

# Productivity, Respiration, and Light-Response Parameters of World Grassland and Agro-Ecosystems Derived From Flux-Tower Measurements

G. Gilmanov Tagir, Vincent Allard, D. Baldocchi, Pierre Béziat, Eric Ceschia, Pierre Cellier, J.F. Soussana

#### ▶ To cite this version:

G. Gilmanov Tagir, Vincent Allard, D. Baldocchi, Pierre Béziat, Eric Ceschia, et al.. Productivity, Respiration, and Light-Response Parameters of World Grassland and Agro-Ecosystems Derived From Flux-Tower Measurements. Rangeland Ecology and Management, 2009, pp.1-73. ird-00411045

# HAL Id: ird-00411045 https://ird.hal.science/ird-00411045

Submitted on 25 Aug 2009

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

| 1  | Productivity, Respiration, and Light-Response Parameters of World Grassland and                                                                                                                  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2  | Agro-Ecosystems Derived From Flux-Tower Measurements                                                                                                                                             |
| 3  |                                                                                                                                                                                                  |
| 4  |                                                                                                                                                                                                  |
| 5  | Tagir G. Gilmanov <sup>1</sup>                                                                                                                                                                   |
| 6  | and data contributors <sup>2</sup> :                                                                                                                                                             |
| 7  | L. Aires <sup>4</sup> , K. Akshalov <sup>4</sup> , V. Allard <sup>4</sup> , C. Ammann <sup>4</sup> , M. Aubinet <sup>4</sup> , M. Aurela <sup>4</sup> , J. Baker <sup>5</sup> , D.               |
| 8  | Baldocchi <sup>4</sup> , J. Balogh <sup>4</sup> , M. Balzarolo <sup>4</sup> , L. Belelli <sup>4</sup> , Z. Barcza <sup>4</sup> , C. Bernacchi <sup>4</sup> , C.                                  |
| 9  | Bernhofer <sup>4</sup> , V.S. Baron <sup>5</sup> , J. Berringer <sup>4</sup> , P. Beziat <sup>4</sup> , D. Billesbach <sup>5</sup> , J. Bradford <sup>3</sup> , K.                               |
| 10 | Brehe <sup>5</sup> , N. Buchmann <sup>4</sup> , E. Ceschia <sup>4</sup> , P. Cellier <sup>4</sup> , Shiping Chen <sup>4</sup> , D. Cook <sup>4</sup> , C. Corradi <sup>4</sup> , R               |
| 11 | Coulter <sup>4</sup> , R. Czerny <sup>4</sup> , E. Dellwik <sup>4</sup> , A. Detwyler <sup>5</sup> , H. Dolman <sup>4</sup> , M. Dourikov <sup>5</sup> , W. Dugas <sup>3</sup> ,                 |
| 12 | J. Elbers <sup>4</sup> , W. Emmerich <sup>3</sup> , W. Eugster <sup>4</sup> , D. Fitzjarrald <sup>4</sup> , L. Flanagan <sup>4</sup> , A. Frank <sup>3</sup> , J.                                |
| 13 | Fuhrer <sup>4</sup> , D. Gianelle <sup>4</sup> , T. Griffis <sup>5</sup> , T. Gruenwald <sup>4</sup> , M. Haferkamp <sup>3</sup> , Guo Haiquang <sup>4</sup> , N.                                |
| 14 | Hanan <sup>4</sup> , R. Harding <sup>4</sup> , L. Haszpra <sup>4</sup> , M. Heuer <sup>5</sup> , J. Heilman <sup>4</sup> , A. Hensen <sup>4</sup> , S. Hollinger <sup>4</sup> , A.               |
| 15 | Jacobs <sup>4</sup> , D. Janous <sup>4</sup> , W. Jans <sup>4</sup> , D.A. Johnson <sup>3</sup> , M. Jones <sup>4</sup> , T. Kato <sup>4</sup> , G. Katul <sup>4</sup> , G. Kiely <sup>4</sup> , |
| 16 | W. Kutsch <sup>4</sup> , G. Lanigan <sup>4</sup> , T. Laurila <sup>5</sup> , P. Leahy <sup>4</sup> , S. Li <sup>5</sup> , A. Lohila <sup>5</sup> , V. Magliulo <sup>4</sup> , A.                 |
| 17 | Manzi <sup>4</sup> , M. Marek <sup>4</sup> , R. Matamala <sup>4</sup> , T. Meyers <sup>4,5</sup> , P. Mielnick <sup>3</sup> , A. Miyata <sup>4</sup> , E. Moors <sup>4</sup> , J.                |
| 18 | Morgan <sup>3</sup> , C. Moureaux <sup>4</sup> , M. Nasyrov <sup>5</sup> , J. Olejnik <sup>4</sup> , J. Olesen <sup>4</sup> , W. Oechel <sup>4</sup> , C. Owensby <sup>5</sup> ,                 |
| 19 | D. Papale <sup>4</sup> , C. Pio <sup>4</sup> , J. Prueger <sup>5</sup> , A. Raschi <sup>4</sup> , C. Rebmann <sup>4</sup> , M. Reichstein <sup>4</sup> , H. da Rocha <sup>4</sup> ,              |
| 20 | N. Rogiers <sup>4</sup> , N. Saliendra <sup>3</sup> , M.J. Sanz <sup>4</sup> , K. Schelde <sup>4</sup> , R. Scott <sup>4</sup> , P. Sims <sup>3</sup> , R.H. Skinner <sup>5</sup> , H.           |
| 21 | Soegaard <sup>4</sup> , JF. Soussana <sup>4</sup> , M. Sutton <sup>4</sup> , A. Suyker <sup>4</sup> , T. Svejcar <sup>3</sup> , M. Torn <sup>5</sup> , Z. Tuba <sup>4</sup> , S.                 |
| 22 | Verma <sup>4</sup> , M. Waterloo <sup>4</sup> , G. Wohlfahrt <sup>4</sup> , Bin Zhao <sup>4</sup> , Guangsheng Zhou <sup>4</sup>                                                                 |
|    |                                                                                                                                                                                                  |

- 1 Authors are <sup>1</sup>Associate professor at the Department of Biology and Microbiology, South
- 2 Dakota State University, Brookings, SAG 304, Box 2207B, SD 57007, USA, and
- <sup>2</sup>researchers who contributed their data to the <sup>3</sup>USDA-ARS RANGEFLUX data set,
- <sup>4</sup>FLUXNET La Thuile data set, or <sup>5</sup>WORLDGRASSAGRIFLUX data set.

- 6 Research was supported in part by the Science Applications International Corporation,
- 7 Subcontract # 4400089887 to Gilmanov Research and Consulting, LLP.

8

9

- 10 Correspondence: Tagir G. Gilmanov, Department of Biology and Microbiology, South
- Dakota State University, SAG 305, Box 2207B, Brookings, SD 57006, USA. Email:
- 12 <u>tagir.gilmanov@sdstate.edu</u>

13

#### LIST OF SYMBOLS

3 Latin symbols

- $A_{max}$  maximum gross photosynthetic assimilation (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>)
- 5 CumNEE cumulative net ecosystem CO<sub>2</sub> exchange (g CO<sub>2</sub> m<sup>-2</sup>)
- $F_c$  net CO<sub>2</sub> flux (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- 7 GPP annual gross primary production (g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>)
- $k_T$  coefficient in the exponential equation for respiration temperature dependence (°C)<sup>-1</sup>
- L leaf area index (m<sup>2</sup> m<sup>-2</sup>)
- $L_{max}$  seasonal maximum leaf area index (m<sup>2</sup> m<sup>-2</sup>)
- $P_d$  daytime integral of the net ecosystem CO<sub>2</sub> flux (g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- $P_g$  gross photosynthetic assimilation (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- Q incoming photosynthetically active radiation (µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; mol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- $Q_a$  absorbed photosynthetically active radiation (µmol CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; mol CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- *PCPN* atmospheric precipitation (mm d<sup>-1</sup>, mm yr<sup>-1</sup>)
- $r_d$  daytime ecosystem respiration rate (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>)
- $R_d$  daytime ecosystem respiration (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- $R_e$  total ecosystem respiration (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- RE annual total ecosystem respiration (g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>)
- $20 \quad RH$  air relative humidity (%)
- $R_n$  nighttime ecosystem respiration (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- $R_{net}$  net radiation (W m<sup>-2</sup>; MJ m<sup>-2</sup> d<sup>-1</sup>)
- $r_0$  ecosystem respiration rate at temperature  $T_s = 0$  °C (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>)

```
1 r_n – night-time ecosystem respiration rate (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>)
```

- $R_n$  nighttime ecosystem respiration (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>; g CO<sub>2</sub> m<sup>-2</sup> d<sup>-1</sup>)
- $R_{net}$  net radiation (W m<sup>-2</sup>; MJ m<sup>-2</sup> d<sup>-1</sup>)
- $T_a$  air temperature (°C)
- $t_r$  time of sunrise (h)
- $t_s$  time of sunset (h)
- $T_s$  soil temperature (typically, at 5 cm depth) (°C)
- $V_{c,max}$  maximum rate of carboxylation (mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>))
- $W_s$  volumetric soil moisture (m<sup>3</sup> m<sup>-3</sup>)

# 11 Greek symbols

- $\alpha$  apparent quantum yield of gross photosynthetic assimilation (mmol CO<sub>2</sub> mol quanta
- $13^{-1}$ )

- $\varepsilon$ ,  $\varepsilon_{ecol}$  gross ecological light-use efficiency (mmol CO<sub>2</sub> (mol incident quanta)<sup>-1</sup>)
- $\varepsilon_{phys}$  gross physiological light-use efficiency (mmol CO<sub>2</sub> (mol absorbed quanta)<sup>-1</sup>)
- $\lambda$  latent heat of evaporation (MJ kg<sup>-1</sup>)
- $\theta$  convexity (curvature) coefficient of the light-response equation (dimensionless)
- $\rho_d$  diffusion resistance to carbon transport (s m<sup>-1</sup>)
- $\rho_x$  carboxylation resistance to carbon transport (s m<sup>-1</sup>)

| _ |  |
|---|--|
|   |  |
|   |  |
|   |  |
|   |  |

| 3  | Grasslands and agroecosystems occupy nearly a third of the land surface area, but their                                                                            |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | quantitative contribution to the global carbon cycle remains uncertain. We used a set of                                                                           |
| 5  | 316 site-years of year-round net $CO_2$ exchange ( $F_c$ ) measurements to quantitatively                                                                          |
| 6  | analyze gross primary productivity, ecosystem respiration, and light-response parameters                                                                           |
| 7  | of extensively and intensively managed grasslands, shrublands/savanna, wetlands, and                                                                               |
| 8  | cropland ecosystems worldwide. Analyzed data set included data from 72 flux-tower sites                                                                            |
| 9  | worldwide partitioned into gross photosynthesis $(P_g)$ and ecosystem respiration $(R_e)$                                                                          |
| 10 | components using the light-response functions method (Gilmanov et al. 2003, Bas. Appl.                                                                             |
| 11 | Ecol. 4:167-183) from the RANGEFLUX and WorldGrassAgriflux data sets                                                                                               |
| 12 | supplemented by data from 46 sites partitioned using the temperature-response method                                                                               |
| 13 | (Reichstein et al. 2005, Gl. Change. Biol. 11:1424-1439) from the FLUXNET La Thuile                                                                                |
| 14 | data set. Maximum values of the apparent quantum yield ( $\alpha = 75 \text{ mmol mol}^{-1}$ ),                                                                    |
| 15 | photosynthetic capacity ( $A_{max} = 3.4 \text{ mg CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ ), maximum daily gross                                                     |
| 16 | photosynthesis ( $P_{g,max} = 116 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1}$ ), and gross ecological light-use efficiency                                       |
| 17 | $(\varepsilon_{ecol} = 59 \text{ mmol mol}^{-1})$ of intensively managed grasslands and high-productive croplands                                                  |
| 18 | exceed those for forest ecosystems, indicating high potential of non-forest ecosystems for                                                                         |
| 19 | uptake and sequestration of atmospheric CO <sub>2</sub> . Maximum values of annual gross primary                                                                   |
| 20 | production (8600 g CO <sub>2</sub> m <sup>-2</sup> yr <sup>-1</sup> ), total ecosystem respiration (7900 g CO <sub>2</sub> m <sup>-2</sup> yr <sup>-1</sup> ), and |
| 21 | net CO <sub>2</sub> exchange (2400 g CO <sub>2</sub> m <sup>-2</sup> yr <sup>-1</sup> ) for non-forest ecosystems are observed in                                  |
| 22 | intensively managed grasslands and high-yield crops, and are comparable or higher than                                                                             |
| 23 | in forest ecosystems (excluding tropical forests). On the average, 80% of the non-forest                                                                           |

sites were sinks for atmospheric CO<sub>2</sub>, with mean annual net CO<sub>2</sub> uptake 848 g CO<sub>2</sub> m<sup>-2</sup>

yr<sup>-1</sup> for intensively managed grasslands and 933 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> for croplands. The new

flux-tower data indicate the need to revise substantially previous views of grassland and

agricultural ecosystems as being predominantly a source of carbon, or having a neutral

role, in the regional and continental carbon budgets.

Key Words: gross primary production, ecosystem respiration, net CO<sub>2</sub> flux partitioning,

light-response functions method, grasslands, croplands

## INTRODUCTION

|  | , |  |
|--|---|--|
|  |   |  |

| Quantifying the contribution of various ecosystem types in terms of carbon budget and      |
|--------------------------------------------------------------------------------------------|
| total continental and global exchange of carbon has been recognized as a fundamental       |
| task since the very beginning of the carbon cycle science (Rodin and Bazilevich 1968;      |
| Whittaker and Likens 1973; Lieth 1975; Rodin et al. 1975; Olson et al. 1983). While        |
| generalizations on the role of forest, wetland, and tundra ecosystems in the global carbon |
| budget have been provided recently, resulting in a general consensus on the contribution   |
| to the carbon budget of these ecosystem types (Griffiths and Jarvis 2005; Davidson and     |
| Janssens 2006; Birdsey et al. 2007; Bridgham et al. 2007; Tarnocai et al, 2007), there is  |
| considerably less agreement with respect to grassland and cropland ecosystems.             |
| Available estimates of carbon budgets at the country or continental levels                 |
| typically characterize grasslands as weak sinks, or as approaching a carbon-neutral state, |
| while croplands are considered moderate to strong sources of atmospheric carbon (Smith     |
| and Falloon 2005; Conant et al. 2007). It should be emphasized, however, that those        |
| assessments are not based on direct measurements of carbon exchange, but rather on         |
| indirect measures such as biomass and soil organic matter inventories. As a rule, indirect |
| measures involve lumping agricultural fields, where organic matter is produced, with       |
| locations (feedlots, harvest processing plants, ethanol facilities etc.) where harvested   |
| biomass is transported and utilized.                                                       |
| Although fully justified as initial "zero approximations", indirect measures are           |

Although fully justified as initial "zero approximations", indirect measures are fundamentally inadequate as tools for understanding the precise contributions of different land areas to regional CO<sub>2</sub> exchange. In contrast, our objective is to get reliable,

measurement-based estimates of carbon fluxes into and out of the system at the ecosystem scale provided by tower records. According to some authors, corn fields producing good harvests of grain with no soil organic matter loss due to advanced agronomic management, but considered together with ethanol producing plants where this corn is processed, will be viewed as only a small net sinks for atmospheric carbon (Powlson et al., 2005; Farrell et al. 2006) or even as net carbon sources (Patzek et al., 2005). This completely overshadows the fact that the field itself is often a very strong sink for atmospheric CO<sub>2</sub> (e.g., Buyanovsky and Wagner, 1998; Hollinger et al. 2005). The last decade has been characterized by an explosive growth in number and duration of observations from nonforest flux tower stations all over the world. Through the La Thuile synthesis process of the FLUXNET network (Baldocchi 2008; Agarwal et al. 2008) and other cooperation initiatives, these observations are now available for comparative analysis and generalization. In this publication we present the first synthesis of results from tower CO<sub>2</sub> flux measurements at 118 tower sites representing grassland, cropland, shrubland, savanna and wetland ecosystems of the world-- with the final goal of obtaining measurement-based estimates of their role as net sinks or sources of atmospheric CO<sub>2</sub>. Such estimates provide a scientific basis for establishing carbon credit

19

21

22

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

20 METHODS

market and poverty alleviation projects.

Data for this study were provided by the WorldGrassAgriFlux data set (Gilmanov et al. 2007b) currently including data from 72 nonforest sites (Table 1, method L) for which original 30-min (or 20-min in some sites) net CO<sub>2</sub> flux,  $F_c$ , was partitioned into gross

1 primary productivity,  $P_g$ , and ecosystem respiration,  $R_e$ , components using light-response 2 function methods (Gilmanov et al. 2003a,b, 2004, 2005, 2006, 2007a). These data were 3 combined with an additional 46 nonforest sites (Table 1, method T) from the FLUXNET 4 La Thuile dataset (Agarwal et al. 2008) that were partitioned into  $P_g$  and  $R_e$  components 5 using temperature-response methods (Reichstein et al. 2005). In most cases, we used 6 daily  $P_g$  and  $R_e$  estimates directly from the La Thuile dataset, though sometimes it was 7 necessary to correct negative values of daily gross primary production that were 8 occasionally generated by the night-time temperature response method (cf. Stoy et al. 9 2006). 10 In total, tower sites included in our analysis represent 316 site-years of 11 measurements during the 1997-2006 period (Table 1). They are grouped into the 12 following categories: extensively managed grasslands (ungrazed or lightly grazed, uncut 13 or cut occasionally), intensively managed grasslands (regularly cut, grazed, fertilized, 14 irrigated, etc.), croplands, shrublands/savannas, and wetlands. The geographic 15 distribution of sites is illustrated in Fig. 1. 16 17 Net Tower Flux  $(F_c)$  Partitioning into Photosynthesis  $(P_g)$  and Respiration  $(R_e)$ 18 Analysis of flux tower measurements requires processing algorithms (Lee et al. 2004; 19 Burba and Anderson 2007; Baldocchi 2008a) that describe the net result of interacting 20 ecosystem components that absorb CO<sub>2</sub> (mostly, photosynthetic assimilation by 21 autotrophic organisms), and those that release  $CO_2$  (metabolic  $CO_2$  production,  $R_e$ , is the 22 major component of CO<sub>2</sub> efflux during the growing season). Because photosynthesis and 23 respiration respond rather differently to major environmental drivers (e.g., Thornley and

Johnson 2000), partitioning of tower-based  $\{F_c\}$  data into photosynthetic assimilation

2 and ecosystem respiration components is recognized as an necessary step in post-

3 processing of net flux data for use in predictive modeling of ecosystem carbon cycling

4 (Gilmanov et al. 2003b, 2004, 2005, 2006, 2007a; Reichstein et al. 2005; Stoy et al.

5 2006).

Using the ecophysiological sign convention (positive flux from atmosphere to ecosystem), and excluding plants with CAM-type metabolism, the instantaneous gross photosynthesis rate,  $P_g$ , used in this study was obtained as a sum of daytime net CO<sub>2</sub> exchange,  $F_c$ , and daytime ecosystem respiration,  $R_d$ , minus the rate of change of CO<sub>2</sub> storage in the atmospheric layer between the soil surface and the CO<sub>2</sub> sensor at the tower (Gilmanov et a. 2007). When estimates of the storage term were not available (e.g. for communities with low canopy height and sufficient turbulent transport) the gross productivity was approximated as:

15 
$$P_g(t) = \begin{cases} F_C(t) + R_d(t), & Q(t) > 0, \\ 0, & Q(t) = 0. \end{cases}$$
 [1]

where Q(t) is the intensity of photosynthetically active radiation (Gilmanov et al. 2004).

Because direct measurements of the daytime ecosystem respiration  $R_d$  are quite difficult to make, two main approaches of its indirect estimation (leading to the two major methods of net flux partitioning into photosynthesis and respiration components) were used:

(i) establishing relationship of the night-time respiration:

$$3 R_n(t) = \begin{cases} F_C(t), & Q(t) = 0 \\ 0, & Q(t) > 0, \end{cases}$$
 [2]

5 to environmental drivers affecting it (e.g., soil temperature,  $T_s$ ) and using these

6 relationships to estimate daytime respiration,  $R_d$ . This approach has been widely used for

forest-type ecosystems (Goulden et al. 1996) and was used in this study for the first round

of network-level aggregation of the raw 30-min data into daily gross primary productivity

and ecosystem respiration values (<a href="http://www.fluxdata.org/DataInfo/">http://www.fluxdata.org/DataInfo/</a>).

(ii) obtaining estimates of daytime ecosystem respiration  $R_d$  through identification of the respiration term in the ecosystem-scale light-response functions describing relationships of the daytime flux  $F_c$  to photon flux density, Q, leaf area index, L, soil temperature,  $T_s$ , water content of the soil,  $W_s$ , air relative humidity, HR, and other factors. In general, light-response functions include rather complicated analytical or algorithmic expressions (e.g., those suggested by Thornley and Johnson [2000, p. 248-249]), taking into account most of the major ecophysiological parameters of photosynthesis (quantum yield  $\alpha$ , maximum photosynthesis  $A_{max}$ , convexity of the light response,  $\theta$ , leaf area index, L). When fully expanded, these expressions can require several lines of printed text. At the other end of the complexity spectrum lie simple  $F_c(Q)$  relationships like the ramp function by Blackman (1905), Mitscherlich's saturated exponent (1909), and the rectangular hyperbola by Tamiya (1951); the latter being a nearly standard approach to light-response fitting at the early stages of flux tower data

- analysis (Ruimy et al. 1995). These simple models are convenient and, in some cases, fit
- 2 observed data well; however, they share the major drawback of lacking the ability to
- 3 describe light-response patterns of varying convexity (curvature).
- 4 Under the widely accepted eco-physiological framework, the convexity of the
- 5 light-response is represented by the fraction of diffusion resistance to the total (diffusion
- 6 + carboxylation) resistance to carbon transport:  $\theta = \rho_d/(\rho_d + \rho_x)$  (Thornley and Johnson
- 7 2000). Taking into account the differences in leaf morphology and biochemistry in
- 8 different plant groups (e.g., C<sub>3</sub> vs. C<sub>4</sub> photosynthesis types), the ability to describe light-
- 9 response curves of different convexity seems to be a necessary requirement for an
- adequate light-response function model. Our experience with quantification of the tower-
- based light-response data from a wide range of nonforest ecosystems led us to use the
- 12 nonrectanglar hyperbolic model (Rabinowich 1951; Thornley and Johnson 2000):

14 
$$F_c(Q; \alpha, A_{\text{max}}, \theta, r_d) = \frac{1}{2\theta} \left( \alpha Q + A_{\text{max}} - \sqrt{(\alpha Q + A_{\text{max}})^2 - 4\alpha A_{\text{max}} \theta Q} \right) - r_d$$

15 [3]

- where Q denotes photon flux density,  $\alpha$  is the quantum yield,  $A_{max}$  maximum gross
- photosynthesis,  $\theta$  is the convexity parameter of the light-response curve, and  $r_d$  is
- daytime ecosystem respiration rate, for days when solar radiation is the major driver of
- daytime CO<sub>2</sub> exchange. This model provides a powerful and flexible tool to describe
- 20 light-response at the various nonforest tower sites (Gilmanov et al. 2003a,b, 2004, 2005,
- 21 2006, 2007a).
- Under semi-arid and arid conditions, when significant warming of the soil in the
- afternoon period is observed, the pattern of data points on the light-response plane {O,

- 1  $F_c$ } is often characterized by a hysteresis-like loop with the morning branch of the light-
- 2 response curve lying above the afternoon branch. In such cases, these light-response
- 3 patterns were effectively described by the modified nonrectangular hyperbolic model
- 4 (Gilmanov et al. 2003a):

6 
$$F_{C}(Q, T_{S}; \alpha, A_{\text{max}}, \theta, r_{d}) = \frac{1}{2\theta} \left( \alpha Q + A_{\text{max}} - \sqrt{(\alpha Q + A_{\text{max}})^{2} - 4\alpha A_{\text{max}}\theta Q} \right) - r_{0}e^{k_{T}T_{S}},$$

[4]

- 8 where the daytime respiration term  $r_d$  of eq. [3] is modified to  $r_0 e^{k_T T_s}$  to represent an
- 9 exponential increase of respiration with soil temperature,  $T_s$ , and  $k_T$  and  $r_\theta$  are empirical
- parameters estimated in the process of fitting eq. [4] to the daytime data
- 11  $\{Q(t_i), T_s(t_i), F_c(t_i)\}$ , and  $t_i$  is time between the sunrise and sunset,  $t_r \le t_i \le t_s$ . For days
- described by eq. [4], average daytime respiration rate,  $r_d$ , was calculated as:

13

14 
$$r_d = \frac{r_0}{(t_s - t_r)} \int_{t_r}^{t_s} e^{k_T T_s(t)} dt$$
. [5]

- Numerical fitting of parameters  $\alpha$ ,  $A_{max}$ ,  $\theta$ ,  $r_d$  or  $r_0$  and  $k_T$  of equations [3] or [4] was
- 17 achieved using procedures from the "Global Optimization Package" by Loehle
- 18 Enterprises (2009) available under the "Mathematica" software system (Wolfram
- 19 Research 2009). It should be emphasized that to avoid serious errors of light-response
- 20 parameter estimation resulting from fitting equations to data lumped over several days (as
- sometimes can be seen in publications on the subject, e.g., Ruimy et al. 1995; Zhang et al.
- 22 2006; Zhao et al. 2006), only single day datasets  $\{Q(t_i), T_s(t_i), F_c(t_i)\}$  were used in this

- 1 study to identify the light-curves and the light-temperature response surfaces of CO<sub>2</sub>
- 2 exchange.
- 3 It should also be noted that parameters obtained by fitting equations [3] or [4] to
- 4 flux-tower data sets are ecosystem-scale parameters referring to a ground unit (e.g., per 1
- 5 m<sup>2</sup> ground surface) and should be distinguished from leaf-level light-response parameters
- 6 used in physiological studies, which correspond to units of leaf area (e.g.,  $A_{L,max}$ ,  $\alpha_L$ , etc.).
- Only under special conditions (monoculture with convexity  $\theta = 0$ ), is photosynthetic
- 8 capacity per unit ground area  $(A_{max})$  equal to the product of photosynthetic capacity per
- 9 unit leaf area  $(A_{L,max})$  and the leaf area index (L):  $A_{max} = A_{L,max} *L$  (cf. Thornley and
- 10 Johnson 2000).
- For measurement days that allow identification of parameters of models [3] or [4],
- total daytime respiration,  $R_d$ , was calculated as the product of average daytime rate,  $r_d$ ,
- and the length of the daylight period:

15 
$$R_d = r_d(t_s - t_r)$$
. [6]

16

- For days with daytime data inappropriate for light-response analysis, parameters  $k_T$  and  $r_0$
- were estimated by fitting an exponential equation  $F_c = r_0 e^{k_T T_S}$  to the nighttime data
- 19  $\{T_S(t_i), F_C(t_i)\}_{Q(t_i)=0}$ .
- Eventually, total daily gross primary production,  $P_g$ , was obtained as the sum of daytime
- 21 respiration total  $R_d$  and the daytime net flux integral,  $P_d = \int_{t_r}^{t_s} F_C(t) dt$ :

 $P_g = P_d + R_d. ag{7}$ 

2

3

4

5

6

7

8

9

1

Gap-filling of  $P_g$  and  $R_e$  values for days with missing measurements was achieved using various methods characterized in the recent review by Moffat et al. (2007), with particular emphasis on (i) extrapolation of parameters of light- and temperature-response functions to days with missing flux measurements, calculations of fluxes at the 30-min time scale, and estimation of daily  $P_g$  and  $R_e$  values as integrals of corresponding 30-min estimates; and (ii) nonlinear regressions of daily  $P_g$  and  $R_e$  values from daily aggregated values of predictors such as photosynthetically active radiation, air and soil temperature, soil water content, etc.

11

12

10

#### **Seasonal Patterns of Parameter Dynamics**

- Numerical estimation of the major light-response parameters on a daily basis, i.e.
- obtaining the values  $\alpha$ ,  $A_{max}$ ,  $\theta$ ,  $r_d$  for as many days t as allowed by the quality and
- quantity of the data, permits evaluation of time-functions  $\alpha(t)$ ,  $A_{max}(t)$ ,  $\theta(t)$ ,  $r_d(t)$
- 16 characterizing seasonal patterns of the dynamics of these parameters. These patterns are
- 17 revealed most clearly through smoothing of the empirical time series of the parameter
- estimates. In this study we used one of the simplest and easily interpretable methods –
- 19 calculation of the mean parameter value and its standard error, e.g.,
- 20  $\left\{\overline{\alpha}_{j}, s_{\overline{\alpha}_{j}}\right\}$ ,  $\left\{\overline{A}_{\max,j}, s_{\overline{A}_{\max},j}\right\}$ , etc. for every calendar week, j, of the year of
- observations (j = 1, ..., 52). Using weekly average values instead of individual daily
- 22 estimates proved to be most appropriate for comparison between ecosystems and years,

- particularly for such parameters as quantum yield,  $\alpha$ , exhibiting large day-to-day
- 2 variability.

- 4 Seasonal Dynamics and Annual Budgets of GPP, RE, and NEE
- 5 Estimated values of  $P_g(t)$  and  $R_e(t)$  for the year-round or observation period were
- 6 integrated over the 365 days (or over the measurement season when no year-round data
- 7 were available) to obtain annual (seasonal) totals of gross primary production, GPP, and
- 8 total ecosystem respiration, RE. Cumulative NEE total to day t, CumNEE(t), was
- 9 calculated by integrating daily values of  $F_c(t) = P_g(t) R_e(t)$ . The net ecosystem CO<sub>2</sub>
- exchange for years or growing seasons, *NEE*, was calculated as the difference (*GPP-RE*).

11

- 12 Ecosystem-Scale Light-Use Efficiency
- 13 Comparative physiological studies at the leaf, individual, or population level commonly
- calculate the light-use efficiency of gross photosynthesis  $P_g$  with respect to absorbed
- photosynthetically active radiation,  $Q_a$ , resulting in a gross physiological light-use
- 16 efficiency coefficient (Larcher 1995):

17

$$18 \varepsilon_{phys} = \frac{P_g}{Q_a}, [8]$$

- where both the photosynthesis  $P_g$  and absorbed radiation  $Q_a$  are expressed in molar units
- 21 (e.g., it is convenient to measure  $\varepsilon$  in mmol CO<sub>2</sub> per mol quanta). However, in
- 22 comparative ecological studies it is preferable to use the coefficient of gross ecological

light-use efficiency (cf. Odum 1959 (p. 54); Cooper 1970; Austin et al. 1978; Colinvaux

2 1993):

3

$$4 \qquad \varepsilon_{ecol} = \frac{P_g}{O} , \qquad [9]$$

5

calculated per unit of *total incoming* photosynthetically active radiation, Q. It should be emphasized that while the physiological light-use efficiency coefficient,  $\varepsilon_{phys}$ , characterizes physiological and biochemical parameters (and is often used in studies performed at the unit leaf area or unit of photosynthetically active biomass basis),  $\varepsilon_{ecoh}$  as a rule, is calculated per unit ground surface (m<sup>-2</sup>, ha<sup>-1</sup>, etc.), and thus also takes into

11 account such ecosystem-level properties as population density, aboveground biomass, 12 and leaf area. Thus, gross ecological light-use efficiency characterizes ecosystems as a 13 whole with respect to ability for utilization of available radiation resources. For example, 14 consider two ecosystems with physiologically similar species and therefore similar light-15 use efficiencies per unit leaf area, but with LAI in the first ecosystem twice as small as the second (e.g. due to management). For moderate LAI values (e.g., < 3 m<sup>2</sup>m<sup>-2</sup> in the 16 second ecosystem), the photosynthetic uptake per unit of ground surface,  $P_g$ , and the 17 absorbed radiation,  $Q_a$ , in the second ecosystem will be approximately twice as large as 18 19 in the first, so that there will be little difference between the two ecosystems in terms of their physiological light-use efficiency  $\varepsilon_{phys}$ . On the other hand, the incoming radiation, 20

23

21

22

Q, will be the same in the two ecosystems, resulting in ecological light-use efficiency,

 $\varepsilon_{ecol}$ , in the second ecosystem being two times higher than in the first.

## RESULTS AND DISCUSSION

| 1 |  |
|---|--|
| 2 |  |

| 3 | Light-Response | Functions   | and Par  | amatar  |
|---|----------------|-------------|----------|---------|
| 5 | Light-Ixcspons | t runctions | anu i ai | ameters |

| 4  | Within the broad range of climatic conditions and ecosystem types represented in the data           |
|----|-----------------------------------------------------------------------------------------------------|
| 5  | set, we observed a variety of patterns of light-response. For comparative purposes, it is           |
| 6  | convenient to distinguish four major categories differentiated in terms of convexity and            |
| 7  | presence of the hysteresis-like loop on the light-response scatter diagram $\{Q, F_c\}$ (Fig. 2).   |
| 8  | In the latter case, plotting the 3-D scatter diagram of the diurnal dynamics of the                 |
| 9  | measurement data and of the response surface $F_c(Q, T_s)$ (eq. [4]) fitted to them provides a      |
| 10 | partial explanation the loop on the 2-D $\{Q, F_c\}$ plot caused by the increase of ecosystem       |
| 11 | respiration with the increase of temperature in the afternoon hours (Fig. 3). For the cases         |
| 12 | shown in Figures 2 and 3, numerical estimates and statistical characteristics of parameters         |
| 13 | in equations [3] and [4] are presented in Tables 2 and 3.                                           |
| 14 | Nonrectangular hyperbolic equation [3] and its modification [4] taking into account                 |
| 15 | temperature-dependence of daytime respiration, were found to be good numerical tools to             |
| 16 | fitting light-responses of nonforest ecosystems for days when photosynthetically active             |
| 17 | radiation was the dominant factor governing the ecosystem CO <sub>2</sub> exchange. It is important |
| 18 | to emphasize that the nonrectangular hyperbola provided a close fit to light-response data          |
| 19 | and provided consistent estimates of the light-response parameters for days when the                |
| 20 | $\{Q,F_c\}$ plots showed no saturation with respect to $Q$ and were characterized by convexity      |
| 21 | parameter $\theta$ close to 1 (cf. Fig. 2A). The rectangular hyperbola, Mitscherlich's equation,    |
| 22 | and other approximations lacking convexity parameter fitted to data with such a pattern,            |
| 23 | yield highly biased estimates of the initial slope, plateau, and the intercept parameters.          |

1 Estimates of the apparent quantum efficiency,  $\alpha$ , in nonforest ecosystems cover a wide range of values (Fig. 4A), from 5 mmol mol<sup>-1</sup> in the desert shrublands of Central 2 Asia (Karrykul) to 75 mmol mol<sup>-1</sup> in intensively managed grasslands of the North 3 Atlantic (Cabauw, the Netherlands), with mean value  $\alpha_{\text{nonfor}} = 33.3 \text{ mmol mol}^{-1}$  and 4 standard deviation  $s_{\text{nonfor}} = 14.2 \text{ mmol mol}^{-1}$ . The lower 10% quantile of the  $\alpha$  values in 5 the sample (5-17 mmol mol<sup>-1</sup>) included extensively managed arid and semiarid grasslands 6 7 and shrublands (Karrykul, Cottonwood, Karnap, Audubon, Lethbridge, Kherlenbayan, 8 Tojal, and Fort Peck), while the upper 10% quantile (50-75 mmol mol<sup>-1</sup>) encompassed 9 intensively managed grasslands (Cabauw, Carlow, Neustift, Easter Bush, Oensingen, 10 Lille Valby, Grillenburg, Haller, Rigi-Seebodenalp), extensively managed grasslands 11 under favorable weather conditions (Laqueuille-extensive, Jornada), and intensive 12 agricultural crops (Lonzee). Interestingly, most productive crop sites, characterized by the highest  $A_{max}$  and  $P_{g,max}$  values, did not make it to the upper 10% quantum yield 13 14 quantile, though they belong to the upper 20% quantum yield quantile. 15 In addition to scatter plots for the pooled data set, understanding relationships 16 between parameters within a particular ecosystem is of interest. Presently, only a subset 17 of extensively managed grasslands shows scatter diagrams with pronounced patterns of 18 co-variation (Fig. 5). 19 In evaluating obtained estimates of the quantum yield, we should first note that our maximum estimate of 75 mmol mol<sup>-1</sup> is only two thirds of the theoretical maximum 20 21 of quantum efficiency of gross photosynthesis estimated by Good and Bell (1980) as 110 22 mmol mol<sup>-1</sup>. Comparing our nonforest estimates with those reviewed by Ruimy et al. (1995), from which we estimated mean  $\overline{\alpha}_{forest} = 37 \text{ mmol mol}^{-1}$  with standard 23

- deviation  $s_{\text{forest}} = 17 \text{ mmol mol}^{-1}$  (we have excluded data in Ruimy et al. 1995 with  $\alpha$
- 2 values greater than theoretical maximum of quantum efficiency), one can see that
- 3 quantum efficiency of nonforest ecosystems is not statistically different from forests. In
- 4 fact,  $\alpha_{max,nonforest}$  estimated for intensively managed Cabauw grassland in The
- 5 Netherlands (75 mmol mol<sup>-1</sup>) was numerically higher, but statistically not significantly
- 6 different from the maximum quantum efficiency determined for the chestnut coppice near
- 7 Paris, France ( $\alpha_{max,forest} = 73 \text{ mmol mol}^{-1}$ ) (Mordacq et al 1991).
- 8 The values of maximum average weekly gross photosynthesis,  $A_{max}$ , for nonforest
- 9 sites of the world (Fig. 4A) span from 0.2 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> (Fort Peck mixed prairie during
- a drought year) to 3.4 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> (Mead, irrigated continuous corn), with the lower
- 11 10% quantile (0.2-0.36 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) including Fort Peck, Dubois, Miles City,
- 12 Kherlenbayan, Xilinhot, Karrykul, Kubuqi, Burns, and Karnap, and the upper 10%
- quantile (2-3.4 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) including intensive crops (Mead, Bondville, Lonzee,
- 14 Ames), intensively managed grasslands (Cabauw, Carlow, Lille Valby), and tallgrass
- prairies (Shidler, Fort Reno). The mean photosynthetic capacity of nonforest ecosystems,
- 1.2 mg  $CO_2$  m<sup>-2</sup> s<sup>-1</sup> (SD = 0.68 mg  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>), lies at the upper end of the mean  $A_{max}$
- 17 range for different forest types from eddy covariance estimates, 0.66 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> to
- 1.3 mg  $CO_2$  m<sup>-2</sup> s<sup>-1</sup> (mean = 0.97 mg  $CO_2$  m<sup>-2</sup> s<sup>-1</sup>) (Falge et al. 2002; Funk and Lerdau
- 19 2004). At the same time, the highest  $A_{max}$  value for nonforest ecosystems found in
- 20 intensive corn cultures of the Midwest of the USA (3.4 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>) were
- substantially higher than  $A_{max} = 2.64 \text{ mg CO}_2 \text{ m}^{-2} \text{ s}^{-1}$  estimated from data by Jarvis (1994)
- for a Sitka spruce culture in Scotland.

- 1 The values of daytime ecosystem respiration rate,  $r_d$ , in all ecosystems remained
- 2 substantially lower than corresponding  $A_{max}$  values (cf. Fig. 6, left), but also displayed
- 3 substantial variability among ecosystem types (Fig. 4B), with maximum weekly average
- 4  $r_d$  ranging from 0.04 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> (Burns, drought year) to 0.50 mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup>
- 5 (Haller, warm and wet year). The lower 10% quantile of maximum weekly  $r_d$  values
- 6 included arid and semiarid grasslands and shrublands (Burns, Karnap, Kherlenbayan,
- 7 Karrykul, Cottonwood, Burns, Dubois, Kubuqi) and tundra (Barrow), while the upper
- 8 10% quantile of  $r_d$  distribution was represented by intensively managed grasslands
- 9 (Haller, Neustift, Cabauw, Carlow, Oensingen, Lille Valby, Easter Bush), intensive crops
- 10 (Ames, Mead), tallgrass prairies (Shidler, Rannels Ranch), and a semidesert grassland in
- a year with exceptionally high precipitation (Jornada).
- The weekly maxima of the coefficient of gross ecological light-use efficiency,  $\varepsilon$ ,
- resulting from this study were in the range from 3 to 59 mmol mol<sup>-1</sup> (mean 22, standard
- deviation 12.4 mmol mol<sup>-1</sup>), and, understandably, were lower than the weekly maxima of
- 15 the apparent quantum yield,  $\alpha$  (Fig. 6, right). It is interesting, however, that for some
- ecosystems, particularly for agricultural C<sub>4</sub>-crops and tropical grasslands dominated by
- 17 C<sub>4</sub>-species,  $\varepsilon$  values were not considerably lower than  $\alpha$  (e.g., see Fig. 6E, 6F and 6H,
- right). This is a direct result of relatively high values of the convexity coefficient of the
- light-response curves of C<sub>4</sub> species; at the ultimate case of  $\theta = 1$ , the values of  $\alpha$  and  $\varepsilon$
- will become equal, provided input radiation levels remains within the range of linear
- 21 light-response.
- On the contrary, in  $C_3$ -communities characterized by lower convexity values ( $\theta =$
- 23 0 in the extreme case of rectangular hyperbolic light-response), ecological light-use

1 efficiency remains substantially lower than quantum yield (Fig. 6A, right). The lower 2 10% quantile of light-use efficiency values  $\varepsilon$  (2.6 – 6.4 mmol mol<sup>-1</sup>) includes deserts, 3 desert and dry steppe grasslands, shortgrass and sagebrush steppes, mixed prairies, 4 California grasslands and chaparral, and tundra (Karrykul, Karnap, Audubon Ranch, 5 Kendall, Xilinhot, CPER, Fort Peck, Cottonwood, Burns, Kubuqi, Kherlenbayan, Sky 6 Oaks, Barrow, Atgasuk, Ivotuk). The upper 10% quantile of the  $\varepsilon$  values (40-59 mmol mol<sup>-1</sup>) mostly includes high-yield crops (Risbyholm, Langerak, Molenweg, Mead, 7 8 Bondville, Oensingen, Gebesee, Lonzee, Batavia), as well as highly productive 9 intensively and extensively managed grasslands (Carlow, Lille Valby, Oensingen, 10 Neustift). 11 For comparison with  $\varepsilon_{max}$  estimates for nonforest ecosystems, we calculated 12 average weekly values of light-use efficiency for the twelve most productive forest 13 ecosystems in the FLUXNET La Thuile database. These twelve  $\varepsilon_{max}$  values ranged between 29.1 and 47.7 mmol mol<sup>-1</sup>, with the highest value corresponding to the 2001 data 14 set for the Duke loblolly pine forest (North Carolina), which is less than  $\varepsilon_{max} = 59$  mmol 15  $\text{mol}^{-1}$  for a high-yield crop (also, see Table 5 for  $P_{g,max}$  comparison of forests and 16 17 nonforest ecosystems). Thus, the light-use efficiency data are in agreement with 18 observations earlier in this section that the values of the maximum apparent quantum 19 yield in nonforest ecosystems (particularly, intensively managed grasslands) are 20 comparable and even higher than those for forest ecosystems.

#### **Parameter Interrelations**

21

- 1 As expected, numerical values of light-response parameters among different ecosystems
- 2 did not vary independently of each other, but demonstrated patterns of correlation shown
- 3 in Figs. 4 and 5. Our results for this extensive data set are in agreement with earlier
- 4 studies based on smaller subsets of flux-tower data, suggesting that the plateau parameter
- of gross photosynthesis,  $A_{max}$ , is a good predictor for other light-response parameters,
- 6 including quantum yield,  $\alpha$ , ecosystem respiration rate,  $r_d$ , and light-use efficiency,  $\varepsilon$
- 7 (Gilmanov et al. 2007a; Owen at al. 2007). Baldocchi and Xu (2005) found that  $A_{max}$  is a
- 8 good predictor for another photosynthetic parameter, the maximum rate of carboxylation,
- 9  $V_{c,max}$ . Nevertheless, while in previous studies mostly linear relationships between  $A_{max}$
- and other parameters were identified, the wider range of parameter variations in our data
- set has revealed a number of distinct nonlinearities. For example, an allometric
- relationship  $\alpha = 30.36(A_{\text{max}})^{0.55}$  with  $R^2$  value of 0.55 was obtained for the
- relationship between apparent quantum yield and maximum photosynthesis (Fig. 4A).
- 14 The better fit of the allometric (nonlinear) description of the  $\alpha(A_{max})$  relationship
- 15 compared with the simple linear model is demonstrated by the fact that the nonlinear
- model conveys a decrease in  $\alpha$  with decreasing  $A_{max}$  as the latter is approaching zero,
- while the linear model predicts an unrealistic  $\alpha_0$  value of ~15 mmol mol<sup>-1</sup> even when  $A_{max}$
- $18 \rightarrow 0$ .
- Daytime ecosystem respiration,  $r_d$ , also demonstrated an allometric relationship to
- 20  $A_{max}$  described as  $r_d = 0.22(A_{max})^{0.71}$  characterized by  $R^2 = 0.69$  (Fig. 5B). In this
- case, the linear model also provided a reasonable fit to the data ( $R^2 = 0.67$ ), though its
- 22 applicability to areas with low  $A_{max}$  values is limited by an unrealistically high intercept
- of  $r_{d0} = 0.09$  mg CO<sub>2</sub> m<sup>-2</sup> s<sup>-1</sup> as  $A_{max} \rightarrow 0$ . From the patterns of data points on Figs. 5C

and 5D one may see that the relationships between ecological light-use efficiency,

2 maximum daily gross photosynthesis, and  $L_{max}$  may be approximated by both the linear,

and the allometric equations, though the latter provides better description in the lower

4 range of  $A_{max}$  and  $L_{max}$ .

For various reasons, not all flux sites collected data on maximum leaf area ( $L_{max}$ ) and/or maximum aboveground green biomass ( $G_{max}$ ). Nevertheless, with the limited data available (Figs. 5F and 5H) we were able to establish nonlinear allometric (with allometry coefficient < 1) dependence of maximum photosyntyhesis parameters ( $A_{max}$ ) and the standard morphometric characteristics such as maximum aboveground

biomass,  $G_{max}$  and maximum leaf area index,  $L_{max}$  (Figures. 5F and 5H).

Seasonal Patterns of Parameter Dynamics

Because light-response parameters evaluated from flux-tower measurement data sets represent not only physiological characteristics (which also change in time with phenology and environmental conditions) but also the ecosystem-scale attributes like aboveground biomass, leaf area index and others, such parameters exhibit pronounced variation in magnitude during the year. Seasonal changes of these parameters, though specific for particular sites and years, have general patterns that are revealed by time-plots of parameter values aggregated at the weekly time step (Fig. 6). Pronounced seasonal dynamics of light-response parameters shown on Fig. 6 in cold and temperate environments is apparently driven by radiation and temperature inputs (Fig. 6, A, D), while under arid conditions it mainly reflects fluctuation of precipitation (Fig. 6 E, F). This climatically driven unimodal pattern of seasonal parameter change was particularly

1 pronounced in species-poor ecosystems or monocultures with relatively narrow 2 production period, be that a floodplain meadow in the tundra zone (Fig. 6A) or 3 agricultural crops (Figs. 6G and 6H). In ecosystems with higher species diversity and 4 broader production period (up to year-round production in tropical conditions), the 5 general seasonal pattern of parameter dynamics was compounded by additional 6 fluctuations reflecting different reactions of various species groups (e.g., cool and warm-7 season grasses) to weather variability and management pressure (grazing, mowing) 8 during various parts of the year (Figs. 6 B, C, D). These data may help to explain 9 difficulties experienced by those attempting to simulate year-round dynamics of gross 10 primary productivity and light-response parameters by modification of the hypothetical 11 maximum parameter value by factors-multipliers describing effects of various drivers like 12 radiation, temperature, moisture, etc. (cf. Monteith 1972; Ciais et al. 2001). 13 14 Seasonal Dynamics and Annual Budgets of GPP, RE, and NEE 15 Depending on a number of external (e.g. radiation, temperature, precipitation) and 16 internal ecological factors (e.g. leaf area, phenological state, water and nutrient supply), 17 the functions of gross primary productivity,  $P_g(t)$ , and total ecosystem respiration,  $R_e(t)$ , 18 demonstrated pronounced temporal dynamics during the year, as exemplified by the 19 measurement-based estimates of  $P_g(t)$  and  $R_e(t)$  presented on Fig. 7. On the other hand, 20 the curve of cumulative net ecosystem exchange, CumNEE(t) showed much smoother 21 behavior, and its value at the end of the year, NEE, provides a summary of ecosystem 22 carbon budget.

| Data from the WorldGrass.                    | AgriFlux data set demonstrated a great variety of                  |
|----------------------------------------------|--------------------------------------------------------------------|
| seasonal patterns of productivity a          | nd respiration dynamics, some of the typical curves are            |
| illustrated in Fig. 7. There are thre        | e major seasonal patterns of the cumulative NEE curve:             |
| (i) equilibrium (S-shaped), (ii) per         | manent accumulation, and (iii) permanent release of                |
| carbon. The equilibrium pattern (i)          | characterizing non-harvested ecosystems with marked                |
| seasonality of primary productivity          | was exemplified by data from a floodplain tundra                   |
| meadow at Cherskii in the Far Nor            | th-East of Russia (Fig. 7A). With the period of                    |
| decomposition activity (May-Septe            | ember) completely encompassing the production period               |
| (June-August) and with maximum               | decomposition lagging behind maximum production,                   |
| the curve of cumulative NEE assur            | med a characteristic S-shaped form with the net annual             |
| ecosystem CO <sub>2</sub> exchange nearly ze | ero. The accumulative pattern (ii) is described by the             |
| more or less monotonous accumul-             | ation of net ecosystem production in ecosystems with a             |
| period of marked domination of pr            | roduction over decomposition processes observed in                 |
| both grassland (Fig. 7F) and cropla          | and ecosystems (Fig. 7G). The third pattern (iii) –                |
| nearly permanent domination of re            | espiratory efflux over assimilatory uptake resulting in            |
| significant net loss of carbon from          | the ecosystem at the end of the year, as exemplified by            |
| measurements at the Audubon (AZ              | Z) desert grassland on a high carbonate soil (Emmerich             |
| 2003) (Fig. 7D). These three major           | r patterns were accompanied by a variety of                        |
| intermediate variants with local ma          | axima and minima of the CumNEE(t) curve reflecting                 |
| weather fluctuations and harvestin           | g, finally leading to either net uptake (Fig. 7C) or net           |
| loss of carbon from the ecosystem            | (Fig. 7B, 7E and 7H).                                              |
| Year-round integration of t                  | he $P_g(t)$ , $R_e(t)$ , and $F_c(t)$ curves provided estimates of |
| annual GPP RF and NFF totals for             | or all the site-years in this study. These data stratified         |

1 by major ecosystem groups (extensively and intensively managed grasslands, shrublands 2 and savanna, wetlands, and croplands) are summarized in Table 4. The highest mean gross primary production (5767 g CO<sub>2</sub> m<sup>-2</sup> vr<sup>-1</sup>) and ecosystem respiration (4990 g CO<sub>2</sub> 3 m<sup>-2</sup> yr<sup>-1</sup>) were achieved in intensively managed grasslands. Not surprisingly, the highest 4 mean annual net ecosystem CO<sub>2</sub> exchange (933 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>) was found in croplands. 5 6 To supplement these basic statistical characteristics, Fig. 8 shows the distributions of the 7 GPP, RE, and NEE values in the pooled data set of estimates from all site-years in the 8 database. They show that while the GPP and RE values in our sample had a wide range of variation (95 - 8600 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> for gross production and 112 - 7880 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> 9 10 for respiration), with GPP and RE values fairly well distributed over their ranges (Fig. 8A and 8B), the net CO<sub>2</sub> exchange values concentrated between -1342 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> and 11 2394 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup> had a distinctly unimodal distribution (Fig. 8 C). The average NEE 12 value for our sample of 316 nonforest ecosystems is 485 g  $CO_2$  m<sup>-2</sup> yr<sup>-1</sup> (SD = 696 g  $CO_2$ 13 m<sup>-2</sup> yr<sup>-1</sup>). Comparing these statistics with the mean (671 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>) and standard 14 deviation (988 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>) of published NEE values for 506 site-years from flux 15 16 towers worldwide (Baldocchi 2008b), we did not detect a difference between the two 17 NEE averages at the 1% level of significance. The higher mean NEE value for 18 Baldocchi's sample is easily explained, taking into account that it contains a number of 19 growing forest sites with high NEE, while the WorldGrassAgriFlux data set includes 20 mostly nonforest sites (with occasional near-climax shrubland and savanna ecosystems). 21 A particularly interesting question, in the context of comparing basic parameters of the 22 carbon cycle, regards identifying maximum rates of photosynthetic CO<sub>2</sub> assimilation in

various ecosystems. For this purpose, in Table 5 we have compiled the data of the two

- dozen (or maximum available) site-years with maximum values of daily photosynthesis,
- 2  $P_{g,max}$ , and annual GPP for our five types of nonforest ecosystems and for the forest sites
- 3 represented in the most recent FLUXNET database. With respect to the annual GPP,
- 4 forest ecosystems achieved the highest estimates of photosynthetic CO<sub>2</sub> uptake, with
- 5 maximum  $GPP = 14339 \text{ g CO}_2 \text{ m}^{-2} \text{ yr}^{-1}$  for a tropical forest in French Guyana (Table 5F)
- 6 compared to maximum  $GPP = 8600 \text{ g CO}_2 \text{ m}^{-2} \text{ yr}^{-1}$  for a tropical grassland in Rondonia,
- 7 Brazil (Table 5 A). In contrast, maximum daily rates of photosynthetic uptake were
- 8 recorded not in forests, but in the intensive crops of the Midwestern United States, with
- 9  $P_{g,max} = 116 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1}$  estimated for irrigated corn in a corn-soybean rotation (Mead,
- NE) in 2001 (Table 5E). These data clearly demonstrate that even in other types of
- 11 nonforest ecosystems (e.g. shrublands and savanna), in addition to intensive agricultural
- 12 crops, maximum rates of gross photosynthetic assimilation  $(50 76 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1})$  are
- quite comparable to those in most productive forests  $(55 99 \text{ g CO}_2 \text{ m}^{-2} \text{ d}^{-1})$ . Apparently,
- the major reason why annual GPP in forests is typically higher than nonforested
- ecosystems is the length of production period. In tropical forests, production may
- encompass the whole year, while in most nonforest ecosystems it is temporally limited by
- 17 temperature and water availability.

#### Source/Sink Activity of Nonforest Ecosystems

- 19 The data on annual budgets of production, respiration, and net exchange of nonforest
- 20 ecosystems obtained in our study allow quantitative consideration of important question
- about the magnitude and significance of the source or sink activity of various ecosystem
- 22 types. Since H.T. Odum (1956) (see also Baldocchi 2008b), a convenient way to
- 23 visualize the net carbon budget of ecosystems for comparative purposes is to construct an

- 1 RE versus GPP scatter diagram and compare the distribution of data points with respect
- 2 to the 1:1 diagonal. Points below the diagonal correspond to sinks (GPP > RE, NEE > 0),
- 3 while points above the diagonal describe sources of carbon ( $GPP \le RE, NEE \le 0$ ).
- 4 H.T. Odum's plot for the whole nonforest data set (Fig. 9) demonstrates that for four out
- 5 of every five site-years, gross production was higher than ecosystem respiration,
- 6 indicating net ecosystem sink activity. Stratification of the data with respect to ecosystem
- 7 type (Fig. 10) shows that for all types of nonforest ecosystem in our database there were
- 8 considerably more years with net CO<sub>2</sub> uptake than release. However, years with net
- 9 source activity occasionally occurred in all ecosystems except wetlands.
- 10 The distributions of *NEE* for different ecosystems presented in Fig. 11 provide a more
- detailed description of the matter. Source-type activity more frequently occurred in
- extensively managed grasslands, shrublands/savanna, and croplands, than in intensively
- managed grasslands and wetlands. As a rule, source-type activity was associated with
- 14 years of drought, excessive grazing and hay mowing, high organic matter content of soils
- 15 (e.g. grasslands on peat) or high CaCO<sub>3</sub> reserves in the soil profile, and transitional
- successional status of the ecosystem (e.g., grasslands of previously forested soils). For
- agroecosystems, source activity is often observed in crops with intensive soil preparation
- and relatively short leaf duration periods (e.g. soybeans). However, it should be
- 19 emphasized that for all ecosystems examined in our study, carbon sink activity was
- 20 frequently observed, with the highest net carbon uptakes in intensively managed
- 21 grasslands and cropland ecosystems (Fig. 11, Table 4).
- These observations are in obvious contradiction with conclusion of the first State
- Of the Carbon Cycle Report (SOCCR) (King et al. 2007) and some earlier authors (e.g.,

- 1 Reicosky 1997; Smith and Falloon 2005) who emphasized net source or neutral activity
- 2 of agricultural ecosystems. In this context, it is appropriate to consider the argument by
- 3 C. Körner (2003) regarding the critical significance of the representativeness of flux
- 4 tower data sets. Recognizing the relevance of Körner's arguments to the situation in the
- 5 early 2000s, it should be emphasized that, at least with regard to nonforested ecosystems,
- 6 the present set of flux tower sites includes a wide range of climatic conditions and
- 7 management regimes and, therefore, is much less biased towards highly productive
- 8 ecosystems.
- 9 Ecosystem-Scale Production and Respiration in Relation to Major Ecological
- 10 Factors
- Relationships of production and decomposition to major ecological factors attracted
- attention of ecologists and geographers of the 20<sup>th</sup> century (Weaver 1924; Walter 1939;
- Budyko and Efimova 1968; Rosenzweig 1968; Lieth 1975) and were later approached
- under the framework of dynamic global vegetation models (DGVM) and related models
- 15 (e.g., Woodward et al. 2001; Cramer et al. 2001). Presently, these problems are back in
- the focus of ecosystem, regional and global ecology, not only because of the recognition
- of their relevance to global climatic change, but also because today, for the first time,
- measurement-based quantitative estimates of gross productivity and total ecosystem
- respiration are readily available through post-processing of net CO<sub>2</sub> exchange
- 20 measurements at flux towers.
- Besides radiation and temperature, which are already taken into account by the
- 22 light-temperature-response function method, the next most important factor influencing
- ecosystem productivity and respiration is water (e.g., Slatyer 1967; Boyer 1982). Though

water content or water potential of top-soil horizons are the most desirable predictors for
 production and decomposition modeling, such data are not yet readily available for many

flux tower stations, making it necessary for us to limit consideration to available

4 precipitation data.

Both theory and empirical data indicate nonlinear relationships between photosynthesis, productivity, and decomposition rates on water content and/or water potential (Denmead and Shaw 1962; Wildung et al. 1975; Singh et al. 1980; Eastin and Sullivan 1984; Mielnick and Dugas 2000). In contrast, observations of the linear response of productivity in certain ecosystem types occasionally appear in the literature (Walter 1939; Le Houèrou and Hoste. 1977; Sala et al. 1988). Our data allow a fresh look at this old problem using new ecosystem-scale estimates of *GPP* and *RE* values in relation to precipitation *PCPN* (Fig. 12-14). Within the whole WorldGrassAgriFlux data set, we found that the subsets of extensively managed grasslands, intensively managed grasslands, and shrublands-savanna exhibit patterns of relationship of *GPP* and *RE* to precipitation and dryness index, while the data for wetlands and croplands did not produce recognizable patterns.

Gross production and ecosystem respiration of extensively managed grasslands demonstrate nonlinear patterns in response to annual precipitation that may be expressed by Mitscherlich's equation (Fig. 12A and 12B) describing a saturated relationship (cf. Lieth 1975). Deviation of the data points from the trend, which increases in amplitude with increasing precipitation, indicates a diminishing response to precipitation. As shown in Figs. 12C and 12D, the decrease of precipitation use efficiency is linked to the dryness index (ratio of annual net radiation,  $R_{net}$ , to the amount of energy required for evaporation

- of precipitation,  $\lambda *PCPN$ , where  $\lambda$  is the latent heat coefficient) (Budyko and Efimova,
- 2 1968; Long et al. 1991).

- 3 Intensively managed grasslands, which are typically located in climates with more
- 4 favorable precipitation and less drought stress, still exhibit responses to precipitation and
- 5 dryness; this response is especially pronounced for gross primary production (Fig. 13).
- 6 Shrublands and savanna ecosystems, with their broad range of precipitation and dryness
- 7 index, demonstrate strong nonlinearity of response to precipitation and dryness for both
- 8 the assimilation and respiration components of the carbon cycle (Fig. 14).

## CONCLUSIONS AND IMPLICATIONS

| 3  | The light-response parameters of nonforest terrestrial ecosystems have a wide range of                                                                               |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4  | variability, from relatively low values of photosynthetic capacity ( $A_{max} = 0.2 \text{ mg CO}_2 \text{ m}^{-2}$                                                  |
| 5  | s <sup>-1</sup> in drought-stressed grasslands), quantum yield ( $\alpha = 5$ mmol mol <sup>-1</sup> in deserts), daytime                                            |
| 6  | ecosystem respiration ( $r_d = 0.04 \text{ mg CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ in drought-stressed sagebrush steppe),                                            |
| 7  | and gross ecological light-use efficiency ( $\varepsilon = 2.6 \text{ mmol mol}^{-1}$ in sedge and tussock                                                           |
| 8  | tundras of Alaska), to the highest values ever recorded for terrestrial ecosystems                                                                                   |
| 9  | (intensively managed grasslands and agricultural crops: $A_{max} = 3.4 \text{ mg CO}_2 \text{ m}^{-2} \text{ s}^{-1}$ , $\alpha =$                                   |
| 10 | 75 mmol mol <sup>-1</sup> , $r_d = 0.50$ mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> , $\varepsilon = 59$ mmol mol <sup>-1</sup> ). Under optimal conditions, |
| 11 | gross primary productivity in nonforest terrestrial ecosystems can surpass productivity of                                                                           |
| 12 | forests, with maximum rates of daily gross photosynthetic assimilation, $P_{g,max}$ , achieving                                                                      |
| 13 | values greater 100 g CO <sub>2</sub> m <sup>-2</sup> d <sup>-1</sup> in intensive agricultural crops ( $P_{g,max} = 116$ g CO <sub>2</sub> m <sup>-2</sup> d         |
| 14 | <sup>1</sup> ), while for forest ecosystems $P_{g,max}$ values remain below 100 g CO <sub>2</sub> m <sup>-2</sup> d <sup>-1</sup> (FLUXNET                           |
| 15 | data base: www.fluxdata.org). Nevertheless, due to limitation by radiation, temperature,                                                                             |
| 16 | water, and nutrient resources, as well as management practices, maximum values of                                                                                    |
| 17 | annual gross photosynthesis (GPP) of nonforest ecosystems estimated from flux-tower                                                                                  |
| 18 | measurements remain below 10000 g CO <sub>2</sub> m <sup>-2</sup> yr <sup>-1</sup> , while in many types of forests they                                             |
| 19 | considerably exceeded this value (with maximum $GPP > 14000$ calculated for a tropical                                                                               |
| 20 | forest in French Guyana). The annual values of both GPP and RE for extensively and                                                                                   |
| 21 | intensively managed grasslands, and shrubland/savanna ecosystems are nonlinearly                                                                                     |
| 22 | related to annual precipitation, <i>PCPN</i> , and dryness index, $R_{net}/(\lambda *PCPN)$ , indicating the                                                         |
| 23 | potential sensitivity of these ecosystems to anthropogenic climate change.                                                                                           |

1 The average annual net CO<sub>2</sub> exchange of our sample of 316 NEE values for 2 nonforest ecosystems indicates that on average, nonforest ecosystems act as net sinks for 3 atmospheric CO<sub>2</sub>, with the highest rates of annual CO<sub>2</sub> uptake in agricultural crops (mean  $NEE_{crop} = 933 \text{ g CO}_2 \text{ m}^{-2} \text{ yr}^{-1}$ ) and intensively managed grasslands (mean  $NEE_{grassint} =$ 4 848 g CO<sub>2</sub> m<sup>-2</sup> yr<sup>-1</sup>). These data, based on continuous long-term flux-tower 5 6 measurements, confirm that grasslands and agricultural crops play a significant role in the 7 carbon budget and have high carbon sequestration potential (Lal et al. 1998; Follett et al. 8 2001; Follett and Schuman 2005). These findings directly contradict conclusions of 9 earlier authors (e.g., Smith and Faloon 2005; Conant et al. 2007 in SOCCR) about the 10 negative or nearly neutral role agroecosystems play in continental carbon budgets. These 11 earlier studies were based on C-inventory methods and did not utilize flux-tower 12 measurements. Clearly, further analyses are needed to determine the extent to which 13 flux-tower networks and the GIS and remote-sensing methods used to up-scale flux 14 measurements to the regional level are representative, and to support our conclusion 15 about the significant sink role of managed grasslands and intensive agricultural crops in 16 the carbon budget. 17

| 1 | ACKNOWLEDGEMENTS                                                                  |
|---|-----------------------------------------------------------------------------------|
| 2 |                                                                                   |
| 3 | The authors thank managers of the RANGEFLUX data base Patricia Mielnick and the   |
| 4 | FLUXNET data base Dario Papale, Markus Reichstein, and Deb Agrawal for assistance |
| 5 | with updating tower flux data. We also thank Mary Brooke McEachern for help with  |
| 6 | editing the manuscript of the paper.                                              |
| 7 |                                                                                   |

| 1  | LITERATURE CITED                                                                              |
|----|-----------------------------------------------------------------------------------------------|
| 2  |                                                                                               |
| 3  | Agarwal, D., M. Humphrey, C. van Ingen, N. Beekwilder, M. Goode, K. Jackson, M. R. L.         |
| 4  | Rodriguez, and R. Weber. 2008. FLUXNET snthesis dataset collaboration infrastructure.         |
| 5  | FluxLetter (The Newsletter of FLUXNET) 1: 5-7.                                                |
| 6  | Austin, R. B., G. Kingston, P. C. Longden, and P. A. Donovan. 1978. Gross energy yields and   |
| 7  | the support energy requirements for the production of sugar from beet and cane: a study       |
| 8  | of four production areas. Journal of Agricultural Science 91:661-675.                         |
| 9  | Baldocchi, D. 2008a. Advanced topics in biometeorology and micrometeorology.                  |
| 10 | http://nature.berkeley.edu/biometlab/espm228/.                                                |
| 11 | Baldocchi, D. 2008b. "Breathing" of the terrestrial biosphere: lessons learned from a global  |
| 12 | network of carbon dioxide flux measurement systems. Australian Journal of Botany 56:          |
| 13 | 1-26.                                                                                         |
| 14 | Baldocchi, D., and L. Xu. 2005. Carbon exchange of deciduous broadleaved forests in temperate |
| 15 | and Mediterranean regions. In: H. Griffiths and P. G. Jarvis, editors. The carbon balance     |
| 16 | of forests. Taylor and Francis, New York, p. 187-215.                                         |
| 17 | Birdsey, R. A., J. C. Jenkins, M. Johnston, E. Huber-Sannwald, B. Amero, B. de Jong, J. D. E. |
| 18 | Barra, N. R. French, F. Garcia-Oliva, M. Harmon, L. S. Heath, V. J. Jaramillo, K.             |
| 19 | Johnsen, B. E. Law, E. Martin-Spiotta, O. Masera, R. Neilson, Y. Pan, and K. S.               |
| 20 | Pregitzer. 2007. North American Forests. in A. W. King, L. Dilling, G. P. Zimmerman,          |
| 21 | D. M. Fairman, H. R.A., G. Marland, R. A.Z., and T. J. Wilbanks [eds.]. The First State       |
| 22 | of the Carbon Cycle Report (SOCCR): The North American Carbon Budget and                      |
| 23 | Implications for the Global Carbon Cycle, A Report by the U.S. Climate Change Science         |

- 1 Program and the Subcommittee on Global Change Research. National Oceanic and
- 2 Atmospheric Administration, National Climatic Data Center, Asheville, NC, USA, p.
- 3 117-126.
- 4 Blackman, F. F. 1905. Optima and limiting factors. *Annals of Botany* 19: 281-295.
- 5 Boyer, J.S. 1982. Plant productivity and environment. *Science* 218:443-448.
- 6 Bridgham, S. D., J. P. Megonigal, J. K. Keller, N. B. Bliss, and C. Trettin. 2007. Wetlands. *In*: A.
- W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, H. R.A., G. Marland, R. A.Z.,
- and T. J. Wilbanks [eds.]. The First Stata of the Carbon Cycle Report (SOCCR): The
- 9 North American Carbon Budget and Implications for the Global Carbon Cycle. A Report
- by the U.S. Climate Change Science Program and the Subcommittee on Global Change
- 11 Research. National Oceanic and Atmospheric Administration, National Climatic Data
- 12 Center, Asheville, NC, USA, p. 139-148.
- Budyko, M. I., and N. A. Efimova. 1968. The use of solar energy by the natural plant cover of
- the USSR. *Botanicheskii Zhurnal* 53:1384-1389.
- Burba, G., and D. Anderson. 2007. Introduction to lthe eddy covariance method. General
- 16 guidelines, and conventional workflow. LI-COR Biosciences.
- 17 http://www.licor.com/env/PDF Files/EddyCovariance readonly.pdf.
- Buyanovsky, G. A., and G. H. Wagner. 1998. Changing role of cultivated land in the global
- carbon cycle. *Biology and Fertility of Soils* 27:242-245.
- 20 Ciais, P., P. Friedlingstein, A. Friend, and D. S. Schimel. 2001. Integrating global models of
- 21 terrestrial primary produuctivity. In: J. Roy, B. Saugier, and H. A. Mooney [eds.]
- Terrestrial global productivity. Academic Press, San Diego et al., p. 449-478.
- Colinvaux, P. A. 1993. Ecology 2. Wiley, New York.

- 1 Conant, R. T., K. Paustian, F. Garcia-Oliva, H. H. Janzen, M. J. Jaramillo, D. E. Johnson, and S.
- N. Kulshreshtha. 2007. Agricultural and grazing lands. *In:* A. W. King, L. Dilling, G. P.
- Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z. Rose, and T. J.
- Wilbanks, editors. The first state of the carbon cycle report (SOCCR): The North
- 5 American carbon budget and implications for the global carbon cycle. A report by the
- 6 U.S. Climate Change Science Program and the Subcommittee on Global Change
- 7 Research. National Oceanic and Atmospheric Administration, National Climatic Data
- 8 Center, Asheville, NC, USA, p. 107-116.
- 9 Cooper, J. P. 1970. Potential production and energy conversion in temperate and tropical grasses.
- 10 Herbage Abstracts 40:1-13.
- 11 Cramer, W., R. J. Olson, S. D. Prince, J. M. O. Scurlock, and
- members of the Global Primary Production Data Initiative. 2001. Determining
- present patterns of global productivity. *In:* J. Roy, B. Saugier, and H. A. Mooney [eds.].
- 14 Terrestrial global productivity. Academic Press, San Diego et al., p. 429-448.
- Davidson, E. A., and I. A. Janssens. 2006. Temperature sensitivity of soil carbon decomposition
- and feedbacks to climate change. *Nature* 440: 165-173.
- Denmead, O. T., and R. H. Shaw. 1962. Availability of soil water to plants as affected by soil
- moisture content and meteorological conditions. *Agronomy Journal* 54: 385-390.
- 19 Eastin, J. D., and C. Y. Sullivan. 1984. Environmental stress influences on plant persistence,
- 20 physiology, and production. *In*: M. B. Tesar [ed.]. Physiological basis of crop growth and
- 21 development. American Society of Agronomy and Crop Science Society of America,
- Madison, Wisconsin, p. 201-236.
- Emmerich, W. E. 2003. Carbon dioxide fluxes in a semiarid environment with high carbonate

- soils. *Agricultural and Forest Meeorology* 116: 91-102.
- 2 Falge, E., J. Tenhunen, D. Baldocchi, M. Aubinet, P. Bakwin, P. Berbigier, C. Bernhofer, J. M.
- Bonnefond, G. Burba, R. Clement, K. J. Davis, J. A. Elbers, M. Falk, A. H. Goldstein, A.
- Grelle, A. Granier, T. Grünwald, J. Gudmundsson, D. Hollinger, I. A. Janssens, P.
- 5 Keronen, A. S. Kowalski, G. Katul, B. E. Law, Y. Malhi, T. Meyers, R. K. Monson, E.
- Moors, J. W. Munger, W. Oechel, K. T. P. U, K. Pilegaard, U. Rannik, C. Rebmann, A.
- 7 Suyker, H. Thorgeirsson, G. Tirone, A. Turnipseed, K. Wilson, and S. Wofsy. 2002.
- 8 Phase and amplitude of ecosystem carbon release and uptake potentials as derived from
- 9 FLUXNET measurements. *Agricultural and Forest Meteorology* 113:75-95.
- Farrell, A. E., M. O'Hare, D. M. Kammen, R. J. Plevin, B. T. Turner, and A. D. Jones. 2006.
- Ethanol can contribute to energy and environmental goals. *Science* 311:506-508.
- Follett, R. F., J. M. Kimble, and R. Lal [eds.]. 2001. The potential of U.S. grazing lands to
- sequester carbon and mitigate the greenhouse effect. Lewis Publishers, Boca Raton,
- 14 Florida.
- Follett, R. F., and G. E. Schuman. 2005. Grazing land contributions to carbon sequestration. *In:*
- D. A. McGilloway [ed.]. Grassland: a global resource. Wageningen Academic Publishers,
- 17 Wageningen, p. 265-277.
- Funk, J. L., and M. T. Lerdau. 2004. Photosynthesis in forest canopies. *In*: M. D. Lowman and
- 19 H. B. Rinker [eds.]. Forest canopies. Elsevier Academic Press, Amsterdam et al., p. 335-
- 20 358.
- Gilmanov, T. G., A. B. Frank, M. R. Haferkamp, T. P. Meyers, J. A. Morgan, L. L. Tieszen, B.
- 22 K. Wylie, and L. B. Flanagan. 2005. Integration of CO<sub>2</sub> flux and remotely-sensed data for
- primary production and ecosystem respiration analyses in the Northern Great Plains:

- Potential for quantitative spatial extrapolation. *Global Ecology and Biogeography* 14:
- 2 271-292.
- 3 Gilmanov, T. G., D. A. Johnson, and N. Z. Saliendra. 2003a. Growing season CO2 fluxes in a
- 4 sagebrush-steppe ecosystem in Idaho: Bowen ratio/energy balance measurements and
- 5 modeling. *Basic and Applied Ecology* 4: 167-183.
- 6 Gilmanov, T. G., D. A. Johnson, N. Z. Saliendra, K. Akshalov, and B. K. Wylie. 2004. Gross
- 7 primary productivity of the true steppe in Central Asia in relation to NDVI: Scaling-up
- 8 CO<sub>2</sub> fluxes. *Environmental Management* 39: S492-S508.
- 9 Gilmanov, T. G., J. F. Soussana, L. Aires, V. Allard, C. Ammann, M. Balzarolo, Z. Barcza, C.
- Bernhofer, C. L. Campbell, A. Cernusca, A. Cescatti, J. Clifton-Brown, B. O. M. Dirks,
- S. Dore, W. Eugster, J. Fuhrer, C. Gimeno, T. Gruenwald, L. Haszpra, A. Hensen, A.
- 12 Ibrom, A. F. G. Jacobs, M. B. Jones, G. Lanigan, T. Laurila, A. Lohila, G.Manca, B.
- Marcolla, Z. Nagy, K. Pilegaard, K. Pinter, C. Pio, A. Raschi, N. Rogiers, M. J. Sanz, P.
- Stefani, M. Sutton, Z. Tuba, R. Valentini, M. L. Williams, and G. Wohlfahrt. 2007a.
- Partitioning European grassland net ecosystem CO2 exchange into gross primary
- productivity and ecosystem respiration using light response function analysis.
- 17 *Agriculture, Ecosystems and Environment* 121: 93-120.
- Gilmanov, T. G., T. J. Svejcar, D. A. Johnson, R. F. Angell, N. Z. Saliendra, and B. K. Wylie.
- 19 2006. Long-term dynamics of production, respiration, and net CO<sub>2</sub> exchange in two
- sagebrush-steppe ecosystems. Rangeland Ecology and Management 59: 585-599.
- Gilmanov, T. G., S. B. Verma, P. L. Sims, T. P. Meyers, J. A. Bradford, G. G. Burba, and A. E.
- Suyker. 2003b. Gross primary production and light response parameters of four Southern
- Plains ecosystems estimated using long-term CO2-flux tower measurements art. no.

- 1 1071. *Global Biogeochemical Cycles* 17: doi: 10.1029/2002GB002023, 2003.
- 2 Gilmanov, T. G., and WORLDGRASSAGRIFLUX Data Set Participants. 2007b. Productivity,
- 3 respiration, CO2 sink potential, and light-response parameters of world grasslands
- derived from flux-tower data partitioning. Eos Trans. AGU, 88(52), Fall Meet. Suppl.,
- 5 *Abstract B32B-03*.
- 6 Good, N. E., and D. H. Bell. 1980. Photosynthesis, plant productivity and crop yield. *In:* P. S.
- 7 Carlson, editor. The biology of crop productivity. Academic Press, New York, p. 3-51.
- 8 Goulden, M. L., J. W. Munger, S.-M. Fan, B. C. Daube, and S. C. Wofsy. 1996. Measurements
- 9 of carbon sequestration by long-term eddy covariance: methods and critical evaluation of
- accuracy. Global Change Biology 2: 169-182.
- Griffiths, H., and P. Jarvis [eds.]. 2005. The carbon balance of forest biomes. Taylor & Francis,
- 12 New York et al.
- Hollinger, S. E., C. J. Bernacchi, and T. P. Meyers. 2005. Carbon budget of mature no-till
- ecosystem in North Central Region of the United States. *Agricultural and Forest*
- 15 *Meteorology* 130: 59-69.
- Jarvis, P. G. 1994. Capture of carbon dioxide by a coniferous forest. *In*: J. L. Monteith, R. K.
- 17 Scott, and M. H. Unsworth [eds.]. Resource capture by crops. Nottingham University
- Press, Loughborough, Leicestershire, p. 351-374.
- 19 King, A. W., L. Dilling, G. P. Zimmerman, D. M. Fairman, R. A. Houghton, G. Marland, A. Z.
- 20 Rose, and T. J. Wilbanks, editors. 2007. The first state of the carbon cycle report
- 21 (SOCCR): The North American carbon budget and implications for the global carbon
- 22 cycle. A report by the U.S. Climate Change Science Program and the Subcommittee on
- Global Change Research. National Oceanic and Atmospheric Administration, National

- 1 Climatic Data Center, Asheville, NC, USA.
- 2 Körner, C. 2003. Slow in, rapid out carbon flux studies and Kyoto target. Science 300:1242-
- 3 1243.
- 4 Lal, R., J. M. Kimble, R. F. Follett, and C. V. Cole [eds]. 1998. The potential of U.S. cropland to
- 5 sequester carbon and mitigate the greenhouse effect. Ann Arbor Press, Chelsea, MI.
- 6 Larcher, W. W. 1995. Physiological plant ecology: ecophysiology and stress physiology of
- 7 functional groups. Springer-Verlag, Berlin; New York.
- 8 Le Houèrou, H. N., and C. H. Hoste. 1977. Rangeland production and annual rainfall relations in
- 9 the Mediterranean basin and in the African Sahelo-Sudanian Zone. *Journal of Range*
- 10 *Management* 30: 181-189.
- 11 Lee, X., W. Massman, and B. Law [eds]. 2004. Handbook of Micrometeorology: A Guide for
- 12 Surface Flux Measurement and Analysis. Kluwer Academic Publishers.
- Lieth, H. 1975. Modeling the primary productivity of the world. *In*: H. Lieth, R. H. Whittaker
- [eds.]. Primary Productivity of the Biosphere. Springer-Verlag, New York, p. 237-263.
- Loehle Enterprises. 2007. Global optimization 6.0. Global nonlinear optimization using
- Mathematica. Loehle Enterprises, Naperville, Illinois.
- Long, S. P., M. B. Jones, and M. J. Roberts, eds. 1991. *Primary productivity of grass ecosystems*
- of the tropics and sub-tropics. Chapman & Hall, London; New York.
- 19 Mielnick, P. C., and W. A. Dugas. 2000. Soil CO<sub>2</sub> flux in a tallgrass prairie. Soil Biology and
- 20 *Biochemistry* 32:221-228.
- 21 Mitscherlich, E. A. 1909. Das Gesetz des Minimums und das Gesetz des abnehmenden
- Bodenertrages. *Landwirtschaftliches Jahrbuch der Schweiz* 38: 537-552.
- 23 Moffat, A. M., D. Y. Hollinger, A. D. Richardson, A. G. Barr, C. Beckstein, B. H. Braswell, G.

- 1 Churkina, A. R. Desai, E. Falge, J. H. Gove, M. Heimann, D. Hui, A. J. Jarvis, J. Kattge,
- A. Noormets, V. J. Stauch, D. Papale, and M. Reichstein. 2007. Comprehensive
- 3 comparison of gap-filling techniques for eddy covariance net carbon fluxes. *Agricultural*
- 4 and Forest Meteorology 147: 209-232.
- 5 Monteith, J. L. 1972. Solar radiation and productivity in tropical ecosystems. *Journal of Applied*
- 6 *Ecology* 9: 747-766.
- 7 Mordacq, L., J. Ghasghaie, and B. Saugier. 1991. A simple method for measuring the gas
- 8 exchange of small trees. *Functional Ecology* 5:572-576.
- 9 Odum, E. P. 1959. Fundamentals of ecology. Philadelphia.
- Odum, H. T. 1956. Primary production in flowing waters. Limnology and Oceanography 1:102-
- 11 117.
- Olson, J. S., J. A. Watts, and L. J. Allison. 1983. Carbon in live vegetation of major world
- ecosystems (Oak Ridge National Laboratory Technical Report ORNL-5862).
- Washington, D.C. U.S. Dept. of Energy, Springfield, Va.
- Owen, K. E., E. Falge, R. Geyer, X. Xiao, P. Stoy, C. Ammann, A. Arain, M. Aubinet, M.
- Aurela, C. Bernhofer, B. H. Chojnicki, A. Granier, T. Gruenwald, J. Hadley, B.
- Heinesch, D. Hollinger, A. Knohl, W. Kutsch, A. Lohila, T. Meyers, E. Moors, C.
- Moureaux, K. Pilegaard, N. Saigusa, S. Verma, T. Vesala, C. Vogel, J. Tenhunen, M.
- Reichstein, and Q. Wang. 2007. Linking flux network measurements to continental scale
- 20 simulations: Ecosystem carbon dioxide exchange capacity under non-water-stressed
- 21 conditions. *Global Change Biology* 13:734-760.
- Patzek, T. W., J. Lee, B. Li, J. Padnick, S. A. Yee, S. M. Anti, R. Campos, and K. W. Ha. 2005.
- Ethanol from corn: Clean renewable fuel for the future, or drain on our resources and

- pockets? *Environment, Development and Sustainability* 7:319-336.
- 2 Powlson, D. S., A. B. Riche, and I. Shield. 2005. Biofuels and other approaches for decreasing
- fossil fuel emissions from agriculture. *Annals of Applied Biology* 146:193-201.
- 4 Rabinowich, E. I. 1951. Photosynthesis and related processes. Interscience Publishers, Inc, New
- 5 York.
- 6 Reichstein, M., E. Falge, D. Baldocchi, D. Papale, R. Valentini, M. Aubinet, P. Berbigier, C.
- 7 Bernhofer, N. Buchmann, M. Falk, T. Gilmanov, A. Granier, T. Grünwald, K.
- 8 Havránková, D. Janous, A. Knohl, T. Laurela, A. Lohila, D. Loustau, G. Matteucci, T.
- 9 Meyers, F. Miglietta, J.-M. Ourcival, D. Perrin, J. Pumpanen, S. Rambal, E. Rotenberg,
- M. Sanz, J. Tenhunen, G. Seufert, F. Vaccari, T. Vesala, and D. Yakir. 2005. On the
- separation of net ecosystem exchange into assimilation and ecosystem respiration: review
- and improved algorithm. *Global Change Bilology* 11: 1424-1439.
- Reicosky, D. C. 1997. Tillage-induced CO<sub>2</sub> emission from soil. *Nutrient Cycling in*
- 14 *Agroecosystems* 49:273-285.
- Rodin, L. E., and N. I. Bazilevich. 1968. Production and mineral cycling in terrestrial vegetation.
- Oliver and Boyd, Edinburgh.
- 17 Rodin, L. E., N. I. Bazilevich, and N. N. Rozov. 1975. Productivity of the world's main
- ecosystems. *In*: D. E. Reichle, J. F. Franklin, and D. W. Goodall [eds.]. Productivity of
- the World Ecosystems. Proceedings, Symposium Fifth General Assembly of Special
- Committee of IBP. National Acad. of Sci., Washington, D.C., p. 13-26.
- 21 Rosenzweig, M. L. 1968. Net primary production of terrestrial communities: Prediction from
- climatological data. American Naturalist **102**:67-74.
- Ruimy, A., P. G. Jarvis, and D. D. Baldocchi. 1995. CO<sub>2</sub> fluxes over plant canopies and solar

- 1 radiation: a review. *Anvances in Ecological Research* 26: 1-68.
- 2 Sala, O. E., W. J. Parton, L. A. Joyce, and W. K. Lauenroth. 1988. Primary production of the
- 3 central grassland region of the United States. *Ecology* 69:40-45.
- 4 Singh, J. S., M. J. Trlica, P. G. Risser, R. E. Redmann, and J. K. Marshall. 1980. Autotrophic
- subsystem. Pages 59-200. In: A.I. Breymeyer and G. M. Van Dyne [eds.]. *Grasslands*,
- 6 systems analysis and man. Cambridge University Press, Cambridge.
- 7 Slatyer, R. O. 1967. *Plant-water relationships*. Academic Press, London, New York.
- 8 Smith, P., and P. Falloon. 2005. Carbon sequestration in European croplands. Pages 47-55 in H.
- 9 Griffiths and P. G. Jarvis, editors. The carbon balance of forest biomes. Taylor and
- Francis, New york.
- Stoy, P. C., J. Y. Juang, K. A. Novick, J. M. Uebelherr, R. Oren, G. G. Katul, and M. B. S.
- Sigueira. 2006. An evaluation of models for partitioning eddy covariance-measured net
- ecosystem exchange into photosynthesis and respiration. Agricultural and Forest
- 14 *Meteorology* 141: 2-18.
- Tamiya, H. 1951. Some theoretical notes on the kinetics of algal growth. *Botanical Magazine* 6:
- 16 167-173.
- 17 Tarnocai, C., C.-L. Ping, and J. Kimble. 2007. Carbon cycle in the permafrost region of North
- America. Pages 127-138 in A. W. King, L. Dilling, G. P. Zimmerman, D. M. Fairman, H.
- 19 R.A., G. Marland, R. A.Z., and T. J. Wilbanks, eds. *The First State of the Carbon Cycle*
- 20 Report (SOCCR): The North American Carbon Budget and Implications for the Global
- 21 Carbon Cycle. A Report by the U.S. Climate Change Science Program and the
- 22 Subcommittee on Global Change Research. National Oceanic and Atmospheric
- Administration, National Climatic Data Center, Asheville, NC, USA.

- 1 Thornley, J. H. M., and I. R. Johnson. 2000. Plant and crop modelling. A mathematical approach
- 2 to plant and crop physiology. The Blackburn Press, Caldwell, New Jersey.
- Walter, H. 1939. Grassland, Savanne und Busch der ariden Teile Afrikas in ihrer ökologische
- 4 Bedingtheit. *Jahrbuch fur wissenschaftliche Botanik* 87:850-860.
- 5 Weaver, J. E. 1924. Plant production as a measure of environments. *Journal of Ecology* 12: 205-
- 6 237.
- 7 Whittaker, R. H., and G. E. Likens. 1973. Carbon in the biota. *In*: G. M. Woodwell and E. V.
- 8 Pecan, eds. Carbon and the biosphere. National Technical Information Service,
- 9 Springfield, Virginia, p. 281-302.
- Wildung, R. E., T. R. Garland, and R. L. Buschbom. 1975. The interdependent effects of soil
- temperature and water content on soil respiration rate and plant root decomposition in
- arid grassland soils. *Soil Biology and Biochemistry* **7**:373-378.
- Wolfram Research. 2009. www.wolfram.com.
- Woodward, F. I., M. R. Lomas, and S. E. Lee. 2001. Predicting the future productivity and
- distribution of global terrestrial vegetation. *In:* J. Roy, B. Saugier, and H. A. Mooney
- 16 [eds.]. Terrestrial global productivity. Academic Press, San Diego et al., p. 521-541.
- 17 Zhao, L., S. Gu, G. Yu, X. Zhao, Y. Li, S. Xu, and H. Zhou. 2006. Diurnal, seasonal and annual
- variation in net ecosystem CO2 exchange of an alpine shrubland on Qinghai-Tibetan
- plateau. Global Change Biology 12: 1940-1953.
- 20 Zhang, L.-M., Y. Gui-Rui, X.-M. Sun, X.-F. Wen, C.-Y. Ren, Y.-L. Fu, Q.-K. Li, Z.-Q. Li, Y.-F.
- Liu, D.-X. Guan, and J.-H. Yan. 2006. Seasonal variation of ecosystem apparent quantum
- yield ( $\alpha$ ) and maximum photosynthesis rate (Pmax) of different forest ecosystems in
- 23 China. *Agricultural and Forest Meteorology* 137: 176-187.

## FIGURES AND TABLES

1

- 3 Figure 1. Geographical distribution of the 118 nonforest flux tower sites considered in
- 4 this study.

5

- Figure 2. Major types of ecosystem light-response functions: A linear, convexity  $\theta = 1$
- 7 (corn crop, Bondville, IL, USA, 1999, day 188); B nonrectangular hyperbolic,
- 8 convexity  $0 < \theta < 1$  (soybeans, Rosemount, MN, USA, 2004, day 207); C rectangular
- 9 hyperbolic,  $\theta = 0$  (meadow bromegrass/alfalfa, Lacombe, Alberta, Canada, 2003, day
- 10 151); D hysteresis (floodplain meadow, Cherskii, East Siberia, Russia, 2005, day 1900,
- 11  $k_T = 0.056 \, ^{\circ}\text{C}^{-1}$ ).

12

- Figure 3. Light-temperature response surfaces fitted by modified nonrectangular equation
- 14 [4] for representative days for: A Doulun steppe, China, 2006, day 218; B Brookings
- sown pasture, SD, USA, 2005, day 190; C Howard wet-dry savanna, Australia, 2002,
- 16 day 34; and D Rondonia tropical grassland, Brazil, 1999, day 270.

- Figure 4. Scatter diagrams of maximum weekly values of light-response ( $\alpha$ ,  $A_{max}$ ,  $P_{g,max}$ ,
- 19  $L_{max}$ ), metabolic  $(r_d, R_{e,max})$ , and efficiency  $(\varepsilon, G_{max})$  parameters for the pooled data set
- 20 including grasslands (extensively and intensively managed), shrublands and savannas,
- wetlands, and croplands: A  $\alpha$  vs  $A_{max}$ ; B  $r_d$  vs  $A_{max}$ ; C  $\varepsilon$  vs  $A_{max}$ ; D  $A_{max}$  vs  $L_{max}$ ; E -
- 22  $P_{g,max}$  vs  $A_{max}$ ; F  $A_{max}$  vs  $G_{max}$ ; G  $R_{e,max}$  vs  $P_{g,max}$ ; and H  $P_{g,max}$  vs  $L_{max}$ . Dashed lines

- describe linear or allometric equations characterizing patterns of co-variation between
- 2 parameters.

- 4 Figure 5. Scatter diagrams of maximum weekly values of light-response ( $\alpha$ ,  $A_{max}$ ,  $P_{g,max}$ )
- 5  $L_{max}$ ), metabolic ( $r_d$ ,  $R_{e,max}$ ), and efficiency ( $\varepsilon$ ,  $G_{max}$ ) parameters for the extensively
- 6 managed grasslands data subset: A  $\alpha$  vs  $A_{max}$ ; B  $r_d$  vs  $A_{max}$ ; C  $\varepsilon$  vs  $A_{max}$ ; D  $A_{max}$  vs
- 7  $L_{max}$ ; E  $P_{g,max}$  vs  $A_{max}$ ; F  $A_{max}$  vs  $G_{max}$ ; G  $R_{e,max}$  vs  $P_{g,max}$ ; and H  $P_{g,max}$  vs  $L_{max}$ .
- 8 Dashed lines describe linear or allometric equations characterizing patterns of co-
- 9 variation between parameters.

10

- Figure 6. Seasonal dynamics of light-response parameters: maximum photosynthesis,
- 12  $A_{max}$ , daytime ecosystem respiration,  $r_d$ , quantum yield,  $\alpha$ , and gross ecological light-use
- efficiency,  $\varepsilon$ , in selected nonforest ecosystems: A floodplain meadow, Cherskii, 2003;
- 14 B mixed prairie, Cottonwood, 2006; mixed prairie, Gudmundsen Ranch, 2006; D-
- tallgrass prairie, Fort Reno, 2005; E wet-dry savanna, Howard, 2002; F tropical
- 16 grassland, Rondonia, 1999; G sugar beet, Lonzee, 2004; H corn crop, Bondville,
- 17 1999.

- Figure 7. Seasonal dynamics and annual budgets of gross primary productivity,  $P_g(t)$ ,
- total ecosystem respiration,  $R_e(t)$ , and cumulative net ecosystem CO2 exchange,
- 21 CumNEE(t) for selected nonforest sites and years: A floodplain meadow, Cherskii,
- 22 2003; B sown northern temperate grassland, Jokioinen, 2001-2002; C temperate
- 23 grassland, Grillenburg, 2005; D desert grassland, Audubon Ranch, 2004; E dry

- savanna, Skukuza, 2002; F tropical grassland, Rondonia, 1999; G corn crop,
- 2 Bondville, 2003; H soybean crop, Mead, 2002.

- 4 Figure 8. Frequency distributions of gross primary production (A), ecosystem respiration
- 5 (B), and net ecosystem CO<sub>2</sub> exchange (C) estimates in the pooled set site-years from
- 6 nonforest flux tower sites.

7

- 8 Figure 9. Scatter plot of *RE* versus *GPP* values for the pooled set of site-years from
- 9 nonforest flux tower stations of the world. The 1:1 diagonal is shown as a dashed line.

10

- Figure 10. Scatter plots of the *RE* versus *GPP* values for various types of nonforest
- ecosystems: A extensively managed grasslands; B intensively managed grasslands; C
- 13 shrublands and savanna; D wetlands; E croplands.

14

- Figure 11. Histograms of statistical distributions of the annual net ecosystem CO<sub>2</sub>
- exchange values (*NEE*) in various types of nonforest ecosystems: A extensively
- managed grasslands; B intensively managed grasslands; C shrublands and savanna; D
- 18 wetlands; E croplands.

- Figure 12. Response of gross primary production, GPP, (A, C) and ecosystem
- respiration, RE, (B, D) of extensively managed grasslands on the annual precipitation
- 22 PCPN (A, B) and the dryness index  $DI = R_{net}/(\lambda *PCPN)$ . The dashed lines indicate
- 23 nonlinear regressions describing predominant trends.

- 2 Figure 13. Response of gross primary production, GPP, (A, C) and ecosystem
- 3 respiration, RE, (B, D) of intensively managed grasslands on the annual precipitation
- 4 PCPN (A, B) and the dryness index  $DI = R_{net}/(\lambda *PCPN)$ . The dashed lines indicate
- 5 nonlinear regressions describing predominant trends.

6

- Figure 14. Response of gross primary production, GPP, (A, C) and ecosystem
- 8 respiration, RE, (B, D) of shrublands and savanna on the annual precipitation PCPN (A,
- 9 B) and the dryness index  $DI = R_{net}/(\lambda *PCPN)$ . The dashed lines indicate nonlinear
- 10 regressions describing predominant trends.

1112

13 Table 1. Nonforest flux tower sites analyzed in this study.

| Site                                     | Latitude | Longitude | Elevation | PCPN      | Tyear | Years     | Investigator(s)                          | Method* |
|------------------------------------------|----------|-----------|-----------|-----------|-------|-----------|------------------------------------------|---------|
|                                          |          |           |           | Croplands |       |           |                                          |         |
| Ames, IA, USA,                           |          |           |           | •         |       |           |                                          |         |
| corn                                     | 41.720   | -93.410   | 300       | 814       | 8.9   | 2003      | J. Prueger                               | L       |
| Auradé, France<br>Batavia-agro, IL,      | 43.549   | 1.108     | 243       | 690       | 13.3  | 2005      | E. Ceschia, P. Beziat<br>R. Matamala; D. | T       |
| USA<br>Bondville, IL, USA,               | 41.859   | -88.223   | 227       | 921       | 10.5  | 2005-2006 | Cook<br>S. Hollinger; C.                 | T       |
| corn<br>Bondville, IL, USA,              | 40.006   | -88.292   | 300       | 990       | 11.3  | 1997-2005 | Bernacchi, T. Meyers<br>S. Hollinger; C. | L       |
| soybeans<br>Bondville-                   | 40.006   | -88.292   | 300       | 990       | 11.3  | 1998-2006 | Bernacchi, T. Meyers<br>S. Hollinger; C. | L       |
| companion, IL, USA<br>Borgo Cioffi-crop, | 40.006   | -88.292   | 219       | 990       | 11.3  | 2005-2006 | Bernacchi                                | T       |
| Italy                                    | 40.524   | 14.957    | 20        | 490       | 19.0  | 2004-2006 | V. Magliulo                              | T       |
| Carlow, Ireland                          | 52.859   | -6.918    | 59        | 824       | 9.4   | 2004-2006 | M. Jones; G. Lanigan                     | L       |
| Doulun, China<br>Foulum-crop,            | 42.046   | 116.280   | 1350      | 399       | 3.3   | 2005-2006 | Shiping Chen                             | L       |
| Denmark                                  | 56.484   | 9.587     | 51        | 712       | 8.0   | 2005      | J. Olesen; K. Schelde<br>C. Rebmann, W.  | T       |
| Gebesee, Germany                         | 51.100   | 10.914    | 162       | 492       | 9.6   | 2004-2006 | Kutsch                                   | T       |
| Grignon, France                          | 48.844   | 1.952     | 125       | 600       | 11.1  | 2005-2006 | P. Cellier                               | T       |
| Haller, PA, USA                          | 48.860   | -77.840   | 352       | 974       | 9.7   | 2003      | R.H. Skinner                             | L       |

| Klingenberg,<br>Germany                            | 50.893 | 13.222   | 480         | 850       | 7.0       | 2004-2006 | C. Bernhofer; T.<br>Gruenwald          | Т |
|----------------------------------------------------|--------|----------|-------------|-----------|-----------|-----------|----------------------------------------|---|
| Lamasquère,<br>France, irrigated                   | 43.493 | 1.237    | 180         | 690       | 13.3      | 2005      | E. Ceschia                             | Т |
| Langerak, France                                   | 52.004 | 4.806    | -1          | 786       | 9.8       | 2005-2006 | E. Moors, J. Elbers,<br>W. Jans        | Т |
| Lonzee, Belgium                                    | 50.552 | 4.745    | 165         | 800       | 10.0      | 2004-2006 | C. Moureaux, M.<br>Aubinet             | L |
| Mase, Japan,<br>paddy field                        | 36.054 | 140.027  | 13          | 1200      | 13.7      | 2002-2003 | A. Miyata                              | T |
| Mead, NE, USA,<br>corn rainfed                     | 41.180 | -96.440  | 363         | 887       | 9.7       | 2001-2003 | S. Verma, A. Suyker                    | L |
| Meadm NE, USA, soybeans rainfed                    | 41.180 | -96.440  | 363         | 887       | 9.7       | 2002-2004 | S. Verma, A. Suyker                    | L |
| Mead, maize rotation irrigated                     | 41.165 | -96.470  | 362         | 887       | 9.7       | 2001-2003 | S. Verma, A. Suyker                    | T |
| Mead, NE, USA,<br>corn irrigated<br>Mead, NE, USA, | 41.165 | -96.477  | 361         | 728       | 10.1      | 2001-2004 | S. Verma, A. Suyker                    | T |
| soybeans irrigated Molenweg,                       | 41.165 | -96.470  | 362         | 728       | 10.1      | 2002-2004 | S. Verma, A. Suyker                    | T |
| Netherlands<br>Oensingen,                          | 51.650 | 4.639    | 1           | 800       | 9.8       | 2005      | E. Moors, J. Elbers<br>N. Buchmann; W. | T |
| Switzerland Ponca City, OK,                        | 47.286 | 7.734    | 452         | 1100      | 9.0       | 2005      | Eugster                                | T |
| USA, winter wheat<br>Risbyholm,                    | 36.767 | -97.133  | 310         | 866       | 14.8      | 1997      | S. Verma                               | L |
| Denmark<br>Rosemount, MN,                          | 51.530 | 12.097   | 10          | 575       | 9.0       | 2004-2005 | H. Soegaard                            | T |
| USA                                                | 44.714 | -93.090  | 260         | 799       | 6.8       | 2004-2005 | T. Griffis, J. Baker                   | L |
|                                                    |        |          | Extensively | / managed | grassland | ds        |                                        |   |
| Alinya, Spain                                      | 42.202 | 1.449    | 1770        | 669       | 13.0      | 2003-2005 | M.J. Sanz                              | L |
| Amplero, Italy                                     | 41.867 | 13.633   | 884         | 1365      | 10.0      | 2003-2005 | M. Balzarolo                           | L |
| Atquasuk, AK, USA<br>Audubon Ranch,                | 70.470 | -157.409 | N/A         | 127       | NA?       | 1999-2006 | W. Oechel                              | T |
| AZ, USA                                            | 31.591 | -110.510 | 985         | 382       | 16.0      | 2002-2006 | T. Meyers                              | L |
| Barrow, AK, USA<br>Batavia Prairie, IL,            | 71.323 | -156.626 | 1           | 124       | -12.5     | 1998-2002 | W. Oechel                              | T |
| USA<br>Bily Kriz, Czech                            | 41.841 | -88.241  | 226         | 921       | 10.5      | 2005-2006 | R. Matamala                            | L |
| Republic<br>Brookings, SD,                         | 49.495 | 18.545   | 855         | 1200      | 5.5       | 2004-2006 | M. Marek, R. Czerny<br>T. Meyers, T.   | T |
| USA<br>Bugacpuszta,                                | 44.311 | -96.798  | 495         | 550       | 5.8       | 2004-2006 | Gilmanov, M. Heuer                     | L |
| Hungary<br>Canaan Valley, WV,                      | 46.800 | 18.900   | 100         | 500       | 10.8      | 2003-2006 | Z. Tuba,                               | L |
| USA<br>Cheyenne, WY,                               | 39.063 | -79.421  | 988         | 900       | 8.2       | 2004      | T. Meyers                              | L |
| USA<br>Cottonwood, SD,                             | 41.183 | -104.900 | 1910        | 397       | 7.2       | 1997-1998 | J. Morgan<br>T. Meyers, A.             | L |
| USA                                                | 43.950 | -101.847 | 735         | 447       | 7.7       | 2004-2006 | Detwyler, K. Brehe                     | L |
| CPER, CO, USA                                      | 40.683 | -104.750 | 1660        | 332       | 9.2       | 2001-2004 | J. Morgan                              | L |
| Doulun, China<br>Duke grassland,                   | 42.047 | 116.284  | 1350        | 399       | 3.3       | 2006      | Shiping Chen                           | L |
| NC, USA                                            | 35.971 | -79.090  | 163         | 1145      | 15.5      | 2001-2005 | G. Katul                               | L |
| Fort Peck, MT, USA<br>Fort Reno, OK,               | 48.308 | -105.101 | 634         | 310       | 7.7       | 2000-2006 | T. Meyers<br>M. Torn, D.               | L |
| USA<br>Freeman Ranch,                              | 35.557 | -98.017  | 421         | 870       | 14.9      | 2005      | Billesbach                             | L |
| TX, USA                                            | 29.930 | -98.010  | 244         | 959       | 19.4      | 2004      | J. Heilman                             | L |

| Goodwin Creek,                            | 24.250  | 90 070   | 70   | 1455 | 15 7 | 2002 2006 | T Movere                               |   |
|-------------------------------------------|---------|----------|------|------|------|-----------|----------------------------------------|---|
| MS, USA<br>Grillenburg,                   | 34.250  | -89.970  | 70   | 1455 | 15.7 | 2002-2006 | T. Meyers<br>C. Bernhofer, T.          | L |
| Germany<br>Gudmundsen                     | 50.951  | 13.514   | 400  | 853  | 7.2  | 2004-2006 | Gruenwald                              | L |
| Ranch, NE, USA                            | 42.069  | -101.407 | 1081 | 560  | 7.9  | 2006      | D. Billesbach                          | L |
| Haibei, China                             | 37.617  | 101.317  | 3250 | 561  | -1.7 | 2002-2003 | T. Kato                                | T |
| Ivotuk, Alaska                            | 68.486  | -155.750 | 550  | 250  | -9.0 | 2004-2006 | W. Oechel<br>W. Dugas, P.              | T |
| Jornada, NM, USA                          | 32.600  | -106.750 | 1320 | 272  | N/A  | 2000-2001 | Mielnick<br>M. Nasyrov, N.             | L |
| Karnap, Uzbekistan                        | 40.000  | 65.500   | 310  | 237  | 14.6 | 2001      | Saliendra                              | L |
| Kendall, AZ, USA                          | 31.737  | -109.942 | 1531 | 356  | 17.0 | 1999-2006 | W. Emmerich                            | L |
| Khakasia, Russia                          | 54.773  | 90.002   | 430  | 304  | 0.5  | 2002-2004 | L. Belelli                             | L |
| Khakasia-3, Russia<br>Kherlenbayan,       | 54.705  | 89.078   | N/A  | N/A  | N/A  | 2004      | L. Belelli                             | T |
| Mongolia                                  | 47.214  | 108.737  | 1235 | 196  | 1.2  | 2003      | S. Li<br>JF. Soussana, V.              | L |
| Laqueuille, France                        | 45.643  | 2.736    | 1040 | 1013 | 8.6  | 2002-2006 | Allard                                 | L |
| Lethbridge, Canada<br>Little Washita, OK, | 49.709  | -112.940 | 960  | 378  | 6.4  | 1998-2002 | L. Flanagan                            | L |
| USA                                       | 34.967  | -97.983  | 335  | 750  | 16.3 | 1997-1998 | T. Meyers                              | L |
| Malga Arpaco, Italy                       | 46.117  | 11.703   | 1699 | 1200 | 6.3  | 2003-2004 | A. Raschi                              | L |
| Mandan, ND, USA                           | 46.767  | -100.917 | 518  | 404  | 5.0  | 1999-2001 | A. Frank                               | L |
| Matra, Hungary                            | 47.842  | 19.726   | 350  | 605  | 10.6 | 2004-2005 | J. Balogh                              | Т |
| Miles City, MT, USA<br>Monte Bondone,     | 46.300  | -105.967 | 719  | 343  | 7.9  | 2000-2001 | M. Haferkamp                           | L |
| Italy<br>Neal Smith, IA,                  | 46.016  | 11.047   | 1550 | 1189 | 5.5  | 2003-2006 | D. Gianelle                            | T |
| USA                                       | 41.558  | -93.296  | 280  | 826  | 9.1  | 2005      | J. Prueger                             | L |
| Neustift, Austria Oensingen,              | 47.117  | 11.317   | 970  | 850  | 6.3  | 2001-2006 | G. Wohlfahrt<br>C. Ammann, J.          | L |
| Switzerland<br>Rannels Ranch,             | 47.283  | 7.733    | 450  | 1100 | 9.0  | 2002-2003 | Fuhrer                                 | L |
| KS, USA<br>Rigi-Seebodenalp,              | 39.139  | -96.523  | 324  | 840  | 12.9 | 1998-1999 | C. Owensby<br>W. Eugster, N.           | L |
| Switzerland                               | 47.058  | 8.457    | 1025 | 1327 | 7.3  | 2003      | Rogiers<br>M. Waterloo, A.             | L |
| Rondonia, Brazil                          | -10.762 | -62.357  | 306  | 1664 | 23.9 | 1999      | Manzi                                  | L |
| Santarem, Brazil                          | -3.012  | -54.537  | N/A  | N/A  | N/A  | 2001-2002 | D. Fitzjarrald                         | L |
| Shidler, OK, USA                          | 36.933  | -96.683  | 356  | 942  | 14.8 | 1997-1999 | S. Verma, A. Suyker<br>K. Akshalov, N. | L |
| Shortandy,<br>Kazakhstan                  | 51.667  | 71.000   | 367  | 323  | 1.6  | 1998-2001 | Saliendra, D. A. Johnson W. Dugas, B.  | L |
| Temple, TX, USA                           | 31.100  | -97.333  | 219  | 878  | 19.6 | 1998-1999 | W. Dugas, P.<br>Mielnick               | L |
| Tojal, Portugal<br>Viara Ranch, CA,       | 38.477  | -8.025   | 190  | 750  | 15.5 | 2004-2006 | C. Pio, L. Aires                       | L |
| USA<br>Walnut River, KS,                  | 38.407  | -120.951 | 129  | 500  | 15.9 | 2001-2006 | D. Baldocchi                           | L |
| USA<br>Woodward, OK,                      | 37.521  | -96.855  | 408  | 1030 | 13.1 | 2002-2004 | R. Coulter, D. Cook                    | L |
| USA<br>Xilinhot grazed,                   | 36.600  | -99.583  | 630  | 586  | 14.3 | 1997-2002 | P. Sims, J. Bradford                   | L |
| China<br>Xilinhot-fenced,                 | 43.554  | 116.671  | 1250 | 360  | 2.0  | 2006      | Shiping Chen                           | L |
| China<br>Xilinhot-typical                 | 43.546  | 116.678  | 1250 | 360  | 2.0  | 2006      | Shiping Chen                           | T |
| fenced, China                             | 44.134  | 116.329  | 1030 | 290  | 2.0  | 2004-2006 | Guangsheng Zhou                        | T |

| 0.1                                   |         |          | mensivery | managed    | grassianu | 13        |                                      |   |
|---------------------------------------|---------|----------|-----------|------------|-----------|-----------|--------------------------------------|---|
| Cabauw- extension.<br>The Netherlands | 51.954  | 4.903    | -1        | 786        | 9.8       | 2005      | E. Moors, J. Elbers                  | Т |
| Cabauw, The<br>Netherlands            | 51.967  | 4.917    | -1        | 800        | 10.0      | 2003      | A. Hensen                            | Т |
| Cabauw, The<br>Netherlands            | 51.971  | 4.927    | -1        | 786        | 9.8       | 2004-2006 | E. Moors, J. Elbers                  | Т |
| Carlow-grassland,<br>Ireland          | 52.850  | -6.900   | 50        | 804        | 10.1      | 2003      | M. Jones, G. Lanigan                 | L |
| Dripsey-grass,<br>Ireland             | 51.919  | -8.751   | 187       | 1450       | 9.5       | 2002-2005 | G. Kiely, P. Leahy                   | Т |
| Easter Bush, UK                       | 55.867  | -3.200   | 190       | 890        | 8.0       | 2003-2004 | M. Sutton                            | L |
| Haarweg, The<br>Netherlands           | 51.970  | 5.630    | 7         | 760        | 9.5       | 2002      | A. Jacobs                            | T |
| Haastrect,                            | 50.004  | 4.000    | •         | 700        |           | 2222      |                                      | _ |
| Netherlands                           | 52.004  | 4.806    | -2        | 786        | 9.8       | 2003      | E. Moors                             | T |
| Haller, PA, USA<br>Hegihátsál,        | 40.862  | -77.840  | 352       | 974        | 9.7       | 2003-2005 | R.H. Skinner                         | L |
| Hungary<br>Horstermeer,               | 46.950  | 16.650   | 248       | 759        | 8.9       | 1999      | Z. Barcza, L. Haszpra                | T |
| Netherlands                           | 52.029  | 5.068    | -2        | 797        | 9.8       | 2004-2006 | H. Dolman                            | Т |
| Jokioinen, Finland                    | 60.899  | 23.514   | 104       | 581        | 3.9       | 2002      | A. Lohila, T. Laurila                | L |
| Lacombe, Canada                       | 52.436  | -113.808 | 871       | 446        | 2.1       | 2003      | V.S. Baron<br>JF. Soussana, V.       | L |
| Laqueuille, France<br>Lelystad, The   | 45.643  | 2.736    | 1040      | 1013       | 8.6       | 2002-2006 | Allard                               | L |
| Netherlands<br>Lille Valby,           | 52.500  | 5.500    | 0         | 780        | 10.0      | 2004      | A. Hensen                            | L |
| Denmark<br>Oensingen,                 | 55.700  | 12.117   | 15        | 1119       | 8.5       | 2004-2006 | E. Dellwik<br>C. Ammann; J.          | L |
| Switzerland                           | 47.283  | 7.733    | 450       | 1100       | 9.0       | 2002-2006 | Fuhrer                               | L |
|                                       |         |          | Shrubl    | ands and s | avanna    |           |                                      |   |
| Burns, OR, USA                        | 43.483  | -119.717 | 1380      | 283        | 7.6       | 1995-2001 | T. Svejcar<br>N. Saliendra, D.A.     | L |
| Dubois, ID, USA<br>Howard Springs,    | 44.267  | -112.133 | 1700      | 302        | 6.2       | 1996-2001 | Johnson                              | L |
| Australia                             | -12.329 | 131.000  | 38        | 1824       | 25.9      | 2002-2005 | J. Berringer<br>M. Dourikov, N.      | L |
| Karrykul,<br>Turkmenistan             | 38.600  | 59 400   | 90        | 148        | 15.6      | 1998-2000 | Saliendra, D.A.                      |   |
|                                       |         | 58.400   |           |            |           |           | Johnson                              | L |
| Kubuqi, China<br>Santa Rita, AZ,      | 40.381  | 108.549  | 1160      | 180        | 7.5       | 2006      | Shiping Chen                         | L |
| USA                                   | 31.821  | -110.866 | 1120      | 330        | 17.6      | 2004-2006 | R. Scott                             | T |
| Sao Paulo, Brazil<br>Skukuza, South   | -21.619 | -47.650  | N/A       | 953        | N/A       | 2001-2002 | H. da Rocha                          | Т |
| Africa<br>Sky Oaks, CA,               | -24.983 | 31.600   | 263       | 561        | 21.6      | 2001-2003 | N. Hanan                             | L |
| USA, old stand<br>Sky Oaks, CA,       | 33.374  | -116.623 | 1394      | 491        | 12.2      | 1997-2006 | W. Oechel                            | L |
| USA, young stand<br>Tonzi Ranch, CA,  | 33.377  | -116.623 | 1429      | 491        | 12.2      | 1997-2001 | W. Oechel                            | Т |
| USA                                   | 38.432  | -120.966 | 177       | 559        | 15.4      | 2002-2006 | D. Baldocchi                         | T |
|                                       |         |          |           | Wetlands   |           |           |                                      |   |
| Cherskii, Russia<br>CzechWet, Czech   | 68.615  | 161.339  | 4         | 200        | -12.5     | 2003-2004 | C. Corradi                           | T |
| Republic<br>Dongtan marsh-1,          | 49.025  | 14.772   | 420       | 740        | 7.2       | 2006      | M. Marek; D. Janous<br>Bin Zhao; Guo | T |
| China                                 | 31.517  | 121.961  | 31        | 2192       | 15.7      | 2005      | Haiquang                             | T |
| Dongtan marsh-2,                      | 31.585  | 121.903  | 31        | 2074       | 15.7      | 2005      | Bin Zhao; Guo                        | Τ |

| China              |        |         |     |      |      |           | Haiquang              |   |
|--------------------|--------|---------|-----|------|------|-----------|-----------------------|---|
| Dongtan marsh-3,   |        |         |     |      |      |           | Bin Zhao; Guo         |   |
| China              | 31.517 | 121.972 | 31  | 1957 | 15.5 | 2005      | Haiquang              | T |
| Kaamanen wetland,  |        |         |     |      |      |           |                       |   |
| Finland            | 69.141 | 27.295  | 155 | 395  | -1.3 | 2000-2006 | T. Laurila; M. Aurela | T |
| PolWet, Poland     | 52.762 | 16.309  | 54  | 550  | 8.1  | 2004      | J. Olejnik            | T |
| Siikaneva, Finland | 61.833 | 24.193  | N/A | 713  | 3.0  | 2004-2006 | M. Aurela             | T |
| Tadham Moore, UK   | 51.207 | -2.829  | 3   | 750  | 11.1 | 2001      | R. Harding            | T |

<sup>2 \*</sup> Method on net flux partitioning into photosynthesis and respiration: L – light-response

3 function analysis; T – nighttime temperature dependence.

5

4

1

6 Table 2. Parameters  $\alpha$ ,  $A_{max}$ ,  $r_d$ , and  $\theta$  from the nonrectangular hyperbolic light-response

7 function 
$$F_c(Q) = \frac{1}{2\theta} \left( \alpha Q + A_{\text{max}} - \sqrt{(\alpha Q + A_{\text{max}})^2 - 4\alpha A_{\text{max}} \theta Q} \right) - r_d$$
, for representative

8 days at the Bondville, Rosemount, Lacombe, and Brookings flux tower stations.

|                    | Parameters                                      |                                                                          |                                                                          |                                   |  |  |  |  |
|--------------------|-------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------------|-----------------------------------|--|--|--|--|
| Statistical        | Slope, $\alpha$<br>mg CO $_2$ $\mu$ mol $^{-1}$ | Plateau, $A_{max}$<br>mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> | Respiration, $r_d$<br>mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> | Convexity, $\theta$ dimensionless |  |  |  |  |
| characteristics    |                                                 |                                                                          |                                                                          |                                   |  |  |  |  |
|                    | A. Corn crop, B                                 | ondville, IL, USA, 19                                                    | 999, day 188                                                             |                                   |  |  |  |  |
|                    | $R^2 = 0.98;$                                   | $SE = 0.158 \text{ mg CO}_2$                                             | $m^{-2} s^{-1}$                                                          |                                   |  |  |  |  |
| Estimate           | 0.0014                                          | 3.2                                                                      | 0.1936                                                                   | 1.0                               |  |  |  |  |
| Standard Error     | 0.0001                                          | -                                                                        | 0.0423                                                                   | 0.0012                            |  |  |  |  |
| Student's t        | 19.92                                           | -                                                                        | 4.58                                                                     | 84.20                             |  |  |  |  |
| <i>p</i> -level    | 0.0000                                          | -                                                                        | 0.0000                                                                   | 0.0000                            |  |  |  |  |
|                    | Soybeans, Rose                                  | mount, MN, USA, 20                                                       | 004, day 207                                                             |                                   |  |  |  |  |
|                    | $R^2 = 0.98;$                                   | $SE = 0.045 \text{ mg CO}_2$                                             | $m^{-2} s^{-1}$                                                          |                                   |  |  |  |  |
| Estimate           | 0.0009                                          | 0.9930                                                                   | 0.2002                                                                   | 0.6947                            |  |  |  |  |
| Standard Error     | 0.0002                                          | 0.1899                                                                   | 0.0221                                                                   | 0.3329                            |  |  |  |  |
| Ct. dant'a t       | 4.77                                            | 5.23                                                                     | 9.07                                                                     | 2.09                              |  |  |  |  |
| Student's <i>t</i> |                                                 |                                                                          | 0.0000                                                                   | 0.0243                            |  |  |  |  |

| Estimate                                                                     | 0.0026                                                           | 0.8321 | 0.3413 | 0.0    |  |  |  |  |  |
|------------------------------------------------------------------------------|------------------------------------------------------------------|--------|--------|--------|--|--|--|--|--|
| Standard Error                                                               | 0.0009                                                           | 0.0969 | 0.0273 | -      |  |  |  |  |  |
| Student's t                                                                  | 2.98                                                             | 8.58   | 12.50  | -      |  |  |  |  |  |
| <i>p</i> -level                                                              | 0.0023                                                           | 0.0000 | 0.0000 | -      |  |  |  |  |  |
|                                                                              | Floodplain meadow, Cherskii, East Siberia, Russia, 2003, day 214 |        |        |        |  |  |  |  |  |
| $R^2 = 0.93$ ; SE = 0.033 mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> |                                                                  |        |        |        |  |  |  |  |  |
| Estimate                                                                     | 0.0006                                                           | 0.2987 | 0.1038 | 0.9333 |  |  |  |  |  |
| Standard Error                                                               | 0.0001                                                           | 0.0252 | 0.090  | 0.090  |  |  |  |  |  |
| Student's t                                                                  | 5.31                                                             | 11.85  | 11.58  | 10.38  |  |  |  |  |  |
| <i>p</i> -level                                                              | 0.0000                                                           | 0.0000 | 0.0000 | 0.0000 |  |  |  |  |  |

1

- 3 Table 3. Parameters  $\alpha$ ,  $A_{max}$ ,  $r_{\theta}$ ,  $k_{T}$  and  $\theta$  from the modified nonrectangular hyperbolic
- 4 light-temperature response function

5 
$$F_C(Q, T_S) = \frac{1}{2\theta} \left( \alpha Q + A_{\text{max}} - \sqrt{(\alpha Q + A_{\text{max}})^2 - 4\alpha A_{\text{max}} \theta Q} \right) - r_0 e^{k_T T_S}$$
, for

6 representative days at Doulun, Brookings, Howard, and Rondonia sites.

|                             | Parameters                             |                                                                 |                                                                          |                                                       |                                   |  |  |  |
|-----------------------------|----------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|-------------------------------------------------------|-----------------------------------|--|--|--|
| Statistical characteristics | Slope, $\alpha$ mg $CO_2 \mu mol^{-1}$ | Plateau, $A_{max}$<br>mg $CO_2$ m <sup>-2</sup> s <sup>-1</sup> | Respiration, $r_0$<br>mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup> | Temperature coefficient, $k_T$ , $({}^{\circ}C)^{-1}$ | Convexity, $\theta$ dimensionless |  |  |  |
|                             |                                        | A. Steppe, Doulun,                                              | China, 2006, day 21                                                      | 8                                                     |                                   |  |  |  |
|                             |                                        | $R^2 = 0.98$ ; SE = 0                                           | 0.037 mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup>                 |                                                       |                                   |  |  |  |
| Estimate                    | 0.0009                                 | 0.5542                                                          | 0.0377                                                                   | 0.0671                                                | 0.9644                            |  |  |  |
| Standard Error              | 0.00001                                | 0.0241                                                          | 0.0102                                                                   | 0.0116                                                | 0.0408                            |  |  |  |
| Student's t                 | 9.08                                   | 22.98                                                           | 3.68                                                                     | 5.78                                                  | 23.64                             |  |  |  |
| <i>p</i> -level             | 0.0000                                 | 0.0000                                                          | 0.0003                                                                   | 0.0000                                                | 0.0000                            |  |  |  |
|                             | B. S                                   | own pasture, Brookir                                            | ngs, SD, USA, 2005,                                                      | day 190                                               |                                   |  |  |  |
|                             |                                        | $R^2 = 0.99$ ; SE = 0                                           | 0.032 mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup>                 |                                                       |                                   |  |  |  |
| Estimate                    | 0.0014                                 | 1.0867                                                          | 0.0631                                                                   | 0.0614                                                | 0.0000                            |  |  |  |
| Standard Error              | 0.0001                                 | 0.0498                                                          | 0.0141                                                                   | 0.0094                                                | 0.0000                            |  |  |  |
| Student's t                 | 13.87                                  | 21.81                                                           | 4.48                                                                     | 6.53                                                  | -                                 |  |  |  |
| <i>p</i> -level             | 0.0000                                 | 0.0000                                                          | 0.0000                                                                   | 0.0000                                                | -                                 |  |  |  |
|                             | C. V                                   | Vet-dry savanna, Hov                                            | vard, Australia, 2002,                                                   | day 34                                                |                                   |  |  |  |
|                             |                                        | $R^2 = 0.97$ ; SE = 0                                           | 0.074 mg CO <sub>2</sub> m <sup>-2</sup> s <sup>-1</sup>                 |                                                       |                                   |  |  |  |
| Estimate                    | 0.0017                                 | 1.147                                                           | 0.0278                                                                   | 0.0690                                                | 0.8376                            |  |  |  |
| Standard Error              | 0.0003                                 | 0.1019                                                          | 0.0167                                                                   | 0.0186                                                | 0.1529                            |  |  |  |
| Student's t                 | 5.83                                   | 11.25                                                           | 1.67                                                                     | 3.71                                                  | 5.48                              |  |  |  |

| <i>p</i> -level                                                     | 0.0000 | 0.0000 | 0.0522 | 0.0004 | 0.0000 |  |  |  |
|---------------------------------------------------------------------|--------|--------|--------|--------|--------|--|--|--|
| D. Tropical grassland, Rondonia, Brazil, 1999, day 270              |        |        |        |        |        |  |  |  |
| $R^2 = 0.97$ ; SE = 0.052 mg $CO_2$ m <sup>-2</sup> s <sup>-1</sup> |        |        |        |        |        |  |  |  |
| Estimate                                                            | 0.0008 | 0.8048 | 0.0339 | 0.0760 | 0.9902 |  |  |  |
| Standard Error                                                      | 0.0001 | 0.0721 | 0.0183 | 0.0217 | 0.0230 |  |  |  |
| Student's t                                                         | 9.38   | 11.16  | 1.85   | 3.50   | 43.04  |  |  |  |
| <i>p</i> -level                                                     | 0.0000 | 0.0000 | 0.0408 | 0.0014 | 0.0000 |  |  |  |

<sup>\*</sup> Not significantly different from zero

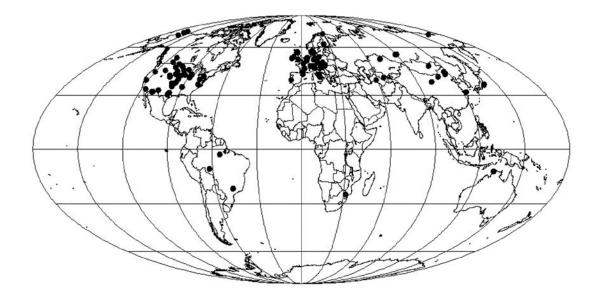
1

- 3 Table 4. Statistical characteristics of annual gross primary production (GPP), total
- 4 ecosystem respiration (RE), and net ecosystem exchange (NEE) for major groups within
- 5 nonforest terrestrial ecosystems.

6

|                                                                                     |              | Eco                  | osystem group               |          |           |  |  |  |  |
|-------------------------------------------------------------------------------------|--------------|----------------------|-----------------------------|----------|-----------|--|--|--|--|
| Statistical                                                                         | Grasslands   | Grasslands           | Shrublands                  | Wetlands | Croplands |  |  |  |  |
| characteristics                                                                     | extensively  | intensively          | and savanna                 |          |           |  |  |  |  |
|                                                                                     | managed      | managed              |                             |          |           |  |  |  |  |
| Gross primary production, GPP (g CO <sub>2</sub> m <sup>-2</sup> yr <sup>-1</sup> ) |              |                      |                             |          |           |  |  |  |  |
| Number of site-years                                                                | 179          | 34                   | 28                          | 48       | 66        |  |  |  |  |
| Mean                                                                                | 2708         | 5767                 | 2949                        | 2328     | 4521      |  |  |  |  |
| Standard deviation                                                                  | 1842         | 1144                 | 1950                        | 1836     | 1365      |  |  |  |  |
| Minimum                                                                             | 95           | 3141                 | 645                         | 749      | 1376      |  |  |  |  |
| Maximum                                                                             | 8600         | 7720                 | 6836                        | 5643     | 6774      |  |  |  |  |
|                                                                                     | Total ecosys | stem respiration, RI | $E (g CO_2 m^{-2} yr^{-1})$ |          |           |  |  |  |  |
| Number of site-years                                                                | 169          | 34                   | 27                          | 18       | 66        |  |  |  |  |
| Mean                                                                                | 2535         | 4990                 | 2537                        | 1824     | 3588      |  |  |  |  |
| Standard deviation                                                                  | 1689         | 1024                 | 1396                        | 1373     | 909       |  |  |  |  |
| Minimum                                                                             | 112          | 3186                 | 756                         | 665      | 1052      |  |  |  |  |
| Maximum                                                                             | 7880         | 7003                 | 5094                        | 4751     | 5905      |  |  |  |  |
|                                                                                     | Net Ecosyst  | tem Exchange, NEF    | $E (g CO_2 m^{-2} yr^{-1})$ |          |           |  |  |  |  |
| Number of site-years                                                                | 169          | 36                   | 27                          | 18       | 66        |  |  |  |  |
| Mean                                                                                | 239          | 848                  | 493                         | 504      | 933       |  |  |  |  |
| Standard deviation                                                                  | 521          | 658                  | 740                         | 719      | 814       |  |  |  |  |
| Minimum                                                                             | -1342        | -961                 | -585                        | -40      | -770      |  |  |  |  |
| Maximum                                                                             | 1762         | 2934                 | 2254                        | 2226     | 2382      |  |  |  |  |

8


- 9 Table 5. Maximum values of daytime gross primary productivity,  $P_{g,max}$ , and annual net
- primary production, GPP, estimated for nonforest and forest flux-tower sites

| Site | Year | $P_{g,max}$ | Site | Year | GPP |
|------|------|-------------|------|------|-----|

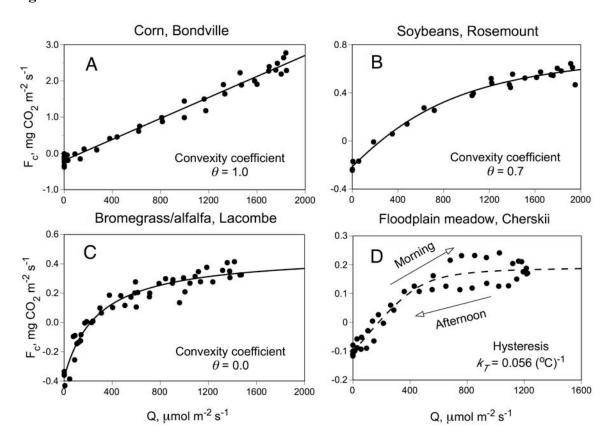
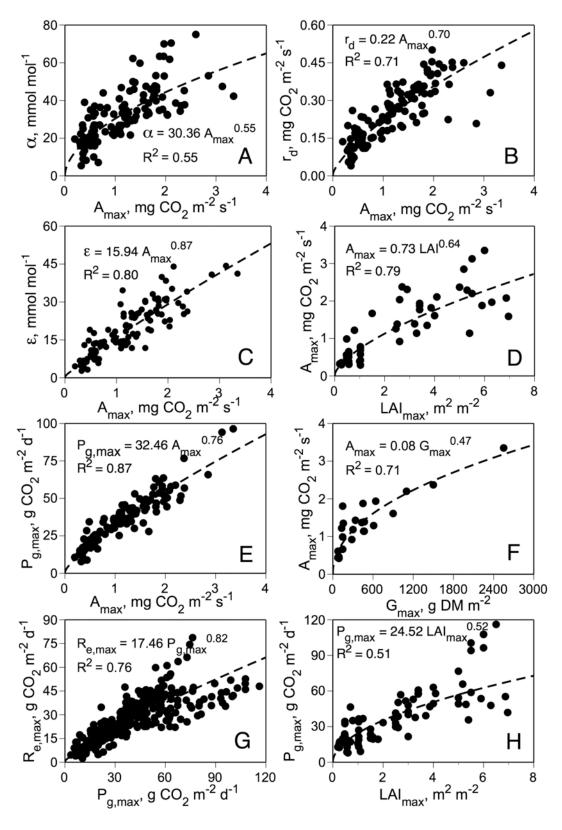
|                                                     |      | g CO <sub>2</sub> m <sup>-2</sup> d <sup>-1</sup> |                                                  |      | g CO <sub>2</sub> m <sup>-1</sup> yr <sup>-1</sup> |
|-----------------------------------------------------|------|---------------------------------------------------|--------------------------------------------------|------|----------------------------------------------------|
|                                                     | A. G | rasslands ex                                      | tensively managed                                |      |                                                    |
| Neustift, Austria                                   | 2004 | 76.2                                              | Rondonia, Brazil                                 | 1999 | 8600                                               |
| Jornada, NM, USA                                    | 2000 | 63.1                                              | Neustift, Austria<br>Goodwin Creek, MS,          | 2006 | 7415                                               |
| Rannels Ranch, KS, USA<br>Batavia Prairie Site, IL, | 1998 | 60.8                                              | USA                                              | 2004 | 6391                                               |
| USA                                                 | 2006 | 59.9                                              | Grillenburg, Germany<br>Duke grassland, NC,      | 2005 | 6299                                               |
| Grillenburg, Germany                                | 2005 | 57.34                                             | USA<br>Laqueuille, France,                       | 2003 | 6039                                               |
| Monte Bondone, Italy                                | 2006 | 56.9                                              | extensive                                        | 2006 | 5943                                               |
| Shidler, OK, USA                                    | 1999 | 56.9                                              | Neal Smith, IA, USA<br>Batavia Prairie Site, IL, | 2005 | 5756                                               |
| Temple, TX, USA                                     | 1999 | 56.2                                              | USA                                              | 2006 | 5435                                               |
| Oensingen, Switzerland                              | 2003 | 53.6                                              | Oensingen, Switzerland<br>Laqueuille, France,    | 2003 | 5326                                               |
| Neal Smith, IA, USA<br>Laqueuille, France,          | 2005 | 52.7                                              | extensive Rigi-Seebodenalp,                      | 2004 | 5322                                               |
| extensive<br>Goodwin Creek, MS,                     | 2004 | 51.7                                              | Switzerland                                      | 2003 | 5320                                               |
| USA                                                 | 2003 | 51.4                                              | Shidler, OK, USA                                 | 1997 | 5208                                               |
|                                                     | В. С | rasslands in                                      | tensively managed                                |      |                                                    |
| Cabauw- extension. The                              |      |                                                   | -                                                |      |                                                    |
| Netherlands                                         | 2005 | 76.3                                              | Oensingen, Switzerland                           | 2004 | 7720                                               |
| Easter Bush, UK                                     | 2003 | 63.6                                              | Dripsey-grass, Ireland                           | 2004 | 7388                                               |
| Oensingen, Switzerland                              | 2004 | 63.5                                              | Haastrect, Netherlands                           | 2003 | 7267                                               |
| Lille Valby, Denmark                                | 2006 | 63.4                                              | Lille Valby, Denmark<br>Laqueuille, France,      | 2004 | 6873                                               |
| Haastrect, Netherlands<br>Laqueuille, France,       | 2003 | 63.1                                              | intensive<br>Carlow-grassland,                   | 2004 | 6838                                               |
| intensive                                           | 2006 | 59.0                                              | Ireland                                          | 2003 | 6807                                               |
| Carlow-grassland, Ireland<br>Haarweg, The           | 2003 | 57.9                                              | Easter Bush, UK<br>Cabauw- extension. The        | 2003 | 6793                                               |
| Netherlands                                         | 2002 | 57.5                                              | Netherlands<br>Haarweg, The                      | 2005 | 6785                                               |
| Dripsey-grass, Ireland<br>Lacombe, Alberta,         | 2003 | 54.7                                              | Netherlands                                      | 2002 | 5915                                               |
| Canada<br>Haller, State College, PA,                | 2003 | 53                                                | Hegihátsál, Hungary<br>Cabauw, The               | 1999 | 5867                                               |
| USA                                                 | 2004 | 52.2                                              | Netherlands<br>Horstermeer,                      | 2004 | 5837                                               |
| Cabauw, The Netherlands                             | 2004 | 47.9                                              | Netherlands                                      | 2006 | 5337                                               |
|                                                     |      | C. Shrubs a                                       | and savannas                                     |      |                                                    |
| Howard Springs, Australia                           | 2005 | 54.2                                              | Sao Paulo cerrado, Brazil                        | 2002 | 6836                                               |
| Sao Paulo cerrado, Brazil                           | 2002 | 42.7                                              | Howard Springs, Australia                        | 2002 | 5874                                               |
| Tonzi Ranch, California                             | 2005 | 38.6                                              | Skukuza, South Africa                            | 2001 | 3947                                               |
| Skukuza, South Africa                               | 2001 | 34.6                                              | Tonzi Ranch, CA, USA                             | 2005 | 3837                                               |
|                                                     |      |                                                   |                                                  |      |                                                    |

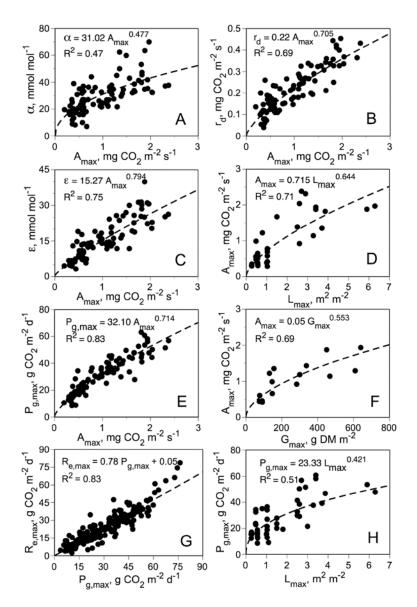
|                                      |              |               | Sky Oaks Old stand, CA,            |      |       |  |  |  |  |
|--------------------------------------|--------------|---------------|------------------------------------|------|-------|--|--|--|--|
| Tonzi Ranch, California              | 2003         | 34.1          | USA                                | 1997 | 2682  |  |  |  |  |
| Sky Oaks Young stand, CA,<br>USA     | 1998         | 22.7          | Sky Oaks Young stand,<br>CA, USA   | 1998 | 2021  |  |  |  |  |
| Sky Oaks Old stand, CA,              | 1990         | 22.1          | CA, USA                            | 1990 | 2021  |  |  |  |  |
| USA                                  | 1997         | 21.0          | Skukuza, South Africa              | 2003 | 1873  |  |  |  |  |
| Santa Rita mesquite, AZ,<br>USA      | 2005         | 19.8          | Santa Rita mesquite, AZ,<br>USA    | 2005 | 1125  |  |  |  |  |
| Kubuqi, shrubland, China             | 2005         | 12.8          | Kubuqi, shrubland, China           | 2005 | 1021  |  |  |  |  |
| Karrykul, Turkmenistan               | 2000         | 7.79          | Karrykul, Turkmenistan             | 2000 | 769   |  |  |  |  |
| D. Wetlands                          |              |               |                                    |      |       |  |  |  |  |
| Dongtan marsh-2, China               | 2005         | 70.1          | Dongtan marsh-2, China             | 2005 | 5643  |  |  |  |  |
| CzechWet, Czech Republic             | 2005         | 56.9          | CzechWet, Czech Republic           | 2006 | 5368  |  |  |  |  |
| Dongtan marsh-1, China               | 2005         | 51.9          | Dongtan marsh-1, China             | 2005 | 5150  |  |  |  |  |
| Dongtan marsh-3, China               | 2005         | 43.3          | Tadham Moore, UK                   | 2001 | 4767  |  |  |  |  |
| Tadham Moore, UK                     | 2001         | 41.1          | Dongtan marsh-3, China             | 2005 | 3662  |  |  |  |  |
| PolWet, Poland                       | 2005         | 41.1          | PolWet, Poland                     | 2005 | 3393  |  |  |  |  |
| Cherskii, Russia                     | 2003         | 20.1          | Siikaneva, Finland                 | 2005 | 1359  |  |  |  |  |
| Cherskii, itassia                    | 2003         | 20.1          | Kaamanen wetland,                  | 2003 | 1557  |  |  |  |  |
| Kaamanen wetland, Finland            | 2005         | 19.8          | Finland                            | 2005 | 1210  |  |  |  |  |
| Siikaneva, Finland                   | 2004         | 19.8          | Cherskii, Russia                   | 2003 | 834   |  |  |  |  |
|                                      | E. Croplands |               |                                    |      |       |  |  |  |  |
| Mead, corn rot. irrigated,           |              |               |                                    |      | _     |  |  |  |  |
| NE, USA                              | 2001         | 116.1         | Langerak-crop, France              | 2005 | 6774  |  |  |  |  |
| Mead, maize cont. irrigated, NE, USA | 2001         | 107.8         | Mead, rot. corn irrigated, NE, USA | 2003 | 6720  |  |  |  |  |
| Bondville, corn, IL, USA             | 1999         | 99.9          | Borgo Cioffi-crop, Italy           | 2005 | 6513  |  |  |  |  |
| Bolidville, Colli, IL, USA           | 1999         | 33.3          | Mead, cont. corn irrigated,        | 2003 | 0313  |  |  |  |  |
| Batavia-agro, IL, USA                | 2006         | 99.0          | NE, USA                            | 2001 | 6437  |  |  |  |  |
| Bondville, corn, IL, USA             | 1999         | 94.1          | Borgo Cioffi-crop, Italy           | 2006 | 6393  |  |  |  |  |
|                                      |              |               | Mead, maize rotation               |      |       |  |  |  |  |
| Borgo Cioffi-crop, Italy             | 2006         | 93.1          | irrigated                          | 2001 | 6316  |  |  |  |  |
| Mead, corn rainfed, NE, USA          | 2003         | 87.6          | Lonzee, Belgium, sugar beet        | 2005 | 6313  |  |  |  |  |
| USA                                  | 2003         | 67.0          | Oensingen-crop,                    | 2003 | 0313  |  |  |  |  |
| Langerak-crop, France                | 2006         | 87.5          | Switzerland                        | 2005 | 6295  |  |  |  |  |
| Bondville-companion, IL,             |              |               | Mead corn rainfed, NE,             |      |       |  |  |  |  |
| USA                                  | 2006         | 83.03         | USA                                | 2001 | 5834  |  |  |  |  |
| Grignon-crop, France                 | 2005         | 81.3          | Bondville, corn, IL, USA           | 1999 | 5602  |  |  |  |  |
| Lonzee, winter wheat,<br>Belgium     | 2005         | 80.5          | Bondville, soybeans, IL,<br>USA    | 2005 | 5582  |  |  |  |  |
| Bondville, soybeans, IL,             | 2003         | 60.5          | USA                                | 2003 | 3362  |  |  |  |  |
| USA                                  | 2005         | 80.1          | Risbyholm, Denmark, crop           | 2004 | 5525  |  |  |  |  |
|                                      |              | F. Forests an | nd plantations                     |      | _     |  |  |  |  |
| Duke Forest Loblolly                 |              |               | •                                  |      |       |  |  |  |  |
| Pine, NC, USA                        | 2001         | 99.0          | French Guyana                      | 2004 | 14339 |  |  |  |  |
| Campbell River, British              |              |               |                                    |      |       |  |  |  |  |
| Columbia, Canada                     | 1998         | 86.6          | Vanuatu - CocoFlux                 | 2002 | 13057 |  |  |  |  |
| Hampshire Forest, UK                 | 2004         | 73.9          | Rondonia forest, Brazil            | 2002 | 12727 |  |  |  |  |
| Duke Forest Loblolly                 | 2005         | (0.0          | D-11- 7 1 '                        | 2002 | 10007 |  |  |  |  |
| Pine                                 | 2005         | 69.0          | Palangkaraya, Indonesia            | 2003 | 12236 |  |  |  |  |

|                           |      |       | Santarem km67 primary     |      |       |
|---------------------------|------|-------|---------------------------|------|-------|
| Vanuatu - CocoFlux        | 2003 | 68.2  | forest, Brazil            | 2003 | 11703 |
| Duke Forest Hardwood,     |      |       | Caxiuana Forest-          |      |       |
| NC, USA                   | 2003 | 67.6  | Almeirim, Brasil          | 2002 | 11436 |
|                           |      |       | Santarem km67 primary     |      |       |
| French Guyana             | 2005 | 64.21 | forest, Brazil            | 2002 | 11271 |
| •                         |      |       | Loblolly Pine plantation, |      |       |
| Rondonia forest, Brazil   | 2002 | 60.8  | NC, USA                   | 2006 | 10173 |
| Campbell River, British   |      |       | Donaldson Slash Pine      |      |       |
| Columbia, Canada          | 2000 | 60.1  | Plantation, FL, USA       | 1999 | 9249  |
| Loblolly Pine plantation, |      |       | Campbell River, British   |      |       |
| NC, USA                   | 2006 | 59.7  | Columbia, Canada          | 2005 | 9162  |
| Duke Forest Hardwood,     |      |       | Duke Forest Loblolly      |      |       |
| NC, USA                   | 2004 | 57.5  | Pine, NC, USA             | 2002 | 9067  |
| Donaldson Slash Pine      |      |       | Duke Forest Hardwood,     |      |       |
| Plantation, FL, USA       | 1999 | 54.6  | NC, USA                   | 2003 | 8892  |

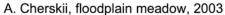


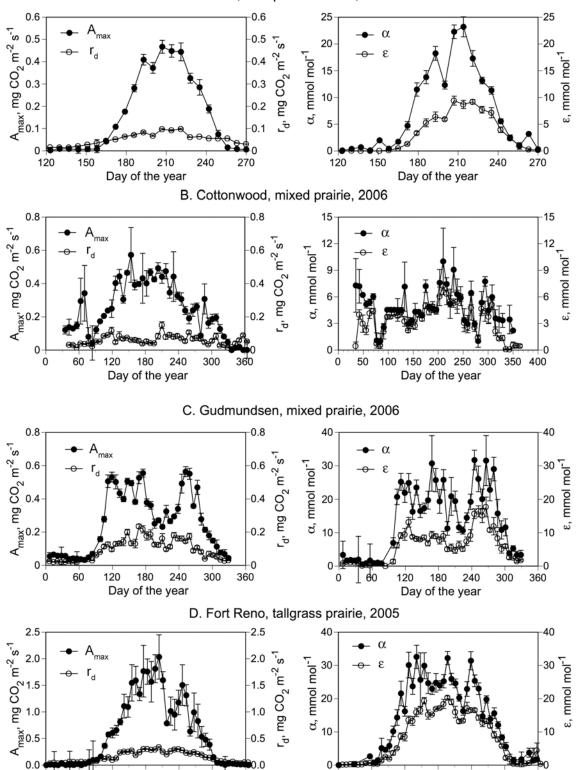
## Figure 1.



Figure 2.




2 Figure 3.




2 Figure 4.



2 Figure 5.





T<sub>60</sub> 1

Day of the year

Day of the year

300<sup>1</sup>

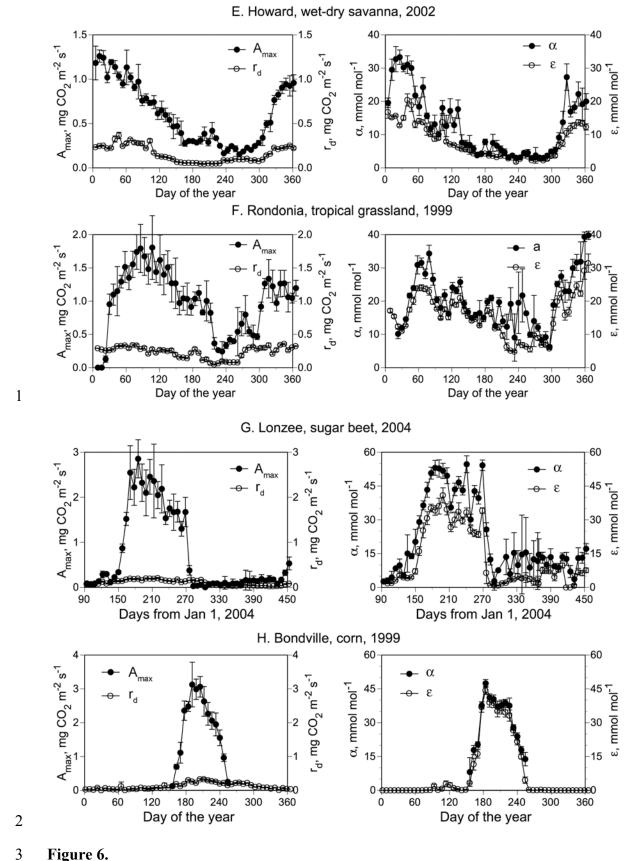
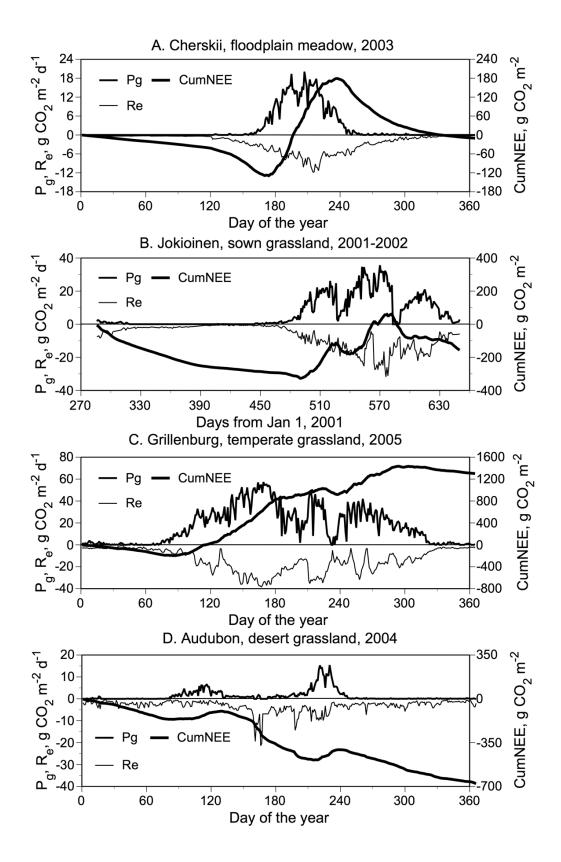




Figure 6.



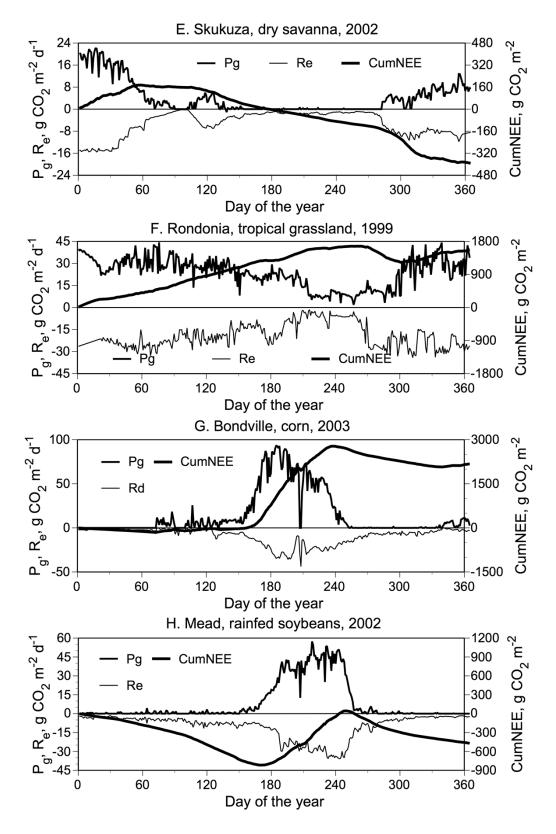



Figure 7.

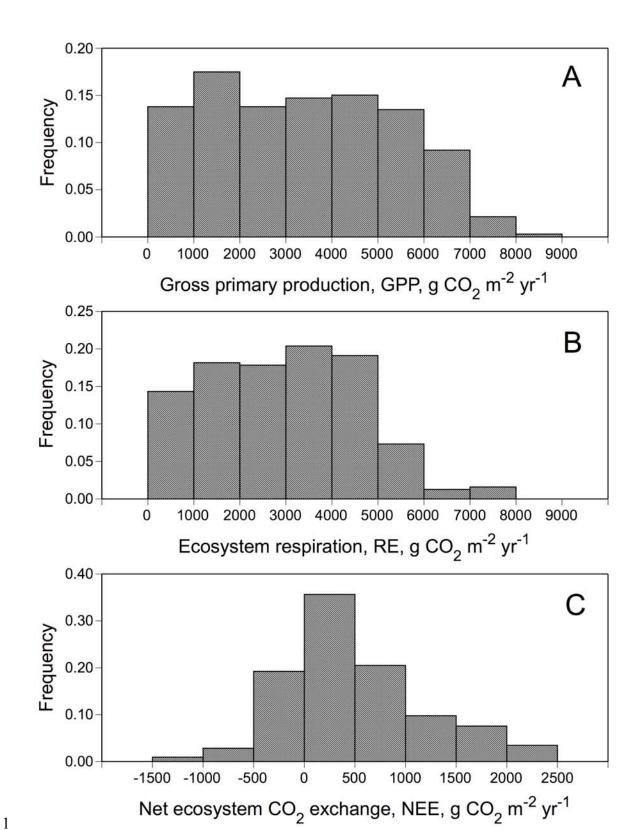
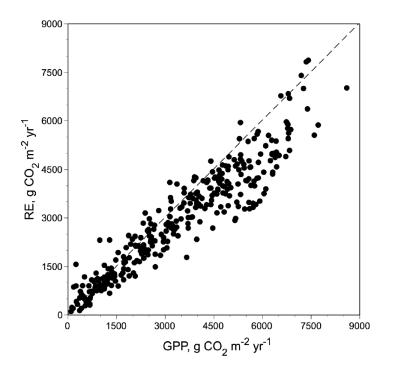




Figure 8.



2 Figure 9.

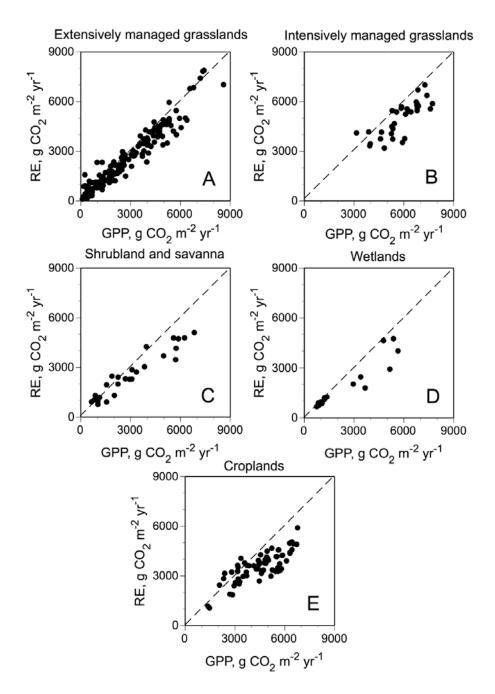



Figure 10.

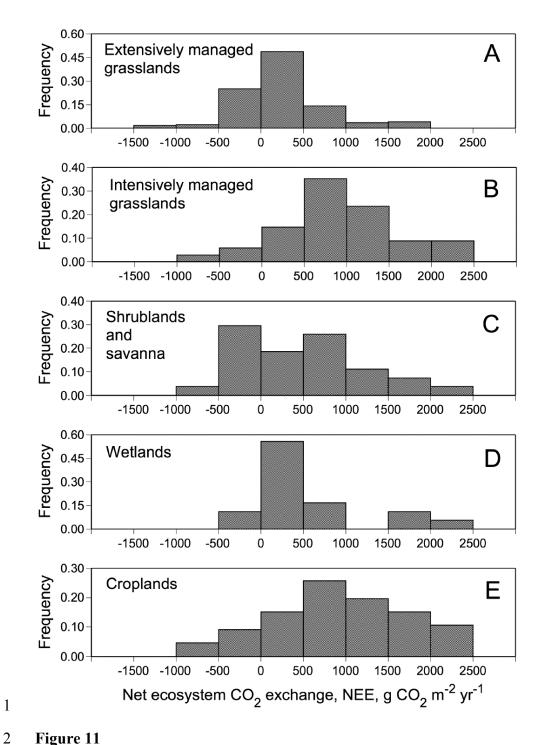
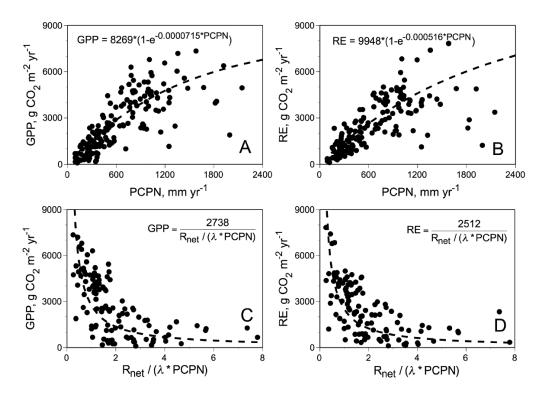




Figure 11



**Figre 12** 

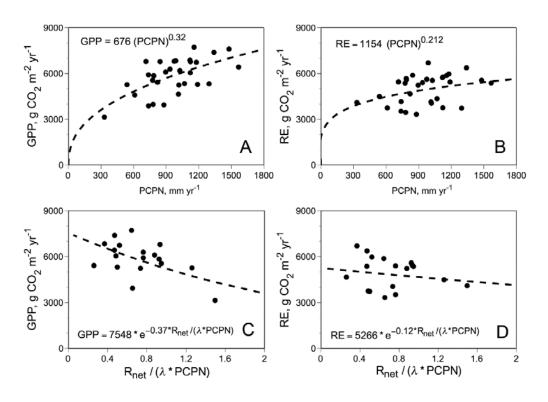
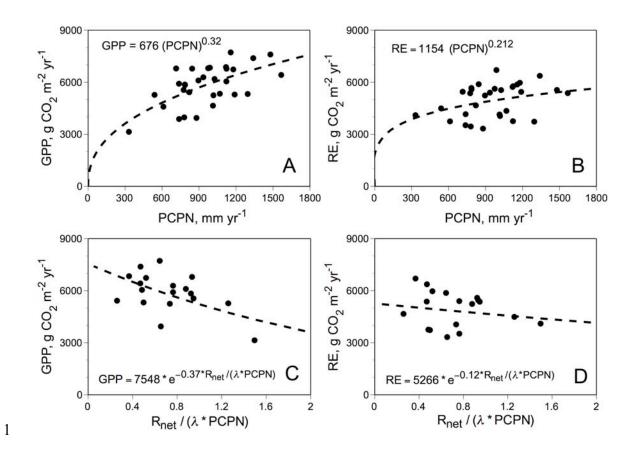




Figure 13



**Figure 14.**