two surface heights at the characteristic 
distance r = lc is the same for the Exponential and the 
Gaussian surface type. 

For generating Exponential and Gaussian profiles fS(x) of 
length L, zero mean 〈fS(x)〉 = 0, RMS-heights h, and 
correlation lengths lc, the approach described in [35] (chapter 
4) was implemented. The power spectral densities [19] 
(chapter 4, section 1.4): 

( )
2 2 2

G exp
42

h lc k lcW k
π

⎛ ⎞⋅
= −⎜ ⎟

⎝ ⎠
 and ( ) ( )

2

E 2 21
h lcW k

k lcπ
=

+
 (6) 

associated with the two surface types express the abundance 
of features with a certain spatial wave number k = 2π / Λ 
present in fS(x) (Λ = spatial wavelength). As a consequence of 
the exponential form of WG(k) associated with the Gaussian 
surface fG(x), the spectral components with k ≥ klc ≡ 2π / lc 
(corresponding to Λ ≤ lc) are clearly less present in a 
Gaussian than in an Exponential surface generated for the 
same lc and h. Quantitatively this can be expressed by the 
fraction EGS, weighting the spectral components with spatial 
wavelengths Λ shorter than lc: 

( )

( )

5

1

0

1 Erf 10 for G
2 ArcCot2 10 for E

lc

S
k

S

S

W k dk
S

EG
SW k dk

π

π π

∞

−

∞ −

⎧ − ≈ =⎪≡ = ⎨
≈ =⎪⎩

∫

∫

 (7) 

The distinct difference between EGG and EGE suggests that 
this quantity can be applied to measured topography data to 
decide whether the surface is Exponential or Gaussian. This 
will be pursued in section II.C.5) and applied in section IV.A 
4.1 to investigate whether the type of correlation function 
changes with time as a consequence of progressive weathering 
of the soil surface. 

2) Filtering of Small-Scale Features 
The A2S transition model uses exclusively small-scale 

surface features fss(x) with spatial dimensions smaller than the 
resolution limit (Fig. 1 and 2) to compute Rp

A2S. As mentioned 
in section II.A.2), the Bragg resolution limit ΛBragg is not an 

exact lower limit for the dimension of features that can be 
electromagnetically resolved. Considering this, it has to be 
emphasized that defining “small-scale” as features with 
dimensions smaller than ΛBragg means there is a certain model 
uncertainty. 

However, a discrete Fourier high-pass filter with the Bragg 
resolution limit (2) chosen for the cut-off wavelength is 
applied to extract the Small-Scale (SS) features fss(x) with Λ ≤ 
ΛBragg from f(x). Applying discrete Fourier transformations to 
a profile of length L requires first transforming the data into 
an equidistant form [xj, zj] (j = 1,…,N) with increments Δx = 
L / (N - 1) along the horizontal direction x. Subsequently, the 
data [L+j⋅Δx, zN-j] (j = 1,…,N-1) are appended to [xj, zj], 
resulting in a periodic sequence 2L in length and N0 = 2N-1 
data points. This complemented periodic dataset can now be 
represented by its Fourier series: 

( )0 1

0 0

1
exp 2

N

j k
k

k j
z c i

N
π

−

=

⎛ ⎞⋅ −
= ⎜ ⎟⎜ ⎟

⎝ ⎠
∑ , (8) 

with the complex Fourier coefficients ck given by: 
( )0

10 0

11 exp 2
N

k j
j

k j
c z i

N N
π

=

⎛ ⎞−
= ⋅ −⎜ ⎟⎜ ⎟

⎝ ⎠
∑  (9) 

Then, the small-scale features [xj, zj
ss] (j = 1,…,N) required 

to compute the soil fraction ν(z) are extracted by evaluating 
the Fourier series (8) with ck computed from (9) for Λ = 2L / k 
≤ ΛBragg, and otherwise with ck = 0. 

3) Soil Fraction in the A2S Transition Zone 
The soil fraction ν(z) within the air-to-soil transition zone 

(Fig. 2) is computed from the discrete small-scale topography 
data [xj, zj

ss] (j = 1,…,N) by using the “Quantile” function 
implemented in “Mathematica 5.2”. Calling this function with 
the vector zj

ss and a certain probability P between 0 and 1 
yields the height z at which the air fraction 1 - ν(z) equals P. 
Thus, the discrete dataset [zj, νj] considering N – 1 evenly 
spaced soil fraction levels 0 < νj < 1 is constructed. The 
corresponding continuous interpolation function 0 < ν(z) < 1 
is then used in the refractive dielectric mixing model (3) to 
describe the apparent dielectric profile ε(z) used to compute 
the reflectivity Rp

A2S with the A2S model. 
4) Correlation Function and Correlation Length 

When topography profiles f(x) are measured, they are 
characterized by their correlation length lc and RMS-heights 
h. For an equally spaced topography dataset [xj, zj] (j =1,…,N), 
h is simply computed as the standard deviation of the heights 
zi. To derive lc of a profile with length L, the correlation 
function C(r) has to be computed numerically: 

( ) ( ) ( )2
0

1 L

C r f x f f x r f dx
Lh

≡ ⎡ − ⎤ ⎡ + − ⎤⎣ ⎦ ⎣ ⎦∫  (10) 

To enable the evaluation of (10) for each r in the range of 0 
≤ r ≤ L considering the given integration limits, the data [xj, zj] 
must be supplemented with their mirrored sequence (compare 
section II.C.2)). The resulting continuous correlation function 
C(r) associated with [xj, zj] is then used to compute the 
correlation length lc by solving C(lc) = 1/e numerically for the 
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smallest solution. 
At this point it should be noted that the length L of a profile 

may have a significant influence on the estimated h and lc. 
Monte-Carlo simulations showed that the 95% confidence 
limits for h and lc of individual transects come into ±10% 
margin of error when L are around 240⋅lc and 460⋅lc [36]. The 
same investigation showed that mean values 〈h〉 and 〈lc〉 
derived from a set of realizations are much more reliable. 
Considering these findings, and in view of the fact that 
measured profiles were available for L = 2 m, it is expected 
that h and lc derived from the individual profiles are rather 
error-prone. Their daily mean values 〈h〉 and 〈lc〉 derived from 
the 11 to 16 profiles available per day, however, are expected 
to be much more representative of the surface state on a 
particular day. 

5) Correlation Function Type 
Reflectivities Rp

IEM computed with Shi’s parameterization 
of IEM reflectivities are rather sensitive to the type of the 
correlation function of the topography. Therefore, indicator 
values EG are calculated that allow systematic trends in time 
in surface correlation function type to be identified (section 
IV): 

2

2

2

k
k lc

k
k

c
EG

c
π≥≡

∑

∑
 (11) 

In analogy with (7), EG weighs the sum of the squared 
absolute values of the Fourier coefficients ck (9) with wave 
numbers k ≥ 2π / lc (corresponding to spatial wavelengths Λ ≤ 
lc) with respect to the total sum of ⎪ck⎪2. Consequently EG 
defined by (11) weights the spectral components with spatial 
wavelengths Λ shorter than lc, and can therefore be used to 
rate the type of correlation function measured as either more 
Exponential or Gaussian. 

III. SMOSREX DATASET 
The two reflectivity models were validated with a long-term 

dataset acquired in the framework of the Surface Monitoring 
Of the Soil Reservoir EXperiment (SMOSREX), which has 
been in full operation since January 2003 [37]. L-band 
brightness temperatures Tp

B (p = H, V) of a bare soil site are 
acquired by the L-band radiometer for Estimating Water In 
Soils (LEWIS), installed near Toulouse in the south of France 
[38]. The LEWIS radiometer is mounted at the top of a 13.7 m 
vertical structure and provides Tp

B with an accuracy of 
± 0.2 K. The field of view of the horn antenna is 13.5° at 
-3 dB. Every 3 hours, elevation scans at α = 20°, 30°, 40°, 
50°, and 60° are performed over the bare soil and a plot with 
vegetation. The bare soil was rather smooth until January 13th, 
2006, which we refer to as DoY = 13, where DoY is the Day 
of Year. On that date, it was ploughed and the surface 
roughness was distinctly increased. Up until that date, the soil 
structure had not been modified artificially and had just 
changed gradually with climatic events (rainfall, wind, etc.). 

After ploughing, changes in the soil topography were 

monitored by regularly measuring the soil mechanically. For 
this purpose, a needle board 2 m in length L, consisting of N = 
201 movable (in the vertical direction) needles 1 cm apart, is 
used to follow the soil elevation profile. Photos of the board 
are taken, digitized manually, and finally used to compute soil 
topography profiles f = [xj, zj] (j = 1,…,N). Measurements 
were performed parallel and perpendicular to the soil rows 
produced through ploughing. After the ploughing, eleven 
assessments were conducted in 2006: DoY = 13, 20, 32, 51, 
75, 93, 124, 150, 181, 328 and one in 2007 (DoY = 71). 

In addition to these topography measurements, the real part 
εs of the soil permittivity and soil temperature profiles T were 
monitored every 30 minutes throughout the whole experiment 
with a set of capacitive probes (Theta Probe) and thermistors 
installed at different soil depths down to 90 cm. Daily mean 
values 〈εs〉 ± σε and 〈T〉 ± σT recorded with the probes installed 
within the topmost 6 cm of the soil are shown in Fig. 3. 
Estimates of the volumetric moisture θ [m3m-3] computed with 
the empirical model [29] are indicated above the DoY axis of 
the bottom panel. These data measured in-situ will be used in 
section IV.C in the comparison between modeled soil 
reflectivities and those deduced from measured L-band 
signatures Tp

B. The soil type near the surface was silt loam to 
loam according to the FAO/ USDA classification system, 
while at deeper soil layers a richer clay content was found. 

 

 
Fig. 3.  Daily mean values and standard deviations of soil temperature 〈T〉 ±
σT (top panel) and real parts of soil permittivity 〈εs〉 ± σε (bottom panel)
measured within the top 6 cm of the soil. The numbers above the DoY axis 
indicate volumetric soil moistures θ [m3m-3]. 
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IV. RESULTS AND DISCUSSION 

A. Soil Topographies 
Surfaces fE(x) with Exponential correlation functions are 

associated with non-differentiable topographies. This is 
typical for granular media with loose crumbs and cracks at the 
surface. Gaussian surfaces fG(x), by contrast, are differentiable 
and thus locally smooth, as is sometimes the case with the 
surface of a liquid. With regard to the soil topographies 
measured, it was hypothesized that the surfaces measured 
during the first days after ploughing would be mostly 
Exponential. The second hypothesis was that the surfaces 
would become more Gaussian after several rain events. These 
two hypotheses will be discussed in the following sub-sections 
1) and 2). 

1) Topography and how it Changes with Time 
To illustrate how the topography of the soil changed after it 

was ploughed until the end of the experiment, an early 
topography profile and one of the last profiles taken from the 
SMOSREX dataset (section III) were analyzed. The RMS-
height h and the correlation length lc derived from the two 
single profiles are not necessarily representative of the surface 
state on the corresponding days. As discussed in section 
II.C.4), the surface statistical parameters h and lc could be 
disputed due to the limited profile length (L = 2 m). 

The top panels of Fig. 4a and b show surface profiles f for 
January 13th 2006 (DoY 13 = day of ploughing) and June 30th 
2006 (DoY 181). The middle panels show the corresponding 
correlation functions C(r), and the bottom panels show the 
surface power spectra ⎟ck⎟2 (9) plotted versus the spatial 
wavelength Λ = 2L / k. 

The topography of the freshly ploughed field (DoY 13) 
clearly differs from that measured 5.5 months later on DoY 
181. This change is conveyed by the RMS-height decreasing 

 

 
Fig. 4.  Topography profiles f measured with the needle board (N = 201 measuring points and length L = 2 m) on DoY 13 (a) and on DoY 181 (b). Surface RMS-
heights are h = 40 mm and h = 25 mm. The middle panels show the associated correlation functions C(r) with lc = 68 mm and lc = 104 mm (dashed lines). The 
power spectra of f (ck = Fourier coefficients (9)) plotted versus the spatial wavelengths Λ are shown in the bottom panels with EG (defined in (11)) indicated. 
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from h = 40 mm (DoY 13) to h = 25 mm (DoY 181), and the 
correlation length increasing from lc = 68 mm (DoY 13) to lc 
= 104 mm (DoY 181). The values EG ≈ 0.05 for DoY 13 and 
EG ≈ 0.06 for DoY 181 are similar and of the same order of 
magnitude as the EGE ≈ 10-1 for Exponential surfaces. By 
contrast, Gaussian surfaces reveal significantly smaller EGG ≈ 
10-5 (7). This implies that the two topography profiles 
measured, comprise a rather large fraction of features smaller 
than lc, which suggests that the topographies are more likely 
to be Exponential than Gaussian. However, just two surface 
profiles are not sufficient to determine this. 

2) Daily Mean Soil Surface Properties 
To test the results of Fig. 4 further, an extended database, 

consisting of profiles f = [xj, zj] measured on DoY = 13, 20, 
32, 51, 75, 93, 124, 150, 181, 328 in 2006 and DoY = 71 in 
2007, was analyzed. In this database, 11 to 16 profiles are 
available for each of the 11 days. Daily mean values 〈h〉 ± σh, 
〈lc〉 ± σlc, and 〈EG〉 ± σEG with their corresponding standard 
deviations are shown in Fig. 5 a, b, and c. The bold dots 
represent h, lc, and EG of the two single profiles in Fig. 4. As 
mentioned in section II.C.4), unlike h, lc, and EG, the daily 
mean values 〈h〉, 〈lc〉, and 〈EG〉 can be expected to be 
representative of the soil topography on the days considered. 

As can be seen in Fig. 5a, 〈h〉 gradually decreased from 〈h〉 
= 39 mm on the day of ploughing (DoY 13, 2006) to 
approximately 〈h〉 = 20 mm 14 months later (DoY 71, 2007). 
This confirms the hypothesis that soil roughness decreases 
with time due to progressive weathering and concretion 
caused by successive rain events. The standard deviations σh 
and σlc of the surface RMS-height h and the correlation length 
lc do not, however, decrease with time. This indicates that the 
wide variation in h on the meter-scale tends to be rather 
persistent despite weathering processes. Furthermore, it 
corroborates the difficulty of assigning a distinct correlation 
length to a soil surface based on relatively short topography 
profiles. Considering the consistently large σlc, no clear 
temporal trend can be identified for 〈lc〉. This means that the 
increase of lc = 68 mm deduced from the profile on DoY 13 to 
lc =104 mm for the profile on DoY 181 (Fig. 4) is not 
representative, and therefore the hypothesis that the 
correlation length of the soil surface increases with time is not 
confirmed. 

The daily values 〈EG〉 ± σEG computed to infer the 
suspected temporal trend in the correlation function type from 
Exponential (EGE ≈ 10-1 ,(7)) to more Gaussian (EGG ≈ 10-5) 
remained at the same level over the entire observation period. 
According to definition (11), this implies that the proportion 
of surface features with spatial wavelengths Λ < lc does not 
change with time. However, the A2S model uses exclusively 
small-scale features with dimensions smaller than the 
resolution limit ΛBragg (2), which is important to bear in mind 
with regard to the temporal evolution of the daily mean 
reflectivities 〈Rp

A2S〉. 
Given the finding that 〈EG〉 does not reveal a clear trend 

over the 14 months after ploughing the field, a mean value 

〈EGtot〉 can be assigned. The overall mean 〈EGtot〉 = 0.17 is in 
agreement with EGE ≈ 10-1 (7) associated with an ideal 
Exponential surface fE(x). This implies that Shi’s fast model 
should be evaluated for the Exponential surface type to 
generate IEM reflectivities potentially reproducing remotely 
sensed soil reflectivities. 

B. Comparison of Modeled Rough Surface Reflectivities 
In this section we present the modeled reflectivities Rp

IEM 
and Rp

A2S (p = H, V) at 1.4 GHz of rough dielectric surfaces. 
Evaluations were performed for the soil permittivity εs = 10 
(corresponding to the soil moisture θ ≈ 0.20 m3m-3 if the 
model [29] is used). The observation angles, α = 35° and 55°, 
were chosen to be consistent with the radiometer observations 
presented in section IV.C. 

To explore the model responses with respect to h and lc, the 
reflectivities shown in Fig. 6 and 7 were computed for the 
parameter ranges: i) Rp

A2S(h) (open dots) and Rp
IEM(h) (solid 

dots) for h ≤ 100 mm and constant lc = 100 mm; and ii) 

Fig. 5.  a) Daily mean surface RMS-height 〈h〉 ± σh, b) correlation length 〈lc〉
± σlc, and c) 〈EG〉 ± σEG defined in (11) derived from topographies measured 
on the indicated days (open dots, ). The bold dots ( ) on DoY 13 and DoY 
181 are h, lc and EG of the profiles from Fig. 4. 
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Rp
A2S(lc) (open dots) and Rp

IEM(lc) (solid dots) for lc ≤ 
490 mm and constant h = 20 mm. The panels a) show 
reflectivities for horizontal polarization (p = H), and the 
panels b) for vertical polarization (p = V). Reflectivities Rp

A2S 
are derived from surface profiles f(x) = [xj, zj] generated for the 
set points h and lc. As these profiles are random in nature, a 
Monte-Carlo approach is used to compute the ranges Rp

A2S ± 
σR

p
A2S representative of the h and lc considered. Each Rp

A2S ± 

σR
p
A2S depicted in Fig. 6 and 7 is computed from the particular 

reflectivities deduced from 100 profiles f(x) = [xj, zj] (j = 
1,…,N = 201) with length L = 2 m. 

The gray shaded areas indicate the sensitivity of Rp
A2S with 

respect to the choice of the maximum spatial wavelength Λ 
used to extract the small-scale roughness with feature sizes 
smaller than the resolution limit. As discussed in section 
II.C.2), the cut-off Λ = ΛBragg is normally used to evaluate the 

 
Fig. 6. Rough surface reflectivities Rp

A2S(h) (open dots, ) and Rp
IEM(h) (solid dots, ) plotted versus h for lc = 100 mm, εs = 10, and α = 35°, 55°. Gray shaded 

areas are Rp
A2S(h) computed with different assumptions about the resolution limit Λ ranging from ΛBragg / 2 ≤ Λ ≤ ΛBragg ⋅ 2. The panels a) are for horizontal 

polarization (p = H) and the panels b) for vertical polarization (p = V). 

 
Fig. 7. Rough surface reflectivities Rp

A2S(lc) (open dots, ) and Rp
IEM(lc) (solid dots, ) plotted versus lc for h = 20 mm, εs = 10 and α = 35°, 55°. Gray shaded 

areas are Rp
A2S(lc), computed with resolution limits Λ ranging from ΛBragg / 2 ≤ Λ ≤ ΛBragg ⋅ 2. The dashed lines are the corresponding Fresnel reflectivities Rp

F. The 
panels a) are for horizontal polarization (p = H) and the panels b) for vertical polarization (p = V). 
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A2S model, which implies that topography features with 
Λ ≤ ΛBragg are exclusively considered. The upper boundaries 
of the gray areas in Fig. 6 and 7 are Rp

A2S, computed with Λ = 
ΛBragg / 2 and the lower boundaries are for Λ = ΛBragg ⋅ 2. 

As can be seen in Fig. 6, the two reflectivity models give 
identical results for the specular case (h → 0 mm). As 
expected, they also coincide with the Fresnel reflectivities Rp

F 
computed for εs = 10 and α = 35°, 55°. For horizontal 
polarization RH

IEM(h) and RH
A2S(h) are in agreement within the 

A2S model uncertainty associated with the choice of the cut-
off wavelength ΛBragg / 2 ≤ Λ ≤ ΛBragg ⋅ 2 used. With vertical 
polarization, however, the differences between RV

IEM(h) and 
RV

A2S(h) cannot be explained with this model uncertainty. 
Generally, for larger h the A2S model predicts lower 
reflectivities than the IEM model, before both models 
asymptotically approach zero reflectivity for h >> 100 mm. 
For the observation angles considered, Rp

A2S(h) monotonically 
decrease with increasing h, starting from values equal to Rp

F. 
The behavior of Rp

IEM(h) with respect to h, however, shows 
different regimes. Except for p = V and α = 55°, the 
reflectivities Rp

IEM(h) decrease in a manner similar to that of 
Rp

A2S(h) for small h, but for intermediate h, Rp
IEM(h) decrease 

much less distinctly or even increase. This is most pronounced 
for α = 55° and vertical polarization, where RV

IEM(h) increases 
between h = 0 mm and h = 60 mm to values exceeding the 
corresponding Fresnel reflectivity RV

F ≈ 0.1. 
These differing model responses with respect to h result in 

regimes where Rp
A2S(h) exceeds Rp

IEM(h) and vice versa. This 
observation can be explained as arising from polarization 
crosstalk effects, which changes a horizontally or a vertically  
polarized wave into an elliptically polarized wave. Such 
effects are accounted for in the IEM model but ignored in the 
A2S model. Polarization crosstalk is thought to be most 
pronounced with vertical polarization and with observation 
angles close to the Brewster angle αB = ArcTan(εs 

0.5) ≈ 72° 
for εs = 10. At these angles, RH

F are considerably higher than 
RV

F, which can cause RV
IEM(h) > RV

F. However, as will be 
discussed in section IV.C, this effect is rarely observed in the 
reflectivities RV

RM presented, which were derived from L-
band brightness temperatures measured over bare soil. This 
indicates that the effect of polarization crosstalk might be 
overrated by the IEM model. 

The results of the calculations for the model responses 
Rp

A2S(lc) and Rp
IEM(lc) on the correlation length lc are shown 

in Fig. 7 for α = 35° and 55°. Distinct differences between 
Rp

A2S(lc) (open dots) and Rp
IEM(lc) (solid dots) can be 

observed here as well. 
Rp

A2S(lc) increase monotonically with increasing lc at H- 
and V polarization. By contrast, Rp

IEM(lc) are almost constant 
within the parameter range investigated. This can be 
demonstrated by (1) showing that: i) the coherent part Rp

coh. of 
Rp

IEM(lc) is independent of lc, and ii) the dependency of the 
non-coherent part Rp

non-coh is minor for α = 35° and 55° and 
the exponential correlation function. 

For lc much larger than the wavelength λ ≈ 210 mm, 

Rp
A2S(lc) asymptotically approach values slightly smaller than 

the Fresnel reflectivities Rp
F (dashed lines). This is reasonable 

as their behavior approaches geometrical optics, which allows 
the footprint reflectivity to be represented as independent 
specular dielectric boundaries observed under a narrow range 
of locally varying observation angles (tangent-plane 
approximation). As the A2S model exclusively uses the small-
scale roughness (Λ = ΛBragg, (2)) to represent the dielectric 
transition zone ε(z) (3), increasing Rp

A2S(lc) with increasing lc 
is inherently part of this model. 

C. Comparison of Measured and Modeled Reflectivities 
Using the dataset presented in section III the IEM and the 

A2S models were tested against reflectivities derived from the 
L-band brightness temperatures Tp

B measured. The 
comparisons were made for the 11 days for which topography 
profiles, in-situ soil permittivities εs and temperatures T, as 
well as Tp

B are available.  
For these days, the mean reflectivities 〈Rp

A2S〉 and 〈Rp
IEM〉 

with corresponding standard deviations σR
p
A2S and σR

p
IEM 

were modeled on the basis of the 11 to 16 needle board 
profiles available per day. As can be seen from the Fig. 3 and 
5 the daily mean values of εs, h, and lc are well within the 
validity ranges of Shi’s parameterization of IEM reflectivities 
(see section II.A.1)). The ranges 〈Rp

A2S〉 ± σR
p

A2S and 〈Rp
IEM〉 ± 

σR
p
IEM were derived from the sets of daily reflectivities Rp

A2S 
and Rp

IEM, modeled following the procedures depicted in Fig. 
1. Since the type of correlation function was found to be 
persistently Exponential for the entire observation period, only 
the Exponential correlation function was considered when 
evaluating Shi’s parameterization of the IEM model. 

The ranges of measured reflectivities 〈Rp
RM〉 ± σR

p
RM were 

computed from 5 to 16 samples of Rp
RM, each deduced from 

the particular Tp
B measured. The sky brightness TB,sky = 6.3 K 

[34] was used in the radiative transfer model (4) and the soil 
temperature T used in (4) was derived from the mean values 
measured 1 cm and 5 cm below the soil surface. Although Tp

B 
are available for a wider range of α, the data presented are 
reduced to α = 35° and 55° by averaging Tp

B over the adjacent 
observation angles (30°, 40° and 50°, 60°). This approach was 
chosen to simplify the visualization of the reflectivity data 
shown in Fig. 8. As the antenna field of view (13.5° at -3 dB) 
is of the same order of magnitude as the difference between 
the adjacent observation angles, no relevant information is lost 
by applying averaging. The reflectivities 〈Rp

A2S〉, 〈Rp
IEM〉 and 

〈Rp
RM〉, as well as the diurnal mean Fresnel reflectivities 〈Rp

F〉 
computed using the daily mean soil permittivities 〈εs〉 from 
Fig. 3, are shown in Fig. 8. 

The results show that 〈Rp
F〉 (solid squares) mostly 

significantly exceed the radiometrically derived 〈Rp
RM〉 values 

(crosses). This indicates that it is surface roughness that 
mostly reduces the reflectivity. This experimental finding 
means that surface roughness should be considered when 
interpreting thermal L-band signatures, even though the RMS-
surface height h is smaller than the Frauenhofer criterion [39]. 
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It is only with vertical polarization that 〈RV
RM〉 is found to be 

comparable with 〈RV
F〉. For α = 35°, this is true solely for 

DoY 328, whereas for α = 55°, the results show 〈RV
F〉 ≈ 

〈RV
RM〉 for most days or even 〈RV

RM〉 > 〈RV
F〉. The latter 

phenomenon is in accordance with the finding (see section 
IV.B), that polarization crosstalk starts to dominate when the 
observation angle α approaches the Brewster angle αB = 
ArcTan(εs

0.5). 
Table 1 shows how δM and OKM can be used to rate the 

performances of the A2S, IEM, and Fresnel models and 
compare them with the measurements 〈Rp

RM〉 ± σR
p
RM shown 

in Fig. 8. 
The values OKM indicate the number of days out of the total 

nDOY = 11 days for which the modeled ranges 〈Rp
M〉 ± σR

p
M (M 

= A2S, IEM, F) overlap with the measured 〈Rp
RM〉 ± σR

p
RM. 

The mean relative deviations δM [%] given in Table 1 are 
computed as: 

DoY RM

1DoY RM

100
p pn M i i

M p
i

i

R R

n R
δ

=

−
= ∑  (12) 

For α = 35° and horizontal polarization (p = H), the A2S 
model explains the measurements 〈RV

RM〉 ± σR
V

RM adequately 
on OKA2S = 7 of the nDOY = 11 days, the IEM model on OKIEM 
= 10 days, and the Fresnel model on OKF = 0, i.e. on no days. 

The corresponding mean relative errors are δA2S = 24 %, δIEM 
= 12 % and δF = 97 %. 

If α = 35° and polarization is vertical (p = V), the 
measurements are explained at OKA2S = OKIEM = 9 days by 
both the A2S and the IEM models with δA2S = 24 % and δIEM 
= 12 %. Again, the Fresnel model is inaccurate on most days 
except for DoY 328. 

At the larger observation angle α = 55°, the agreement 
between the measured daily reflectivities and the 
corresponding model predictions differ significantly 
depending on the polarization. If the polarization is horizontal, 
〈RH

A2S〉 systematically overshoots the measurements 〈RV
RM〉 

(OKA2S = 0, δA2S = 51 %), whereas 〈RH
IEM〉 is consistent with 

the measurements 〈RV
RM〉 on OKIEM = 7 days with δIEM = 

23 %. Obviously, for p = H and α = 55°, the IEM model 
performs better than the A2S model. However, with vertical 
polarization and α = 55°, the reverse is true. In this case 
〈RV

IEM〉 systematically overshoots the observations 〈RV
RM〉, 

yielding OKIEM = 0 and δIEM = 102 %, whereas 〈RV
A2S〉 

reproduces the generally low 〈RV
RM〉 clearly better (OKA2S = 2 

and δA2S = 26 %). Although 〈RV
A2S〉 and 〈RV

RM〉 show close 
agreement for α = 55° and p = V, the value OKA2S = 2 is low 
due to the corresponding small standard deviations 
σR

V
A2S ≤ 0.009 and σR

V
RM ≤ 0.014. It is interesting to note that 

 
Fig. 8. aily reflectivity ranges 〈Rp

M〉 ± σp
M at α = 35° and 55° for the 11 days indicated. Crosses (×) represent the reflectivities derived from the radiometer 

measurements (M = RM), open dots ( ) are modeled with the A2S model (M = A2S), solid dots ( ) are IEM predictions (M = IEM), and solid squares ( ) are 
the diurnal mean Fresnel reflectivities (M = F). Panels a) are for horizontal polarization (p = H) and the panels b) are for vertical polarization (p = V). 
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σR
p

A2S associated with the A2S predictions are significantly 
smaller for α = 55° than for α = 35°. This can be explained by 
the way the L-band Bragg limit (2) decreases with increasing 
α (evaluating (2) for λ = 21 cm yields ΛBragg ≈ 18 cm for α = 
35° and ΛBragg ≈ 13 cm for α = 55°), which leads to 
increasingly restrictive spatial filtering for increasing α. The 
resolution limit Λ = ΛBragg used in the Fourier high-pass filter 
is not, however, an exact criterion (see section IV.B), which 
implies that OKA2S and σR

V
A2S for α = 55° and p = V could be 

optimized by changing the cut-off wavelength Λ. 
The fact the A2S model tends to overestimate the measured 

reflectivities with horizontal polarization and slightly 
underestimates them with vertical polarization can be 
explained by the presence or absence of polarization crosstalk. 
This effect is not accounted for in the A2S model, but it is 
incorporated in the IEM model. The systematic overestimates 
of the IEM reflectivities for α = 55° and p = V, however, 
show that polarization crosstalk effects might be exaggerated 
in the IEM model. Polarization crosstalk is generally expected 
to gain in importance when α approaches the Brewster angle, 
which is in the range 67° ≤ αB ≤ 74°, corresponding to the 
daily mean permittivities 5.7 ≤ 〈εs〉 ≤ 13 of the measuring 
period. The A2S model was found to perform better than the 
IEM model for p = V and α = 55°, which provides further 
support for this claim. 

V. CONCLUSIONS 
The impact of roughness on reflectivity was analyzed by 

comparing the results of the A2S model [23], Shi’s 
parameterization [27] of the IEM model [17], and 
measurements in the field. The measurements were taken from 
the SMOSREX dataset [37], consisting of L-band brightness 
temperatures Tp

B [38], in-situ soil temperatures T and real 
parts of permittivities εs, and mechanically measured 
topography profiles f(x) on 11 days between January 2006 and 
February 2007. 

The diurnal mean values of surface RMS-height 〈h〉, of 
correlation length 〈lc〉, and of 〈EG〉, expressing the ratio of 
surface features with spatial wavelengths smaller than lc were 
investigated. During the 14-month experimental period after 
ploughing the soil on DoY 13 in 2006, 〈h〉 was reduced from 
approximately 40 mm to almost half its value, while 〈lc〉 and 
〈EG〉 remained at the same level over the experimental period. 
From this it can be concluded that weathering reduces the 

coarse surface features distinctly, while the fine textures 
behave rather persistently. The finding that the measured 〈EG〉 
(11) were of the same order of magnitude as EGE of an ideal 
Exponential surface (7) led us to conclude that the correlation 
function of a naturally weathered bare soil surface is 
Exponential. Assuming that Shi’s fast model is used in an 
operational data assimilation algorithm, this is important as 
Shi’s parameterization requires specification of the type of 
surface auto-correlation function. 

The responses of the two reflectivity models revealed 
distinct differences. Polarization crosstalk, which was not 
considered in the A2S model, was identified as one possible 
reason. Such effects could be considered in the A2S model by 
replacing the empirical effective medium approach (equation 
(3)) with a more realistic dielectric mixing model that takes 
anisotropies into account. Such a refinement would make it 
possible to consider not only the impact of topography on the 
reflectivity, but also the impact of small-scale dielectric 
anisotropies of the bulk soil within the air-to-soil transition 
zone. This refinement would take into account the observation 
that, depending on the moisture level, such small-scale 
dielectric heterogeneities can have a dominant impact on the 
reflectivity of bare soil ([11], chapter 4.7 in [23], and [40]). It 
can then be assumed that the discrepancies between the 
measurements presented and the model predictions are 
associated with such volume effects occurring in the top few 
centimeters of the soil. 

To sum up, the two roughness models performed 
reasonably in comparison with the measurements, although 
partly in complementary parameter ranges. The A2S model 
introduces some uncertainty by using a somewhat empirical 
spatial cut-off wavelength Λ to extract the small-scale 
topography. Nevertheless, the performances of the A2S and 
the IEM model were very similar for α = 35°. The study 
revealed that detailed knowledge of the soil topography might 
still not be sufficient for good predictions of the soil 
reflectivity as the dielectric heterogeneities and anisotropies of 
the bulk soil in the topmost centimeters can have more impact. 

To assess conclusively the implications of roughness model 
imperfections on the soil moisture retrieval from the 
upcoming SMOS and SMAP data, further model comparisons 
are required. These investigations should be conducted for 
different soil types and under different meteorological 
conditions, preferably utilizing corresponding satellite data.  
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TABLE I 
QUANTITIES δM AND OKM USED FOR RATING THE MODEL PERFORMANCES 

AGAINST THE MEASUREMENTS 〈RP
RM〉 ± σR

P
RM SHOWN IN FIGURE 8. OKM IS 

THE NUMBER OF DAYS, OUT OF THE TOTAL NDOY = 11 DAYS, ON WHICH EACH 
OF THE MODELS M = A2S, IEM, F (FRESNEL) CAN EXPLAIN THE 

MEASUREMENT. δM IS THE RELATIVE MODEL PREDICTION ERROR (12). 
α 
[°] 

p 
[-] 

OKA2S 

[-] 
δA2S 

[%] 
OKIEM 

[-] 

δIEM 

[%] 
OKF 

[-] 
δF 

[%] 
35 H 7 24 10 12 0 97 
35 V 9 20 9 16 1 68 
55 H 0 51 7 23 0 92 
55 V 2 26 0 102 3 16 
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