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ELSEVIER 

Modeling Radiative Transfer in Heterogeneous 
3-D Vegetation Canopies 

J. P. Gastellu-Etchegorry,* V. Demarez,* V. Pinel,* and F. Zagolski* 

T h e  DART (discrete anisotropic radiative transfer) 
model simulates radiative transfer in heterogeneous 3-D 
scenes that may comprise different landscape features; 
i.e., leaves, grass, trunks, water, soil. The scene is divided 
into a rectangular cell matrix, i.e., building block for 
simulating larger scenes. Cells are parallelipipedic. Their 
optical properties are represented by individual scattering 
phase functions that are directly input into the model or 
are computed with optical and structural characteristics 
of elements within the cell. Radiation scattering and 
propagation are simulated with the exact kernel and 
discrete ordinate approaches; any set of discrete direction 
can be selected. In addition to topography and hot spot, 
leaf specular and first-order polarization mechanisms are 
modeled. Two major iterative steps are distinguished: 1) 
Cell illumination with direct sun radiation: Within cell 
multiple scattering is accurately simulated. 2) Intercep- 
tion and scattering of previously scattered radiation: At- 
mospheric radiation, possibly anisotropic, is input at this 
stage. Multiple scattering is stored as spherical harmonics 
expansions, for reducing computer memory constraints. 
The model iterates on step 2, for all cells, and stops 
with the energetic equilibrium. Two simple accelerating 
techniques can be used: 1) Gauss Seidel method, i.e., 
simulation of scattering with radiation already scattered 
at the iteration stage, and (2) decrease of the spherical 
harmonics expansion order with the iteration order. More- 
over, convergence towards the energetic equilibrium is 
accelerated with an exponential fitting technique. This 
model predicts the bidirectional reflectance distribution 
function of 3-19 canopies. Radiation components associ- 
ated with leaf volume and surface mechanisms are distin- 

"Centre d'Etude Spatiale de la Biosphere (UPS / CNRS / CNES), 
Toulouse, France 

Address correspondence to J. P, Gastellu-Etchegorry, Centre 
d'Etude Spatiale de ia Biosphere, CNES, CNRS-UPS, 18 Avenue 
Edouard Belin, Bpi 2801, 31401, Toulouse cdx, France. 

Received 27 July 1995; revised 21 November 1995. 

REMOTE SENS. ENVIRON. 58:131-156 (1996) 
©Elsevier Science Inc., 1996 
655 Avenue of the Americas, New York, NY 10010 

guished. It gives also the radiation regime within canopies, 
for further determination of 3-D photosynthesis rates 
and primary production. Accurate modeling of multiple 
scattering within cells, combined with the fact that cells 
can have different x,y,z dimensions, is well adapted to 
remote sensing based studies, i.e., scenes with large di- 
mensions. The model was successfully tested with homoge- 
neous covers. Preliminary comparisons of simulated re- 
flectance images with remotely acquired spectral images 
of a 3-D heterogeneous forest cover stressed the usefulness 
of the DART model for conducting studies with remotely 
acquired information. © Elsevier Science Inc., 1996 

INTRODUCTION 

Modeling the interaction of radiation with terrestrial 
surface is often a prerequisite for conducting research 
activities in several scientific domains. Two types of 
application of interest for environmental studies are 
mentioned here. The first deals with vegetation studies 
using remotely acquired information. In many cases, 
retrieving information from remotely sensed data would 
benefit of the use of three-dimensional (3-D) models 
that simulate accurately the spectral behavior of bidirec- 
tional reflectance distribution functions (BRDF) of 
Earth's surfaces. This is especially the case where it is 
intended to assess optical (e.g., albedo) and structural 
(e.g., leaf area index, LAI) characteristics of ground 
targets, or more generally where it is expected to associ- 
ate signal characteristics (e.g., BRDF anisotropy) with 
some conditions of these targets. As an example, many 
studies already stressed the spectrally dependent aniso- 
tropic behavior of vegetation canopies (Kimes et al., 
1986). Naturally, this is strongly influenced by the type 
of cover, the illumination configuration and the spectral 
domain. For example, Syren (1994) showed that for each 
degree of decreasing solar zenith angle nadir reflectance 
factors of pine and spruce forest covers increase by 
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1-2%, depending on the spectral domain, the tree spe- 
cies and the stand age. He observed most important 
increases with the young pines in the red (3%) and the 
near-infrared (2.5%) spectral regions. This confirms that 
in many cases the BRDF anisotropic behavior is a seri- 
ous constraint for conducting vegetation studies with 
remote sensing data acquired under different experi- 
mental conditions, that is, viewing and illumination con- 
ditions. Associated errors depend on the target charac- 
teristics and the sun viewing conditions; for example, 
the albedo of a canopy with an anisotropic BRDF may 
be underestimated by as much as 45% if it is computed 
with nadir reflectance only (Kimes and Sellers, 1985). 
Moreover, the temporal variability of the anisotropy 
degree of vegetation BRDFs is an additional variable; 
however, provided that it may be determined with a 
sufficient accuracy, the latter is indicative of target con- 
ditions changes. Quantification of vegetation functioning 
is another important domain of application of radiative 
transfer models when these are coupled with leaf physio- 
logical models. Indeed, vegetation development is di- 
rectly influenced by the within-stand radiation regime 
and the photosynthesis function of vegetation elements. 

Various approaches have been developed in the 
past to model radiative transfer within canopies. They 
are based on mathematical formulation the complexity 
of which depends on their objectives, and include empir- 
ical functions (Walthall et al., 1985), semiempirieal func- 
tions (Pinty and Ramond, 1986), simulation models with 
ray tracing, radiosity and Monte Carlo techniques (Borel 
et al., 1991; Jessel, 1992), geometric models (Li and 
Strahler, 1986), turbid models with the discrete ordinate 
method (Myneni et al., 1990; 1991), turbid models based 
on simplifications of the radiative transfer function (Gao, 
1993), and turbid models with approximations of the 
radiative transfer function of Kubelka and Munk (Suits, 
1972; Verhoef, 1984; Gastellu-Etchegorry et al., 1996). 
Depending on their complexity and on the type of 
available measurements (i.e., nadir, directional), these 
models are more or less convenient for retrieving perti- 
nent information on land surfaces. Generally speaking, 
the spatial distribution of the target components is a 
major factor of the BRDF anisotropy. Its influence de- 
pends on the measurement configurations. Accurate 
modeling of canopy BRDF requires to take this factor 
into account. 

Three-dimensional leaf canopy transport models 
such as the K-K model (Kimes and Kirehner, 1982; 
Kimes, 1991) provide an interesting means for taking 
into account the architecture of covers. The scene is 
divided into a rectangular cell matrix, and radiation 
transport is simulated with the discrete ordinate 
method; that is, source vectors are restricted to propa- 
gate in a finite number of directions. However, the K-K 
model presents some serious drawbacks (Myneni et al., 

1991) due to simplifying assumptions. The most limiting 
weakness comes from the fact that multiple scattering 
processes that occur within cells are neglected. More- 
over, propagation of cell scattered radiation is always 
simulated from cell centers. These simplifications lead 
to important errors whenever cells do not have infinites- 
imal optical depths. This is a very limiting constraint 
for remote sensing studies where the dimensions of cells 
must be large enough in order to allow one to work 
with large scenes. In this context, the hypothesis of cells 
with equal Cartesian dimensions is another weakness. 
Indeed, with large scenes the vertical dimension of 
cells is expected to be smaller than the horizontal cell 
dimensions; that is, a vertical length unit should be 
represented by a larger number of cells than the equiva- 
lent horizontal length unit. Another limitation arises 
from the hypothesis that discrete directions are equally 
spaced, which is far from optimal for accuracy and 
computer time purposes. 

With these considerations in mind, we developed 
a new 3-D radiative transfer model (Gastellu-Etchegorry 
et al., 1994), hereafter called DART (Discrete Aniso- 
tropic Radiative Transfer) model. Similarly to the ap- 
proaches of Kimes and Kirchner (1982) and Myneni et 
al. (1990), it is based on the discrete ordinate method 
and on an iterative approach. Moreover, the scene is a 
rectangular solid made of adjacent cells; that is, it is a 
cell matrix. The above-mentioned drawbacks are cor- 
rected. The 3-D radiation regime and the bidirectional 
reflectance distribution function (BRDF) of 3-D cano- 
pies are realistically simulated through the consideration 
of topography, major physical mechanisms such as the 
hot spot effect and leaf specular reflectance, and four 
types of scatterers (i.e., leaves and grass, soils, water, 
and trunks). Moreover, this model is aimed to allow one 
to distinguish the radiation components associated and 
not associated with leaf mesophyll information. 

This article focuses on the mathematical description 
of the model. After a brief presentation of the scene 
modeling, the simulation of directional transport and 
the major steps of the iterative approach are described 
in the third section. This is followed by a full description 
of within cell scattering mechanisms. The emphasis is 
laid on single and multiple scattering mechanisms within 
leaf cells; scattering mechanisms that arise from other 
cell types are also described. Cell interactions are sys- 
tematically analyzed by considering total scattered radi- 
ation, scattered radiation not associated with mesophyll 
information and first-order polarized scattered radiation. 
Two simple accelerating techniques for reducing com- 
puter memory constraints and computation times are 
described in the fifth section. Finally, a preliminary 
comparison between DART simulations and remotely 
acquired spectral images of a tree canopy is presented 
in the last section. 
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Figure i. Representation of a cell matrix and its general illumination. 

SCENE MODELING 

The DART model does not require that the individual 
cells that constitute the 3-D scene have necessarily 
equal dimensions (Ax, Ay, Az) along the Ox, Oy, and 
Oz axes. So, the numbers of cells along the vertical and 
horizontal axes can be independent, which results in 
important reductions in computer memory require- 
ments and computation times. This is especially interest- 
ing for simulating the radiation regime of large scenes 
where the vertical variability is larger than the horizontal 
variability. Naturally, the selection of unequal dimen- 
sions along Ox, Oy, and Oz axes modifies the direction 
cosine values of the propagation directions. 

Individual cells (Fig. 1) are identified with the x, y, 
and z coordinates of their centers. Lower (upper) cells 
of the scene have an altitude level z--0 (z = H). The 
total number of cells is 1= (AX" AY" AZ) / (Ax- Ay. Az), 
where AX, AY, and AZ are the Cartesian dimensions 
of the scene. Cells are used for simulating different 
types of scene elements, that is, leaves, soil surface, 
grass, water, and trunks. Depending on their informa- 
tion content, cells are simulated as turbid media, with 
volume interaction mechanisms, or solid media with 
surface and possibly volume interaction mechanisms. 
Cells characterized by different optical behaviors are 

said to belong to different types of cell. Two approaches 
can be used to specify the optical properties of each 
individual cell: 

• Cell type j, with je [1 J], and specific optical 
and structural characteristics of the elements 
within the cell; for example, with leaf or grass 
cells, hereafter simply called leaf cells, these 
characteristics are the LAI, LAD (leaf angle dis- 
tribution), and foliar reflectance and transmit- 
tance. In a first step, before tracking radiation 
propagation, the DART model uses these input 
parameters in order to compute the scattering 
transfer functions T(j, fLf~') that characterize 
cell volume scattering mechanisms of all j cell 
types; Q and t~' are the incident and scattered 
directions, respectively. Leaf transmission func- 
tions T(j,fl) associated with a unit leaf area vol- 
ume density and a unit propagation length are 
also computed for handling leaf cell interaction 
mechanisms. 

• Cell type j, with je  [1 jr]. This index indicates 
the relevant volume scattering transfer function 
T(j,t),~'). In the case of leaf cells, this index is 
input with the leaf cell area index. So, the in- 
dex j indicates also the relevant cell transmis- 
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sion function T0,t) ). These discretized func- 
tions may come from measurements, analytical 
computations or simulations conducted at finer 
spatial resolutions. 

The information content of any cell is specific to 
that cell and is a constant for the whole cell. If necessary, 
the operator can easily add other types of elements, 
provided that he knows either their optical and struc- 
tural characteristics or their transmission and scattering 
phase functions. 

The K-K approach is adopted for dealing with scene 
boundary interactions. It is assumed that the whole 
scene can be considered as the juxtaposition of identical 
cell matrices. The hypothesis relies on symmetric con- 
siderations. So, the above-mentioned cell matrix is a 
simple building block that when replicated will simulate 
the entire scene. With the assumption that all neighbor 
cell matrices have identical optical behaviors, it results 
that as a source vector escapes the sides of the modeled 
cell matrix, there is an equivalent source vector escaping 
an adjacent cell matrix which enters the modeled cell 
matrix at a symmetric position. It means that the radio- 
metric behavior of the entire scene can be simulated 
with the simulation of an individual cell matrix. The 
dimension of this cell matrix depends only on the basic 
unit of structural repetition within the scene; for exam- 
ple, it is smaller for homogeneous tree plantations than 
for disturbed dense forests (Kimes, 1991). 

REPRESENTATION OF THE 
DIRECTIONAL TRANSPORT 

Discretizafion of the Propagation Directions 
The DART model relies on the discrete ordinate 
method; that is, the angular dependence in the transport 
equation is approximated by discretizing the angular 
variable t) into a number N of discrete directions t),, 
with ne [1 N]. These directions are the only possible 
directions of incident and scattered radiant fluxes. They 
are not necessarily equally spaced and can be selected 
a pr/or/by the operator. The total number of discrete 
directions is 

v ,~(u) 
N = ~ ,  

u = l  v = l  

where u is the discretizing level of coordinate/~, that is 
the cosine of zenith angle 0, and v is the discretizing 
level of coordinate ~, that is, the azimuth angle. A 
negative/J indicates a downward direction, and a posi- 
tive/t indicates an upward direction. Thus, for a zenith 
level u we have v(u) azimuth levels. It means that the 
azimuth angles ~(u,v) and q~(u',v) may be different if the 
indices u and u' are different. 

Discrete directions are associated with a number 
of contiguous sectors A ~  defined by their azimuth Acp~ 

and zenith A0n angle intervals. The solid angle of each 
sector is 

At),,= I I Idul.d~p with,u-- cos o 
A~n AOn 

Moreover, we have 
N 

£ A~.  = 4n with ([1.) = (0~,~0v(O~)). 
n = l  

The DART model starts with the determination of all 
cells encountered by any source vector that propagates 
in the scene 1) from the center of cell (0,0,0), and 2) 
from the center of each face of cell (0,0,0) for all N 
discrete directions (~) .  Indeed, geometric propagation 
of radiation is always simulated from cell centers or cell 
faces. This leads to the building up of seven look-up 
tables. For each cell i encountered the within cell propa- 
gation length Ali and the coordinates of the entrance 
point are systematically computed and stored for further 
processing. These look-up tables eliminate unnecessary 
repetitive computations during the tracking of source 
vectors. Thus, during the procedure that tracks radiation 
propagation, the coordinates of the ith cell encountered 
by a source vector that propagates within the scene are 
the coordinates of the cell where it originates plus the 
ith coordinates of the look-up table. 

Radiation Transport 
The general transfer equation of steady state monochro- 
matic specific intensity I(r, fl) at a position r and along 
a direction ~ (Hapke, 1993) is 

o 

- a ( r , O ) .  I ( r ,O)  + O3"dn'. (1) 

gt, r/, and ~ are directional cosines with respect to the 
z, y, and x axes, a(r,f~) is the extinction coefficient, and 
ad(r, tT~t~) is the differential scattering coefficient for 
photon scattering from direction (t)~ into a unit-solid 
angle about direction (~). 

Assuming that we represent the N discrete direc- 
tions by (t),), with ne [1 N], and that we distinguish the 
first and multiple collision terms, the angle discretized 
transport in 3-D Cartesian geometry along the (f/0) 
direction is 

Iu,j'd+ rlo'~y+ ,0" d]I(r,f/0) ffi 

- a(r,g),j)'I(r,~j) + Q(r,~¢) + ~] E C,~'ad(r,t~'~j) "I(r,t'~), 
u ~ l  v - 1  

(2) 
where u and v are the discretizing levels of coordinates 
/~ and ~0, respectively. Indices i and u belong to the 
interval [1 U], and indicesj and v belong to the interval 
[1 v(u)]. Cu~ represents the weight associated with the 
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direction (t'~) in the scattering mechanism (fLv~) 
where the incident radiation along the direction (t'~) 
is scattered towards the direction (f~0). Q(r,~j) is the 
first collision source. 

I(r,t~) may represent either the mean specific in- 
tensity, that is, 

1 • J~aaS(r'D)'dD 

in the angular sector A~uv or simply the exact specific 
intensity along the direction (t'~). It depends on the 
definition of the differential scattering coefficients aa 
(r,t~uo--~f~0); that is, if they stand for mean values associ- 
ated with scattering mechanisms from the angular sector 
Af~,v towards the angular sector AD 0, or if they stand 
for values associated with the scattering mechanism 
from direction f~,, towards direction fl0. Of course, the 
values of weights C,o differ depending on the meaning 
of the differential scattering coefficients. These weights 
must be chosen in order to satisfy symmetry and balance 
conditions (Myneni et al., 1991). 

If I(r,f~) and ae(r,f~'-~) are mean values, and 
provided that the angular sectors Af~,~ are sufficiently 
small and that the scattered radiation is not too aniso- 
tropic, then weights C,v are simply assumed to be equal 
to Af2~v. On the other hand, if I(r,t~,~) stands for the 
exact specific intensity along the direction (~,o), the 
values of C,~ depend on the quadrature approach that 
is used to compute the integral of (1). In theory, the 
Gauss-Legendre quadrature is the most efficient ap- 
proach, It leads to an approximation whose order is, 
essentially, twice that of Newton-Cotes formulas with 
the same number of evaluations of the specific intensity 
l(r, D0). Naturally, high order of approximation is not 
the same as high accuracy. High-order translates to high 
accuracy only when the integrand is very smooth, in 
the sense of being well approximated by a polynomial 
(Press et al., 1992). Although the Gauss-Legendre quad- 
rature approach is very general and simple, it has limita- 
tions. For example, with strongly anisotropic situations, 
it may be necessary to use an asymmetric set of Gauss- 
Legendre directions with several directions around the 
anisotropy or the anisotropies, which requires an a 
pr/or/knowledge of the directional distribution of the 
anisotropies. A second and more serious weakness, 
called ray effect, arises in the case of 2-D and 3-D 
geometry. This is due to a defect in the discrete ordi- 
nates formulation itself. Indeed, according to the discret- 
ized radiative equations, scattered radiation can stream 
only along preset directions (~,), which may imply that 
the influence of some isolated point sources, scatterers, 
and absorbers within the scene is totally ignored. The 
choice of equally spaced discrete directions tends to 
decrease the probability of ray effects. Finally, in the 
context of remote sensing studies, another limitation of 
the Gauss-Legendre quadrature originates from the fact 

that we usually require higher accuracy for directions 
close to the upward vertical (i.e., directions that are 
associated with viewing configurations from space) than 
for downward directions. As a result, it may be better 
to tailor an angular discretization scheme that is finer 
for upward directions close to the vertical. 

In fact, as already mentioned, the DART model 
works with any input set of discrete directions (e.g., 
Gauss-Legendre directions or unevenly spaced direc- 
tions). Functions that characterize cell interaction 
mechanisms, e.g., the scattering transfer functions and 
transmission functions of leaf cells, are determined with 
the so-called exact kernel method (Myneni et al., 1991). 
An example of computation of these functions is shown 
below in the following section. It follows that the dis- 
crete radiative transfer equation is simply: 

0"~zz + t?0" ~yy + ~,j" ~xx W(r, a0) = 

- a(r,f~,j). W(r,f~0) + Q(r,t~0)" Aft0 
v o(u) 

+ Z Z a,(r,t~,v-*O~j)" Af~ o" W(r,f~,v), (3) 
u = l  v = l  

where W(r,f~uv) and W(r,f~0) are quantities that are 
proportional to the terms I(r,f~v)'AD~v and I(r,f~o). 
A~ 0, respectively. 

The physical quantity W(r,~u~) represents the flux 
of energy along the direction ( t~)  in a cone (A~,o) at 
a position r. It can be envisioned as a flux of photons 
that stream through a cylinder of infinitesimal section 
AS (AS < < Ax-Ay, Ax-Az and Ay" Az) and the axis of 
which is parallel to the direction (f~u~). It has the dimen- 
sion of a power (W). 

W(r,~uv) = Las(r,~,o)" A~,~'AS, 

where Las(r, Ouv) is the radiance of the surface AS normal 
to the propagation direction (t~).  We define the term 
"specific intensity associated with the flux W(r,D~)" with 

I ( r ,~ )  = W(r,t~) within a surface unit normal to the 
A ~  propagation direction (t'~), 

I(r,O,o) = o outside the above-mentioned 
surface unit. 

Direct Sun Radiation and Anisotropic Atmosphere 
The DART model was designed in order to handle both 
direct sun radiance and downward atmospheric radiance 
that may not be isotropic. Actually, the sky radiance 
distribution is often very anisotropic (Dave, 1978). 
Moreover, it ranges from 5% to 40% of the total down- 
ward radiance, under usual atmospheric conditions. 
Thus, total irradiance incident on a scene has two com- 
ponents: the direct sun and atmospheric source vectors. 
They are assumed to originate from a fictitious cell layer 
at the top of the scene. Direct sun source vectors (Fig. 
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1) propagate along the direction (f~s). At the top of the 
scene their value is 

w(t)~) -- EAt),). I~,1" Ax.A v, 

and the atmospheric source vectors are 

w,(t),)  = L~(~) .  lU, I" Ax. Ay. At)~, 

where E,(t),) is the sun constant at the top of the scene, 
t), denotes the solar incident direction, and L~(t),) is 
the atmospheric specific intensity along direction (ft,), 
with ne [1 N'], where N' is the number of downward 
discrete directions. Anisotropic atmospheric conditions 
are simulated with the use of an anisotropic distribution 
La (t)n) that is specified by the operator. Different analyt- 
ical expressions are available in the literature (Per- 
raudeau, 1988). They depend on local sky conditions, 
that is, clear sky or cloudy sky. Three major approaches 
are generally followed for describing the angular distri- 
bution of the sky radiance (Liang and Stralher, 1993): 
1) numerical solutions of the radiative transfer equation, 
2) analytical approximations of the radiative equation, 
using for instance an Eddington-type approximation or 
a two stream approximation for the multiple scattering 
component, and 3) statistical techniques to fit collected 
sky radiance. 

Thus, total downward irradiance of an upper cell is 

Hereafter, a source vector, along direction (f~,) with 
nE [1 N], incident on cell i, with i¢ [1 I] is noted 
W(0,t),). The associated transmitted source vector, after 
a propagation length Al~ in cell i is noted W(Ali, D,). 

The Iterative Approach 
The model processes the interactions of each individual 
source vector with all encountered cells as it propagates 
down and up in the scene (Fig. 2). During their propaga- 
tion source vectors meet individual cells. Interaction 
mechanisms depend on the cell type, that is, the ele- 
ments (leaves, soil, grass, water, trunk) within these cells 
and their associated structural and optical properties. 
Source vectors are transmitted through gaps, totally 
intercepted by opaque cells (e.g., soil and water cells), 
or partly intercepted and transmitted by semiopaque 
cells (e.g., trunk, leaf, and grass cells). Radiation inter- 
cepted by a cell gives rise to scattering and absorption 
mechanisms. Thus, each cell where scattering mecha- 
nisms take place becomes a secondary source. 

In a first iteration all direct solar source vectors are 
processed. They give rise to secondary source vectors 
in all illuminated cells that are characterized by non-nil 
scattering phase functions. A solar source vector is pro- 
cessed until it reaches a zero threshold value T1 or 

Iteration: 
order k 

Figure 2. 

I Cell matrix and parameters 

1 4 Sun radiation (E,,D~) 

I DIRECT SUN ILLUMINATION I 
AND 1 ST ORDER SCATI'ERING 

~ ,I Atmospheric radiation (wa,D~) 

I 
I MOLT ' OROERSCA R O I 
Energy stored as Cim coefficients I 

ENERGY STATUS PER CELL 

SCENE BRDF 

DIRECTIONAL IMAGE SIMULATION 

Schematic structure of the DART model. 

encounters a medium where it is totally absorbed and 
scattered. This zero threshold value is selected by the 
operator; it is expected to be proportional to the inci- 
dent irradiance multiplied by the relative error that is 
tolerated. 

In a second iteration all source vectors that originate 
from all secondary sources, and the atmospheric source 
vectors, are processed. These give rise to tertiary source 
vectors that are further processed in a third iteration. 
Iterations are systematically conducted for all sources 
and for all N directions. Radiation that escapes from the 
upper cells of the scene is stored at each iteration. 
Processing goes on until source vectors escape from the 
canopy or reach a zero threshold level of flux within 
the scene. This threshold value is the product of an 
operator specified factor T2 divided by 4n, and 
multiplied by the mean hemispherical flux < ~W> 1,~ and 
by the solid angle AD, of the cone of propagation. The 
term < ~W)1.2 is the maximum value of the mean cumu- 
lated fluxes < ~W> that exit cells in the first and second 
iterations. The quantities ( ~ W )  are computed during 
the illumination phases as the product of the cell single 
scattering albedos by the energy intercepted by the 
cells. Thus, Ta'<~W)l~/4n is an intensity threshold. 
All source vectors W(t)n) that propagate across the scene 
such that 

At), 
w(t)n) < T~" < ~W>I,~" 

4n 

are eliminated. Figure 3 shows the cumulated sums of 
cell scattered source vectors in iterations 1-8, in the 
ease of an homogeneous foliar canopy (LAI = 2, spheri- 
cal LAD, mle~ = 0.9, Psoa = 0) with a direct sun illumina- 
tion (SKYL -- 0). The horizontal axis stands for the values 
of source vectors. All intensity values are divided by the 
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Figure 3. Cumulated sums of cell scattered 0.3 
source vectors in iterations 1-8 plotted against 
source vector intensity. Values are divided by o.2 
the total energy scattered in the first iteration. 0.1 
They were obtained with an homogeneous leaf 
canopy ( L A I  = 2, spherical LAD, £01eaf = 0.9, o 
Psoii = 0) and a direct sun illumination (SKYL = 0). 
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total energy scattered in the first iteration. Thus, the 
cumulated sum of the first iteration tends towards one, 
whereas asymptotic values in iterations 2-8 are 0.47, 
0.25, 0.14, 0.07, 0.039, 0.021, and 0.011, respectively. 
The standard deviation of scattered source vectors 
strongly decreases with the iteration order; that is, the 
upper and lower cells tend to scatter the same energy 
at large iteration orders. Moreover, the larger intensity 
levels associated with iteration n tend to be systemati- 
cally smaller than those associated with iteration orders 
smaller than n. So, the selection of a threshold intensity 
level equal to the mean source vector scattered at itera- 
tion n leads to the elimination of 1) all source vectors 
scattered at further iterations and 2) all source vectors 
that originate from iteration orders smaller or equal 
to n and that reach this threshold value after some 
propagation within the scene. 

With clear sky conditions the intensity threshold 
value is selected with iteration one only because the 
mean scattered flux is larger for iteration 1 than for 
iteration 2. However, with very cloudy conditions, that 
is, conditions that are not appropriate for remote sensing 
acquisitions, this may not be true. This explains why 
iteration 2 is considered in addition of iteration 1. In 
that case, the model is not aimed to simulate remote 
sensing acquisitions but to simulate 3-D radiative trans- 
fer only, for example, for further modeling of canopy 
photosynthetic activity. The modulation of the threshold 
value by Af~n is aimed to retain an acceptable accuracy 
along narrow anisotropic directions such as those associ- 
ated with the hot spot configuration (i.e., equal illumina- 
tion and viewing directions). 

Scene Bidirectional Reflectance Factors 
Once all source vectors have been processed, directional 
reflectance factors of all upper cells are computed. The 
energy flux that escapes an upper ceil along direction 
( ~ )  being Wout(Z = H,~v), the associated reflectance fac- 
tor is 

a ( o o )  = 
n" Wout(z = H, Ov) 1 

!~o " Af~v W,(z = H,f~,) + ~ Wa(z = H,n,) '  
nff i l  

where 

(4) 

( ~ )  = viewing direction with zenith 
and azimuth angles 0o and ~0v, 

/Iv = cos Ov, 

= total irradiance of an upper cell, 

1 Wout (z = H,F~o) 
Ax" Ay /Iv" A~o 

= radiance of an upper cell along the direction (f~v). 

In the absence of atmospheric radiation, the upper cell 
bidirectional reflectance factor is 

n" Wout(z = n,t%) 
W,(z = H,t~,)"go" At~" 

In a further stage the BRDF of each upper cell is 
resampled in a cylindrical coordinates system for ob- 
taining a cylindrical representation of the BRDF. De- 
pending on the choice of the operator, different types 
of results can be finally obtained. For example, if the 
position, viewing direction, and instantaneous field of 
view of the airborne or satellite sensor are known, 
the DART model simulates the remote acquisition of 
spectral images. 

WITHIN CELL INTERACTIONS 

When a source vector encounters a non empty cell, that 
is, a cell with some information content, the model 
handles interactions with the help of the cell optical 
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properties. Procedures used to simulate radiation inter- 
actions within cells depend directly on the cell type. 
For example, the simulation of scattering mechanisms 
within leaf cells relies on the use of scattering T(j,~,f2) 
and transmission TOg, O ) functions, which is not the case 
with soil cells. As already mentioned, cell optical charac- 
teristics are either input parameters, or are computed 
in the first step of the DART simulation, with the optical 
and structural properties of the elements within the 
cell. An example of computation of leaf scattering and 
transmission functions is first examined. Handling other 
cells is globally similar. It is presented in a further 
section. 

Leaf Cell Transmission 
Leaf cells are treated as turbid media, with leaves as- 
sumed to be small plane surfaces with leaf scattering 
phase functions f(j,~f,O;'*f2o), where j indicates the cell 
type and (f2f) is the leaf normal orientation. The cell 
leaf area density is uf. Leaf normals can have any possible 
orientation. They are defined independently of the N 
discrete directions of propagation. Their angular distri- 
bution is represented by the normalized leaf angle distri- 
bution function grog,~s)/2n. Leaf cell dimensions must 
be such that enough leaf area is contained therein, upon 
which the use of local phytometric attributes such as 
gfog, f~f) would be meaningless. Natural vegetation 
clumping tends to ensure the validity of this hypothesis. 
Thus, the transmission factor (Fig. 3) associated with a 
radiation that propagates along a direction (f~,) through 
a foliar cell i of cell type j is 

T(AI,,~,) = exp[ - Gog,~n)'ut(i)'Ali], 

where 

('2n f l  
cog, a . )  

is the mean projection of a unit foliage area in cell i on 
a surface unit perpendicular to direction (£~,). Ali is the 
total pathlength through cell i along direction (f~,). We 
call Tog, t'& ) the discretized J x N matrices T(j,O,)= exp 
[ - G(j,O,)] with je  [1 f ]  and ne [1 N], where J' is the 
number of leaf cell types. Thus, we have 

T(A/ i , nn )  = [T(j, nn)]Ufl O'ati. 

Consequently, with a flux W,. (0,t3~) incident on cell i 
along the direction (O,) the transmitted flux that escapes 
cell i along the direction (O,) is 

Wo,,t(AI,,~.) = T(A/i,O.). W~.(0,~.). (5) 

It results that the source vector intercepted along the 
path (Ali,£~,) is 

Wi.,(A/,,O,) = [1 - T(AIi,n,)I.W,.(O,O,). (6) 

Scattering Transfer Functions of Leaf Cells 
The propagation (Fig. 4) of a source vector W(I,f2,) 
throughout a cell i along a direction O~, where le [0, A/i] 
is the pathlength from the entrance point (A) of cell i, 
gives rise to scattered source vectors ~ (A/i,OT"f~) 
along the directions (O~, At3~), ve [1 N]. The type of 
cell i being j, we have 

~(Ali,~,"*~)=Iaa~Iatil'2W(l,f~,)'uf(i)" I ~," " "  I " gf(j'f2f)~s 2n 

•fog, f~f,g~,-*Ov)'dt3f" dl" df~ = Win(0,~'~s)" [1 - -  T(Ali,O,)] 

" I,d  lf , f sl ' Os, O;-'Ov)" dt s" dt v 

Wint( Ali, fls) = s) 

.fog, Of, t2;-*O~), dt2f. dO,, 

wherefog, O;'*~v, Of) is the leaf scattering phase function. 
The total specific intensity ~AI~,F~,'-*~) associated 

with the flux ;¢~(A/i,t~,--*f~°) is 

,£ (A/,,t3;-*n~) = i(0,n,). An,. [1 - r(Al,,a,)] 
G(j,n, , )  

" I~ lf~,' asl " ~ f ( j , t ~ s , n , - - ' q d  d~s. 

With small angular sectors the cumulated scattered flux 
to direction f~, is 

~l(A/i,O,--~v) W~"t(Ali'O') I ~f) 
= cog, as) 

•fog, P.s,O;-*t2~).df~f Ao~, 

= W,n(O,a,)'[1 -- r(al, ,Os)].r(j ,o,,Oo), 
(7) 

where Wi, (0,~,) is the value of the source vector, along 
direction (t~,), at the entrance of cell i, and TOg, D~,D.v) 
is the cell transfer function. This is discretized as a 
N× N scattering transfer matrix the terms of which are 
equal to 

I gs(J't~f)" Lf2s" f~s] "f(J,ns, t~'-*~v)'dOs 
f 2n [T(j,t'~,,n~)] = ~ -J2~ dn~ 
Jz~n~ G(j,t~) 

Scattering transfer matrices [T(j,O,,O~)] are precom- 
puted in order to minimize repetitive computations. 
Each scattering transfer matrix [T(j,E~,,~,)] is broken up 
into two matrices that are assumed to be dependent 
[Ta(j,~s, Ov)] and independent [T,,Og,O,,t2~)] of leaf meso- 
phyll information. These scattering transfer matrices 
may be anisotropic and rotationally variant. They can 
be derived from radiometric measurements or from 
computations based on whatever method is selected; 
for example, with the usual assumption under which 
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Figure 4. Within cell single and multi- 
ple scattering mechanisms. 

w(o,t~) 

A 

Wl(Al i ,~ . s - -~ )  = 7/~(Ali,D.~).exp[-G(i,~,v).uf(i).zSsi(K~) ] 

/ 

B 

W(O,f~).T(~,~) 

WM(AIi,~--K~) 

IIABII=AI~(D.0 

IIAM~II=Aq(t~) 

IIM~DII=As~(D,.,,) 

the leaf scattering phase function f(j, ay, t~,--,a~) is the 
sum of a lambertian component fa(j, af, a,--,f~) and a 
specular component fgj, ay, f~,~tq~). Examples offd(j,f]f, 
fl,~t'l~) and fi(j,f~f,f~,~ao) functions are shown below. 
Then, the transfer function is the sum of two matrices 
associated with lambertian and specular components. 
The lambertian component, also called diffuse foliar 
component, is usually assumed to be due to radiation 
that penetrates the leaf to be absorbed by leaf metabolic 
constituents and to be multiply scattered at the leaf 
dielectric interfaces. This is randomly polarized and 
carries information about the leaf interior. On the other 
hand, the specular component is usually associated with 
radiation that does not penetrate the leaf and that is 
reflected by leaf surface; it does not contain information 
about the leaf mesophyll. Specularly reflected radiation 
is often assumed to be linearly polarized (Egan, 1985). 
It may represent an important proportion of total reflec- 
tion; for example, 30%, 17%, and 2% of the total light 
reflected in the green (550 nm), red (630 nm), and 
near-infrared (790 nm) spectral regions, respectively, by 
a soybean canopy in the incidence plane at 30 ° view 
zenith angle with a - 3 0  ° sun zenith angle (Rondeau 
and Herman, 1991). 

Source vectors associated with leaf lambertian scat- 
tering, that is, photons having undergone at least one 
leaf volume scattering are noted Wdf(~). Conversely, 
source vectors not associated with any leaf volume scat- 
tering are noted W,y(f~). Polarized source vectors are 
noted W,(a). Thus, source vectors are three dimension 
vectors: 

[w(a), w~(~), w~(~)] with w(a) = w~(a) + w.~(~). 

Proportions of leaf scattered radiation that arise from 
volume, surface, and polarization mechanisms are noted 
df(a), nf(a), and p(a), respectively, Thus, we have 

Way(a) = gila),  w(f]), w,y(a) = nf(t~). W(a), 
W,(f]) = p(a)- W(f~), df(O) + nf(t~) = 1. 

Thus, an unpolarized sun radiation incident on the scene 
is noted [W(a),W(fl),0]. 

Leaf Specular Reflection 
According to Vanderbilt et al. (1991), leaf specular phase 
functionsfi(j, ay, a,---~) are assumed to depend on three 
parameters: the angle Wf, between the incident radiation 
(a~) and the leaf normal (fif), the surface refraction 
index nj (-~ 1.5), and a parameter Kj(x,CgZ,), between 0 
and 1, that characterizes the smoothness of leaf cuticle: 

f,(j, as, ar--oo) = tqx,%,), e~(nj,%) .,~(~,a*), 

where d~(ao,A*) is a Dirac function; that is, d~(t%,~*) = 0 
if a~ differs from the specular direction f~*. This is a 
function of incident direction (fl,) and leaf normal (f~s). 

R~(n~,~y,) is the Fresnel reflectance averaged over 
the polarization states: 

RZ, n ~ , 1 [sin2(qJf,- 0) tan2(Wy,- 0)] 
"( ~' f~) = 2" [sin~(~f • + 0) + tan2(~f • + 0)'l 

sin 0 = sin Wy, 
nj 

The polarized component is 

R2, ~ , 1 Fsin~(~fs - 0) 
Ptn~ Y~/= 2" [sin2(Wy, + 0) - 

tanZ(Wy, - 
tan2(~f, + ~]" 

Hereafter, polarization mechanisms are simulated in a 
very simple way: The polarization of incident radiation 
is not taken into account, and single scattering mecha- 
nisms are assumed to be the only mechanisms that give 
rise to polarization. 

The specular flux ~K~(A/~,f~,--}av) and the polarized 
flux ~(A~.,f~,-"f~v) scattered along the direction (ao), 
due to an intercepted flux Wi,t(A/i,f~,) are 

~K(A/, ,[I ,~) = T,(j,a,,av).Wi.t(AL.,a,) 

and 
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with 

"O* In,. oj*l.gr(J' ~ ). &(x ,%)  . R~(n> % )  
r,(j,n,,nv)-- 2~ .An?, 

G0,n,) 

I0,. 071. *(J'n?). N(x,%) • R~(nj,%) 
2n r,(j,n,,no) ~ • an? .  

c~j,n,) 
The term AOf represents the solid angle that comprises 
all leaf normal directions that satisfy the conditions of 
specularity for the reflection (O,,An,) --" (Or,An0: 

n , . n s=  - no.o~ and 
r f t - a  cos(n, .no)=2.a  cos(n~.nf) i f o , . o f < o ,  

- a  cos (O , .nv )= -2 . a  cos(O~.nf) i fn , .O />0 .  

According to Reyna and Badhwar (1985), the leaf normal 
" 0",~o *" direction n?  =t  7 7) that induces the specular reflec- 

tion (n;--n~) is defined by 

cos 07 = Icos 0 , -cos  0~1 and 
42(1 - 0,.  0o) 

tan (o* 41 - c o s  2 0," s in  ( 0 , -  ~/1 - c o s  e 0v" s in  ~a~ 

= ~/1 - cos ~ 0/cos (a, - 41 - cos ~ 0o" cos ~" 

Moreover, the angular cone of leaf normals that leads 
to the specular reflection is 

2 

An? = 4.1o, .nsl  (Vanderbilt et al., 1991). 

For first-order scattering mechanisms associated with di- 
rect sun radiation, incident radiation is assumed to be 
monodirectional (i.e., An, ~-, 0). So, An~ ~ AOo/(4.1 
n,.  n j  I). Then, 

" 0 "  ;yf/ss(A/,,n;..}nv ) = Wint(al," as).gr(j, ;f ) 
GO, o,) 8,~ 

* 2 ILl/* .K~(x,ue~).lt,(n> s,)" AO~, 

"O* ~(a/,,fl,---Ov) = w, ot(a/,, o 0.go(j, ~ ) 
c(j,o,) 8rt 

.t~j(~,'I'~) ~ * . i%(nj,'I'~)" Any. 

Leaf Lambertian Scattering 
The lambertian behavior of leaf elements is modeled 
with the leaf hemispherical reflectance pa,l~f and trans- 
mittance zd,l,a coefficients: 

fa(j,n;-'P.o, Oy) = 

~'P~,'e~,~S,)" los. n J, (n,. os).(as, oo) < 0, 

1.  r,,,o~d,%)" Ias, aol, (n.. as). (as- an) < 0. 

Use of this leaf scattering function in the general expres- 

sion of the cell transfer function leads to the leaf cell 
diffuse transfer function [Tdj,O,,Ov)]. 

Within Cell Single Scattering 
Total within cell single scattering in the 4n space, due 
to an incident flux w(o,n,), is 

~¢f(A/,,f~) = I4 J(A/,,f~;--t~v) • df~v 
N 

-- E[~l(Al,,t~;--O d +~(A/,,f~;--t~o)], ve[1 N], 
v = l  

where gC~I(A/i,O,--}Oo) and ~ (A/i,O,oD.o) are the single 
scattered source vectors associated with the scattering 
transfer functions Te(j,n,,oo) and L(j,n,,oo). 

In fact, the flux YJi((A/~,O,~Oo) undergoes further 
inception and scattering before escaping the cell. Trans- 
mission along (nv) within the cell is computed with 
the assumption that the scattered flux ~g"(A/,n,oov) 
originates from a unique point, called middle point (Ms), 
within the cell i, and not from the cell center. Simulation 
of scattering mechanisms from (M,) instead of the cell 
center leads to more accurate results, especially for 
cells with large uf values and for oblique propagation 
directions. In a second step, the geometrical propagation 
of scattered radiation that has already gone out of the 
cell is simulated from the cell center. The point (M,) is 
defined as the point along the path (A/,n,) such that 
50% of the total intercepted radiation Wi.t(A/~,Os) is 
intercepted before this point. The pathlength between 
(M,) and the entrance point of cell i is called Ar~. We 
have 

f4J(Ar,,O;-'Oo,'dO~=I"I4~AI,,O;-}I2~)'dOv 

Ar~ -- In 2 - In[1 + exp( - uf(i)" GO, O, ) • AI,)] (8) 
,t(i). c(j,o,) 

The scattered radiation Wx(A/,n,--}O~) that escapes 
cell i along (n~) corresponds to the attenuation of 
~ (Al ,  fl;-}Oo) within cell i after a propagation length 
As~(n~) from the middle point (M,). It is a single- 
scattering radiation: 

W~(Al,,fl;--n 0 = ;Nl(Al,,fl,~n~) 
• exp[ - G(j, flo).uy(i).As,(no]. 

This term is the sum of a diffuse and a specular compo- 
nent: 

wa,( Al , ,n;- ,n 0 = ~dl( Ali,Us-,-~nv) 
-exp[-  c ( j ,  no )  . u~( i) " a~,(Oo)l, 

w,~(Al,,n;--nv) = ~(A/,,n;--O~) 
• exp[ - G(j, nv).,f(i)" As,(Oo)l. 

Thus, with a radiation [Win(O,O,),W,f,i.(O,),Wp.~.(fl,)] inci- 
dent on a cell i of type j, the single-scattering source 
vector that escapes cell i along direction (t~) is 

[W~(A/,O;-'O 0 , W,zx(A/,,fl,--'no ), W,,I(A/,,fls"}nv], 
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where 

W~(Al,,nc*no) = ~(As,,no). T(j,n~,nv) 
• (1 - T ( A I , , ~ , ) ) .  W~.(0 , t )s) ,  (9a)  

Wnfa( A l , , t ) ~ v )  = T( As,,f~O " T~(j,t)~,~ ) 
• ( 1  - T(Al,,f~))'W.~.in(O,fl,), 

W~f~(A/,,~;-'t~v) = nfx(t2~,f~)'Wl(Al,,~;-'t2v), (9b) 

Wp.~(Al,,t);--f~) = T(As, ,~).T,( j , f~, , t )v)  
• (1 - T(Alit),))'Win(O£),), 

W,,~( A l , , t )~ t ) v )  = p~(j, t2,,g)~) . W~( Al,,t);-'t)v), (9c) 

with 

nf,(t)~,t)o) = '~' " ' = sl(j, Os, Ov) " nfi,(fl,), 
W~(AI,.t2;--Ov) 

81(j,~'~s,flv) = Ts(j ,ns,~'~v) 
T(j.n.,no)'  

w,,,~(al,,ns-.-flo) = r.~j, ta.,no) 
pl~j,n..nv) = Wl(al, .nc--nv) TU.n. ,no)  

Within Cell Multiple Scattering 
Simulation of multiple scattering mechanisms is de- 
scribed in the Appendix. It is conducted without taking 
into account polarization mechanisms. It relies on the 
computation of the energy ;~l,~,t(A~,~,~o) intercepted 
along the path As~(f~). Because multiple scattering of 
this energy cannot be modeled exactly, we assume that 
radiation that has undergone more than one scattering 
within a cell is nearly isotropic. This assumption allows 
one to define the mean single scattering diffuse ogd~ and 
specular o9~ albedos, for cells of type j, and the mean 
transmission coefficient (T~) within any cell i. This leads 
to the computation of the multiple-scattering source 
vectors that escape any cell i; that is, total multiple- 
scattering source vectors W~,(A~,f~) and W,~(A/i, f~,~ D~), 
specular source vectors W,M(Ali,~) and W,,,(AI~,~,--'f~), 
and source vectors W~f~(Ali,f~, -~ f~)  not associated with 
at least one leaf volume scattering. 

Thus, the multiple-scattering source vector that es- 
capes cell i along (f~o) is 

[W~(Al,,f~,-~t)v), W,f,,(Al,,fl;-'fl0,0 ]. 

Finally, the total scattered source vector, that is, single 
and multiple scattering radiation, along direction (t)o) 
is 

[Wl( Al,,L')s"~"~) + WM(Al,,t);-*t)~), 
Wnf, l(~'~v) -I- Wnf~(~'~v),Wp, l(~'~v)]. ( 1 0 )  

The absorbed source vector associated with the incident 
source vector W(0,~)  is 

Wa( Al,,~%) = [Wi~t( Al,,~%) - Y~I(AI,,Os)] 

+ ~ {Y)~L~.t(AI,,t);'*O~) - W~,(A/,,f~,---ao) l. 
v = l  

Wm/Wl (%) 
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Figure 5. Ratio W~,(A/i,Q,~ 0 / W~(A/~,t);-'fl 0 of a leaf 
cell as a function of cell LAI. Two cases are considered: 
toe = 0.9 and rod = 0.2. The LAD is spherical and leaf 
specular reflectance is neglected. 

Figure 5 shows the relative importance of single-scattering 
Wl(A/~,t),--'f~v) and multiple-scattering W~(Al i ,~ - ' t )~ )  
source vectors, in the case ofa  foliar cellj  with a spherical 
LAD, as a function of the cell LAI. Leaf specular reflec- 
tance is neglected. Two cases are considered: o9 i = 0.9, 
Pd = rd = 0.45, and tot= 0.2, Pd = rd = 0.1. It appears that 
W~,(Ali,f~s--'fl~) is all the more important compared to 
W1(Al, t);-'t)~) than the LAI is large and than the leaf 
single-scattering albedo is large. For  example,  with 
tot--0.9 and LAI = 2, W~,(A/~,~ ,~)  is equal to 63% of 
WI(AI~,f~;-'~). This clearly stresses that the multiple- 
scattering component must not be neglected. 

The above-mentioned single and multiple scattering 
mechan isms  occur  for each  i te ra t ion  of the  DART 
model. Some simplifications are introduced for multiple 
scattering, to reduce computation times; they are shown 
in the following section. 

Hot Spot Effect 
The finite size of scatterers within the canopy is respon- 
sible of the peak in reflected radiation in the retroillumi- 
nation direction. This is the well known hot spot effect. 
According to many authors (Qin and Xiang, 1994), this 
may be a diagnostic tool for canopy structure because 
its magnitude depends on the size, shape, density, orien- 
tation, and spatial distribution of foliage elements. For 
example, in the case of tree canopies its width is often 
assumed to be governed by the elliptical shape of crowns 
(Barker Schaaf and Stralher, 1994). In a homogeneous 
medium, attenuation mechanisms that occur along the 
scattering direction (f~) are more or tess correlated 
with those occurring in the incident downward direction 
(~,), depending on the closeness of directions (t'l,) and 
(t)~); the correlation value depends on the scattering 
angle, and on the size sy of the scatterers vs. their depth 
in the foliar medium. Here, the approach of Kuusk 
(1985) is adapted in order to take into account the fact 
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uy(i)" G(i,t2o)- [1 - 

where 

that cells are not infinite horizontal media. It results 
that the extinction coefficient along direction ( ~ )  of 
single-scattering source vector [W~(A/~,f~r-'f~)] at a dis- 
tance Js.<f]o) from the origin point in cell i where reflec- 
tion took place is not uy(i ) • G(i,f~), but 

= 

and cos a = f~," t~. 1 2" COS 12 

The attenuation of W~(AI~i,f];'*~o ) along the path As~(~) 

is exp[ - IAs,(a~)a.("~,"~,r)" dr 1. 

It must be noted that the hot spot effect is not applied 
to multiple-scattering source vectors, that is, source vec- 
tors W~,(A~,~,~f~) in all iterations and source vectors 
W~(A/~,~r-'~,) in iterations larger than 1. 

Iterative Processes with Single and 
Multiple Scattering 
As mentioned above, the DART simulation procedure 
relies on an iterative method. Two different approaches 
are adopted for simulating cell interaction mechanisms 
in the first iteration, that is, mostly single scattering, 
and in the following iterations. 

First Iteration: k = 1, nil. (g2~) = 1, and Q, = 12~u~ 
The only incident source vector, that is, attenuated 
direct sun radiation, is a nonfoliar flux (n3~.(~,) -- 1) as- 
sumed to be nonpolarized (pi.(fl,) -- 0). This sun source 
vector [Win(0,f~,),Win(0,f],),0] incident on cell i, along 
the path (A/i, fl~), gives rise to a scattered source vector 
that escapes cell i along direction (t'2o): 

[W~t( A l , ,~r - '~ ) ,  W.f( A l , , f ] , ~ ) ,  Wp( Al,,~;'*f~o)] 

with 

W.y( Al,.f]r-"t~o) = s~(j ,~, ,~" WI(A/,,~;'*Oo) 

+ °)'~. T( ~T:~°) " s.( j , .~) " W..(  Al,,f~, ), 
w~ 

w , (  A l , , t ~ , - - , t ~ )  = p~( j ,O , , t~o)  " w,(a/,,~,---f~o). 
So, we have 

nf( Al,.fl.,~o) = 
W~( AI,.O.~O~) + ~ .  s~(j.f~) . m~/• W,~(AI.,a.) st(j,~'~s,~"]v) " 

~ l d to~ 

Wso,,( ali, f~,--'f~) 

In fact, each cell can be irradiated by different source 
vectors that propagate along the same direction (f~), 
We call • this total number of incident source vectors. 
The latter are noted W~n(o,~), with oe [1 ~]. Conse- 
quently, total scattered radiation that escapes cell i 
along direction (fly) is 

ws~t(Al,(o),a;-.}nv, wnt(a~),w,(a~) with oe[1 ~], 
ffi 

with 
Wq(a~) = ~W.t(Al,(o)n,--.n~ ) 

o~1 

= ~nf(Al,(o),n,,f~).W,~.t(Al,(o),fl .~no), 
o f f i l  

Wp(ao) = E Wp( Al,(o),ar-.av) 
o~1 

= Ep(Al,(o), f l , , f lo).W~.(Al,(o)fl~f]o).  
o f f i l  

For each interaction (i.e.. Ginteractions) the intercepted 
radiation W~t(Ali,(o).O~) and the coordinates of the asso- 
ciated middle point (M~) are stored. Indeed, these only 
quantities allow one to compute Wx(Ali, O,~O~) and 
WM(A/.f]r-'fl~). The scalar summation of Wp(Ali(o), 
f~r-*f]~) vector sources is only possible because all scat- 
tered source vectors are assumed to have identical polar- 
ization directions. In the following iteration, cells that 
have intercepted source vectors in the first iteration 
become secondary sources. 

Further Iterations: k > 1 and I2,e4zr 
Incident source vectors [Wi.(O,fl.),W.y.i.(f].),W,.i.(t~.)] 
stand for already scattered radiation and atmospheric 
radiation. In a first approximation, considering that inci- 
dent radiation tends to be isotropic, the polarized scat- 
tered component is simply assumed to be nil. Thus, 
with a source vector incident on cell i along the path 
(A/.O.), the source vector that escapes this cell along 
direction f~) is 

[W~e~t( hl,,O.-'*f]~), W.y( Al,fl .~t~),O]. 

with 

W~at(A/,,t~n--'f~) -- W~(A/,,f]~--'~) + WM(Al,t~.'-'f]o), 

Wq( Al,,O.--'O~) = nJ~.(f~.) " ls~(j,~.,fl~ ) " W~(Al,,fl.~fl~) 

T( as ' , t~O) . sMO, f lo)  . °~w,~,(a/,,fl,)]. 

In fact, each cell is irradiated by a number ~ of source 
vectors 2]/i.(f~.i(o)) that propagate along different inci- 
dent directions f~.(o) in the 4re space, with oe [1 ~]  and 
ne [1 JF]. C o n s e q u e n t l y ,  total  s ca t t e r ed  rad ia t ion  
[W~¢~t(C,~v)] that escapes cell i along direction (f~o) is 
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Use of the approach of iteration 1 would lead to store 
all middle points M~(o), the intercepted radiation W~,t 
(Ali,O,(o)), and the associated incident directions (f~(o)), 
with o611 ~]. This would demand a huge computer 
memory capacity with large scenes. Thus, another ap- 
proach is adopted.  When an inc ident  radiat ion 
[W(0,t)~)], with n~ [1 ~//~, is intercepted, resulting scat- 
tered specific intensities I(A/.f~--'f~) and I.f(A/~,~--" 
t)~), associated with source vectors W(A/i,~n~t~) and 
W.f(Al.t).~£)v), are computed for all N(D.v) directions, 
and their distribution is represented by a spherical 
expansion: 

/=L mffil 
l(Al,,~,--'f~v) = Z ~,, Clm(i,k)'YIm(O, tp), 

l=Om=-I 

where Ylm(O,~) are the normalized spherical harmonics 
and Clm the associated coefficients. L is an integer num- 
ber that indicates the order of the expansion. It can be 
selected by the operator. In real form the normalized 
spherical harmonics are defined by 

Nlm'elm(COS 0)" cos(m(~) ifm > 0, 
Yl,~(O,~) = N~'P~o(COS 0) / ~/~ ifm = 0, 

NIm'Pl~(COS 0)'sin(Italy) i fm< 0, 

where the elm(x) factors are the associated Legendre 
polynomials and the normalizing constants Ntm are given 
by 

Nl 12/+ 1 . (1 -[ml)! 
m----- 5~ 27[7 (1 + Iml)!  

The Clm(i,k) coefficients related to the kth scattering 
order in cell i are derived from 

~2~fn 
C,m(i,k,O,)= J0 Jo l(Al' 'O~of~)'Y'(O#)'sin O'do'dO 

= ~ Wscat(~')s'-~av)'Ylm(Ov). 
v=t 

The coefficients Clm(i,k,t),) are actually computed during 
the (k-  1)th iteration order, both for the total W~at(f~) 
and the nonfoliar W,f(f~) radiation components. After 
each interaction with cell i, the n e w  Clm coefficients are 
added to the Cl~ coefficients associated with radiation 
previously scattered in that cell: 

Cl,~(i,k) = ~Ct~(i,k,f~,), where~is  the total number 
o ~ l of radiation incident on cell i. 

The scattered source vector [W~cat(i,~v), Wnf.~cat(i,f~v), 0] 
that exits cell i is computed in the kth iteration: 

lffiL mfl  
Wscat(i,~)v) = ~ ~,, Ctm(i,k)" Ytm(f~)" A ~ ,  

/ftOm= -l  

lffiL m=l 
C,m.nf(i,k)" At o. 

l=Om= -l 

The spherical harmonics formulation may not be well 
adapted if the transfer matrix is very anisotropic. Such 
an anisotropy occurs with opaque media such as soils. 
For example, an horizontal opaque surface displays a 
discontinuity of the scattered flux for directions within 
the plane of the interface. Moreover, it may comprise 
a strong specular component, for example, due to direct 
sun illumination. In the presence of such surfaces the 
following approach must be adopted: Before computing 
the Ctm coefficients, the transfer matrix is extended to 
the forward hemisphere. Thus, in the special case of an 
horizontal surface, we use the relation 

I(i,rt - 0,~) = I(i,O#). 

This approach is interesting because it smoothes the 
integrated term I(i,O#), which results in a more accurate 
approximation with a fixed number of Ctm coefficients. 
This extension is especially designed for soil and water 
cells. 

The spherical harmonics expansion is well adapted 
to approximate relatively smooth functions defined on 
the sphere, with a finite number of terms. This number 
is much less important than the total number N of 
discrete directions. A diffuse smoothly varying distribu- 
tion of specific intensity will typically require fewer 
coefficients than a very directional one. Moreover, the 
spherical harmonics expansion is well adapted to the 
incremental computation of scattered radiation resulting 
from successive impinging interaction mechanisms, for 
each cell. After a scattering event occurs in cell i, we 
have the following sequence of operations: computation 
of the angular distribution of the scattered source vector 
W(i,f~) and W~f(i,f~v), computation of the associated Clm 
and Ctm.,y coefficients, and adding these coefficients to 
the already accumulated Cry(i) and Clm,,f(i) coefficients. 

The spherical harmonics expansion is not used dur- 
ing iteration 1. Indeed, the simple knowledge of the 
intercepted radiation and of the associated middle point, 
combined with the fact that sun direction is known, is 
less computer memory demanding than the spherical 
harmonics-based approach. Moreover, and above all, it 
leads to more accurate results because scattered radia- 
tion that results from monodirectional incident radiation 
may be highly anisotropic, which is poorly represented 
by a spherical harmonics expansion with a limited num- 
ber of terms. 

Interaction Mechanisms of Nonleaf Cells 
Interaction mechanisms associated with non leaf cells 
are briefly introduced below. 

Soil Cells 
Their optical properties are represented by scattering 
transfer matrices Tso~(~s,~) derived from measurements 
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or computations with whatever available soil bidirec- 
tional reflectance model• Associated polarization trans- 
fer matrices are noted T~.soa(~,~). Only surface interac- 
tions are simulated. The geometrical path of a soil 
scattered radiation within the scene is simulated from 
the center of the irradiated soil cell face. In order to 
take into account topography, soil cell interactions are 
handled separately for each cell face. So, during the 
direct sun illumination phase, the energy intercepted is 
stored for each individual face of soft cells. In the 
following iteration each face gives rise to secondary 
source vectors, with a priori defined scattering direc- 
tions, for example, an upper horizontal face scatters 
upwards only• Similarly, during subsequent iterations, 
radiation interactions occur also on individual faces, 
and Ctm coefficients are computed and stored for each 
illuminated face of soil cells. 

In a first approximation, polarization is simulated, 
independently of the polarization degree of the incident 
radiation. Naturally, any radiation scattered by a soil 
cell of type j has the same non foliar factor nf.(f~) as 
the incident radiation [W~n(O,~,)]. Thus, the resulting 
scattered source vector along direction (~v) is 

[ Wseat( ~v), Wnf, scat( ~'~v), Wp,scat( ~'~v) ], 

with 

w, t(f o) = 

= • W,c ,(oo) a n d  

Wp.scat(~v) = Tp,~o,,(j,~,,~)" Wi,(O,~). 

The expression of source vectors scattered by a soil cell 
depend on the iteration order: 

Iteration k = 1: 

0=1 

= T,o,,(j.t~.,f~)" Z W~.(O,a,(o)), 
0=1 

Wnf, scat(~'~v) -~ Z Wnf.scat(~s(O) ''}~'~v) "~ Wscat(~'~v) , 
0=1 

Wp,~,t(t~v) = pt(j,~,,f~)'Wsc,t(f~v) with 

T.,,o,,(j,f~..f~o) 
= 

T~oil(j,O,,fl~) 

Iteration k > 1: 
g~ 

d = 0. 

Trunk Cells 
Trunk cells are undoubtedly of minor importance in 
many cases. Trunk cells are characterized by scattering 

Ttrunk(~r~n'-~'~"~v) and polarization Tp,trunk(~'~n'~'~d transfer 
matrices. Polarization mechanisms are modeled without 
taking into account the polarization of the incident 
radiation Wi,(0,f~8). For example, each trunk cell can be 
characterized by an hemispheric reflectance coefficient 
/Ttrunk and an extinction parameter t/. The latter is inde- 
pendent of the incident radiation (~) and equal to the 
ratio of the vertical trunk surface by the surface of the 
associated vertical cell face. In fact, several trunk cells 
may be crossed when a source vector W(~,) encounters 
a trunk. Let qmax be the maximum value of the r/terms 
associated with the cells that are crossed• Then, the 
transmission coefficient of the incident source vector 
W(f],) is 

T(O) = 1 - nmax. 

Thus, T(~) ~ 1 if ~max "~  0 (i.e., empty cell) and t/~,~ 
i if  T ( ~ )  -~ 0 (i.e., 100% trunk cell). 

So, in a first approximation the trunk scattering 
transfer matrix Tt~mk(~,"~) can be simply defined by 

n 

where ~c is the direction normal to the irradiated cell 
faces• 

Radiation interaction with trunk cells are processed 
on a face per face basis, in the same way as soil cells• 
The six faces can become secondary scatterers. In fact, 
source vectors are scattered only by cell faces that are 
directly irradiated by the incident radiation. Naturally, 
a source vector scattered by a trunk cell has the same 
non foliar component nf(f~) as incident radiation• Thus, 
a number @of incident source vectors [Win(0,f],¢o))] leads 
to 

[o~lWseat(~'~n(o)"'}~'~v),Wnf, scat(~']v, Wp, scat(~'~v)]. 

Iteration k = 1: 
tY 
Z w, 

0=1 

Wp, seat(~'~v) = Z PlO, fls,~'~v) • W~.t( al,(o),f]."}t~) 
o=1 

---- px(j, Os,~'~v)" Wscat(Ov). 

Iteration k > 1: 

o=1 

w,•soa,(ao) = 0.  

Water Cells 
Similarly to soil surfaces, water surfaces are modeled as a 
unique layer of water cells, and their upward reflectance 
characteristics are represented by scattering transfer 
functions Tw,ter(~,~v) and polarized transfer functions 
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Tp.w,t~,(fa,,f~v). These transfer functions are N' x 2V' trans- 
fer matrices, where N' and N" are the number of down- 
ward  and upward  discre te  direct ions,  respect ively  
(N' + N" = N). The geometrical path within the scene of 
a water scattered radiation is simulated from the center 
of the irradiated water cell face. During the direct sun 
illumination phase, the energy intercepted by water 
cells is stored. These cells give rise to secondary source 
vectors in the following iteration. 

Transfer matrices Twate~(~,,~o) and Tp,water(~'~s,~'~v) may 
be derived from measurements or model simulations. 
An example of computation is shown below. Water may 
be assumed to give rise to a lambertian component, 
associated with volume reflection, and a specular com- 
ponent, associated with surface reflection. Naturally, 
any water cell scattered radiation has the same nonfoliar 
component nf(f~) as the incident radiation. 

1. Specular reflection: The specular source vector, 
and its associated polarized component are com- 
puted with Fresnel equations. The original polar- 
ization degree pi.(~,) of the incident source vec- 
tor is not taken into account; in fact, pi,(~,) is 
assumed to be nil. Specular reflection occurs 
along a direction ( ~ )  such that 0* = n - 0, and 
~0~ = ~0,. So, an incident source vector W~,(~v) 
leads to a scattered source vector: 

[W, pe(~'~s'~f~v),nfin(ns)" Wspe(ns---l~'~v),ps.seat(nv)" Wspe(f~s"~-~v)], 

where w , ~ n , ~ n v )  = R~ (n,e,).J(n~,n*). 
Win (O,f~,), n is the water refraction index, and 
p ..... t(f~o) = R}(n,O~) / R~(n,O,). 

2. Volume scattering: Volume scattering is assumed 
to be nonpolarized. In a first approximation, it 
can be simulated with a lambertian reflectance 
factor Pw. This input parameter is supposed to 
take into account water cells characteristics such 
as water depth, water turbidity, and the underly- 
ing soil surface, if necessary. 

It results that source vectors that exit a water cell, 
i l luminated by an incident  source vector [Wi,(0,~,), 
Wnf, in(O,~'~s), Wp.in(O,Os)], a r e  

[Wscat(~-]~),nfm(~'~s) " Wscat(~']v), Wp,scat(nv)], 

with 

W,~t(flv) = {(pw/n)" Ino" f~cl • [1 - R~(n,O,)] 

• A O v  + n ~ ( n , O , ) . a ( t ~ , f l * )  1- Wi.(O,~,,), 

Wp, scat(~'~v) = R}(n,O,)" Win(O,ns)  " (~(f~v,~'~v@), 

f]~ is the vertical vector unit. 

In fact, the expressions of source vectors [Wscat(~), 
W,f(~) ,  Wp(f~)] scattered by a water cell depend on 
the iteration order: 

Iteration k = 1: 

W.~,soat(nv) = W, oat(ao), 

Wsc~t(f~v) = I (Pw / n)" Iflv. facl • [1 - R~(n,Os)] " Afar 

+ R~(n,O,)" a ("v , "* ) / ' o~  Wi.(O,O~(o)), 

W,(av) = R}(n,O,). a(t~v,f~*). E Win(O,~'~s(O))" 
• o=1 

Iteration k > 1: 
tY 

W.f, so,t(ao) = Enf,.(t~,~o~)'wsc,t(O,(o;-'ao), 
0=1 

~r  
W,~,t(t~v) =o~{(Pw / n)" If]~" Ocl • [1 - R~(n,O,(o))]" Afl~ 

+ n~(n,O.(o)).~(av,~*)). W~(O,fl.(o)), 

% ( 0 ° )  = 0. 

Radiation that has penetrated a water cell and that is 
not scattered upwards is assumed to be absorbed. 

In short, it appears that for all types of cells: 

• When a source vector is transmitted without in- 
terception through a cell the foliar, nonfoliar 
and polarization quantities df(f~), nf(O), and 
p(f~) of the incident and transmitted source vec- 
tors are kept constant. Only, scattering oc- 
curring within leaf cells can modify the foliar 
df(f~) and nonfoliar nf(~) coefficients (Table 1). 

• Simulation of cell scattering processes does 
not take into account the actual polarization 
state of the intercepted radiation. This simplifi- 
cation leads to important computation time re- 
ductions. Indeed, exact computations would re- 
quire to deal with 4 x 4 Muller matrices 
(Coulson, 1988) for each directional scattering, 
instead of two real scattering coefficients 
T([2,,~) and Tp(~,,~). 

ACCELERATING TECHNIQUES 

The DART model solves the radiative transfer equation 
within 3-D covers through i terat ions on scat ter ing 
sources. Convergence of this iterative process is slow 
in optically deep media where components have large 
single scattering albedos. This is typically the case of 
radiative transfer in dense forest canopies in the near- 
infrared domain. Photons can experience many scatter- 
ing mechanisms before they are absorbed or exit the 
scene. Thus, radiation t ransport  simulation in large 
scenes with a large number of discrete directions can 
lead to t r emendous  computa t ion  times. The DART 
model allows the operator to select two simple accelerat- 
ing techniques for reducing these computation times. 
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Table 1. Changes of the Foliar Diffuse (d~ and Nonfoliar (nJ) Components 
of an Incident Source Vector Scattered by Leaf, Soil, Trunk, and Water 
Cells. 

Leaf /grass  Soil Trunk Water  

Foliar diffuse (n) df,,,t@dj~,, df,,ut = dJ~,, dfo.t=df~,, dfo.t=df~, 
Nonfoliar diffuse (djO nfo,t ~ nf~,, nfout = nf~. nfo.t = nf~,, nfo,t = nf~,, 

Gauss Seidel Approach 
For any iteration k > 1, the information content of any 
nonempty cell i comprises the so-called Ctm(i,k) and 
CIm.nt(i,k) coefficients. The operator has the possibility 
to decide that these coefficients are computed only with 
source vectors scattered in the (k -1) th  iteration, or 
with the help of any relevant source vectors that have 
been scattered by cells already processed in the (k - 1)th 
or the kth iteration order. So, we use updated values of 
CIm as soon as they become available. The summation 
of Ct,,, coefficients is done "in place" instead of being 
"copied" from an earlier iteration to a later one. This 
approach, called the Gauss-Seidel method, requires a 
smaller number of iterations for converging. Moreover, 
it allows one to simulate more accurately 3-D radiative 
transfer because at each iteration order fluxes are more 
important and consequently tend to be larger than the 
selected threshold value (T2(~W)l.2" ~ ,  / 4n). This ex- 
plains why the Gauss-Seidel method tends to give re- 
suits that are slightly larger than those computed with- 
out this approach. The usefulness of this approach was 
very well verified with simulations. For example, with 
a homogeneous foliage cover (LAI--2;  ry= p f =  0.45; 
spherical LAD; ps,)ir = 0.5; 0, = 150°), without any atmo- 
spheric illumination, source vectors computed in the 
fourth iteration with the Gauss-Seidel method are al- 
ready more or less equal to those computed in the sixth 
iteration without the Gauss-Seidel method (Fig. 6). The 
advantage of the Gauss-Seidel method is even more 
important with increasing iteration orders. Depending 
on the number of iterations selected and on the number 
of iterations that are actually necessary for obtaining a 
good accuracy, the Gauss-Seidel method can lead to 
computation time reductions as large as 50%. The only 
drawback is that it mixes all scattering orders; that is, 
the different scattering orders cannot be discriminated 
any more. However, it must be noted that even without 
the Gauss-Seidel method radiation scattered at iteration 
k does not correspond exactly with the kth-order scat- 
tering because it contains cell multiple scattering. 

Reduction of Spherical Harmonics Expansion with 
Scattering Order 
Naturally, radiation scattered by cells is more or less 
isotropic depending on the LAD of leaf covers. For 
example, DART simulations applied to homogeneous 
covers with spherical and planophile LAD showed that 

the coefficient of variation of specific intensities scat- 
tered from individual cells is equal to 10 -2 and 10 -1 , 
respectively, at all scattering orders. On the other hand, 
the intensity of cell scattered radiation becomes increas- 
ingly smaller with larger scattering orders. So, the num- 
ber of coefficients C/m can be decreased with the itera- 
tion order. With computat ion time being positively 
correlated to the number of coefficients Ct,n, smaller 
numbers of Ct,, imply shorter computation times. This 
approach was validated with a number of simulations. 

For example, with homogeneous covers character- 
ized by lambertian leaves and different LAD, LAI, and 
psoil, we determined for each iteration order the exact 
angular distribution of scattered source vectors and 
specific intensities, the associated Ci,n coefficients, and 
the recons t ruc ted  angular dis t r ibut ion of scat tered 
source vectors and specific intensities. Each time we 
considered spherical harmonics expansions of order 0, 
1, 2, 3, and 4, that is, 1, 4, 9, 16, and 25 fin coefficients. 
In the case of spherical LAD, a spherical harmonics 
expansion of order 0 starting from the second iteration 
leads to a relative error, compared to the mean 3-D 
propagat ing radiat ion,  less than 1.5% in the near- 
infrared region (/9 + t =  1) and less than 0.15% in the 
visible region (p+r=0 .1) .  Leaf cells with planophile 
LAD lead to more anisotropic distributions of scattered 
radiation than leaf cells with spherical LAD. Thus, the 

Figure 6. DART simulated nadir reflectance of 
an homogeneous foliar canopy (spherical LAD, 
rod = 0.9, cos = 0, LAI = 2, Ps = 0.3) with iteration 
order k; 0s = 150 ° and no atmopheric irradiance. 
Crosses indicate simulations (a) without Gauss 
Seidel (NGS) and (b) with Gauss Seidel (GS). 
Lines show the exponential curves (R--A- 
B'e-Ck). that fit the NGS case with the second, 
third, and fourth iterations. 
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order of spherical harmonics expansion must be larger. 
An order 2 is a good trade-off; it generates a relative 
error less than 0.6% in the visible region. 

In the case of soil surfaces the expansion order must 
be at least equal to 4, or even larger, depending on the 
soil anisotropic characteristics. This number is greatly 
reduced ff the Cl,~ coefficients are computed once the 
transfer matrix is extended to the forward hemisphere, 
as mentioned in the previous section. For example, with 
lambertian soils we selected an order 2, similarly to the 
case of leaf cells with planophile LAD. Naturally, the 
order of the spherical harmonics expansion is expected 
to increase with the presence of strongly anisotropic 
scattering surfaces and with heterogeneous covers. A 
number of simulations dearly showed that the decrease 
of the order of the spherical harmonics expansion allows 
important computation time reductions; for example, a 
decrease from 16 to 4 C~ coefficients reduces computa- 
tion time by a factor 3. 

Simulations showed that radiation values tend to 
converge exponentially with the iteration order, both 
with the homogeneous covers (Fig. 6) and heteroge- 
neous covers. Thus, convergence values of 3-D absorbed 
and reflected source vectors are assessed with an expo- 
nential extrapolation. This allows us to avoid the compu- 
tation of unnecessary iteration phases. Denoting A as 
the convergence value, the analytical extrapolation func- 
tion is (A-  B.e-C'k), where k is the iteration order and 
A, B, and C are unknowns computed with the last three 
computed iteration orders. A number of simulations 
were conducted in order to determine the lower three 
consecutive iterations that lead to accuracy levels better 
than 5" 10 -3 . It was shown that the set of iterations 2, 
3, and 4 fulfills this requirement. In the spectral domains 
where scene elements have large single scattering albe- 
dos, this approach leads to reductions of computation 
times at least larger than 50%. 

PRELIMINARY RESULTS AND DISCUSSION 

BRDF Simulations 

A number of successful simulations were conducted in 
order to test the consistency of the DART model. It 
was verified that simulated BRDF values are constant 
when the dimensions of the cell matrix (e.g., 16 × 
16 × 16 or 200 × 200 × 40 cell matrices) and / or the 
number of discrete directions (e.g., 288 or 150 direc- 
tions) are modified, provided, that these numbers are 
sufficiently large for avoiding side effects that may origi- 
nate from the space and angular discretization scheme. 
For example, such effects arise when contiguous cells 
have large LAI values because within cell exit distances 
from middle point Ms tend to be smaller along directions 
around the retroillumination direction. Thus, it results 
that the single and multiple scattering source vectors 

tend to be overestimated in the directions around the 
retroillumination direction. 

Homogeneous Spherical Covers 
The DART model accuracy was first tested with simula- 
tions realized with the SAIL model of Verhoef (1984). 
This model deals with horizontal homogeneous canopies 
with leaves characterized by hemispheric reflectance 
and transmittance. Considering the hypothesis of iso- 
tropic upward and downward fluxes of the SAIL model, 
DART simulations were conducted with homogeneous 
leaf covers the LAD of which is spherical. A large 
number of configurations (i.e., variable numbers of dis- 
crete directions and cells, sun directions, presence/ 
absence of atmosphere, and optical canopy properties) 
were tested. 

Figure 7 displays DART and SAIL bidirectional 
reflectance factors in the incidence plane, in the case 
of a plane homogeneous leaf canopy in the visible 
(Pd = ra = 0.05) and the near-infrared (Pa = rd = 0.45). The 
reflectance of the underlying soil layer is p,--0.15 and 
the sun zenith angle is 150". One hundred fifty un- 
equally spaced disdrete directions are selected. Conver- 
gence is reached after 10 iterations; only 4 iterations 
are computed with the Gauss-Seidel method. SAIL and 
DART simulations agree closely in the visible. The small 
differences around the hot spot direction are due to the 
fact that the hot spot effect is more accurately simulated 
in the DART model; that is, its influence is not consid- 
ered only along the exact antisolar direction but also 
around this direction. On the other hand, DART simula- 
tions are 3% larger than SAIL simulations in the near- 
infrared. Larger differences are noted for larger viewing 
angles. A simplifying assumption of the SAIL model 
explains these differences. Indeed, this model assumes 
that hemispheric radiation is isotropic. This is not true, 
especially for large viewing angles. For example, with 
the experimental conditions mentioned above, the sum- 
mation of all upward radiances is larger than the upward 
hemispheric flux, which means that the latter is underes- 
timated, which in turn implies that SAIL simulations 
are slightly underestimated. These differences are not 
noted in the visible because in this spectral domain 
upward radiation is essentially due to single scattering 
processes; that is, the upward and downward hemi- 
spheric fluxes have relative small values. 

The importance of an accurate simulation of within 
cell scattering was clearly verified with simulations. 
Indeed, the use of the source vector ~¢((A/i,~,,~f~v) 
instead of the actual source vector [Wl(A/~,g~s--~)+ 
WM(A/~,~,-'t~o)] may lead to errors as large as 20%. 
Large errors are obtained with cells with large dimen- 
sions and large densities of highly scattering elements. 

Heterogeneous Covers 
Simulations were also conducted with heterogeneous 
3-D artificial scenes, for example, scenes with groups 
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Figure 7. Comparison of DART (20 layers of leaf cells) and SAIL simulated reflectances (R) in the 
incidence plane of an homogeneous cover (LAI = 2; spherical LAD; 08 = 150"; ps = 0.15). a.) 
Pa = ra = 0.45; b.) Pa = ra = 0.05. Iterations n = 1 to n = 6 and the extrapolated iteration (n = ~) of 
DART simulations are shown. 

of trees surrounded by grass. Naturally, computer times 
simulations are all the more important than the numbers 
of discrete directions and non empty cells are large; 
for  exa mp le ,  a 200 x 200 x 30 ce l l  ma t r ix  and  a 
100 x 1 0 0 x 3 0  cell matrix with the same number  of 
"nonempty" cells lead to similar computation times. The 
DART model provides three types of results: 1) mean 
scene BRDF (Fig. 8) or mean BRDF of any set of pixels 
of the top scene, 2) directional spectral images (Fig. 9), 
that is, simulation of remotely acquired acquisitions, 
and 3) 3-D description of intercepted and absorbed 
radiation within the scene. 

Figures 8a and 8b show the simulated near infrared 
BRDF of an h o m o g e n e o u s  and h e t e r o g e n e o u s  t ree  
cover, with the same LAI. They are displayed in a 
rectangular coordinate system (x = k" 0" cos @, y = k" 0" sin 
@) where 0 and @ are the zenith and azimuth viewing 

directions. The heterogeneous scene was simulated with 
an algorithm developed by Pinel et al. (1995). Trees 
comprise a trunk and an ellipsoidal crown. Their posi- 
tion is spatially random, whereas tree height, crown 
width, and crown height vary randomly around mean 
values. Moreover, crowns can be randomly filled with 
leaf cells for simulating foliar clumping. It is well verified 
that the hot spot occurs where the viewing and solar 
zenith angle coincide, that is, where shadows are con- 
cealed. It was verified that the shape of the BRDF is 
directly related to tree density and to the amount of 
mutual shadowing that is taking place. The BRDF's 
bowl that occurs when the viewing angle moves opposite 
the sun zenith angle, in the case of the homogeneous 
cover, tends to disappear with the heterogeneous cover. 
Moreover, the heterogeneous cover leads to smaller 
BRDF values. 

Figure 8. Simulated BRDF of a an homogeneous and b a heterogeneous scene: leaf canopy (LAI = 1.17, 
Pa = ra = 0.05, o9, = 0, spherical LAD), grass (LAI = 3, Pa = rd = 0.05, m, = 0, spherical LAD), soft (P,o~ = 0.1), 
0, = 150", ~s =45*. Mean characteristics of the heterogeneous scene are: tree density (164 trees/ha), tree height 
(20 + 3 m), crown height (12 + 1 m), crown width (6 + 1 m) and trunk diameter (40:1:5 em). 
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Comparison with Remotely Acquired Images 
A study was also started for testing the DART model 
with 1.60-m resolution data acquired with an airborne 
SPOT HRV simulator above a pine plantation located 
in Les Landes forest, southwest France. This is a large, 
flat homogeneous forest of I million hectares, producing 
20% of French timber, mainly maritime pine (Pinus 
pinaster). The test area encompasses several thousand 
hectares that comprise several hundred large forest 
stands (mean area of 20 ha), are rectangular in shape, 
and are delimited by fire protection tracks or large 
access tracks. Characteristics (i.e., row spacing and 
width, tree density, dbh, canopy depth, understory vege- 
tation, etc.) of the stands of maritime pine are well 
documented (Gastellu-Etchegorry et al., 1995). 

Measurements in the field, at the time of the air- 
borne acquisitions, of pine parcels optical and structural 
characteristics allowed us to obtain realistic models 
of a few parcels. Figures 9a-h show DART simulated 
reflectance images in the visible domain of a 52-year-old 
pine stand of the Landes forest, France. All simulations 
are with a direct sun illumination (0,= 143°~0,= 135 °) 
except simulation of Figure 9c, which is with atmo- 
sphere irradiance only. Major characteristics of the 
scene are listed below: 

• Crowns: ellipsoidal shape, LAI = 3, spherical 
LAD, width=6 ± 1 m, pdfzd=O.05, ~O,=0, 
crown height = 12 + 1 m, tree height = 20 + 
3m.  

• Trunks: density = 164 trees / ha, diameter = 
40 + 5 cm, ptrunk = 0.06. 

• Grass: LAI = 1.5, spherical LAD, Pd = zd = 0.08. 
• Soil: fiat. Pd = 0.06. 

A nadir image (0o= 0 °) is shown in Figure 9a. The 
absence of atmosphere radiation ensures that shadows 
of tree trunks and tree canopies appear clearly. These 
shadows are orientated along the illumination azimuth 
angle, that is, 135 °. The low LAI of the tree canopy 
explains why the superposition of shadows gives rise to 
shadows with different gray tone levels. This explains 
also why canopies are more or less bright, depending on 
the illumination conditions and optical characteristics of 
the background objects along the viewing direction. 
Parts of crowns that are directly illuminated are brighter 
due to larger reflectances; that is, 0.025 instead of 0.007. 
The brighter tone of ground surface indicates a larger 
reflectance value (0.028). Figure 9b is associated with 
the (0°= 16°; ~ =  180 °) viewing direction. Then, the 
base of the trunks can be seen. We can note that, 
compared to Figure 9a, the shadows of trunks and 
crowns do not appear at the same positions. This change 
with the viewing direction is simply explained by the 
fact that the ground surface is much below the upper 
level oft_he scene. Moreover, the mean scene reflectance 

increased by 22% (Table 2). This is essentially due to 
the combination of a decrease of the shadow surface 
and to a lesser extent to a 10% increase of grass reflec- 
tance with larger viewing zenith angles. Thus, the can- 
opy structure explains that the scene reflectance in- 
creases more with the zenith viewing angle that the 
reflectance of an homogeneous layer such as the un- 
derstory. Figure 9c is associated with the same viewing 
direction as Figure 9b, but without direct sun illumina- 
tion, that is, SKYL -- 1. Thus shadows do not appear. In 
fact, low contrast shadows are observed with simulations 
conducted with incident anisotropic atmosphere radiation. 

Figure 9d shows a simulated directional image with 
a (0v = 58°;(0~ = 0") viewing direction. The larger viewing 
zenith angle explains the larger proportion of apparent 
crowns and the smaller apparent surface of shadows and 
illuminated ground. The combination of these variations 
explains a small 3% decrease of the scene reflectance 
from 0~=16 ° to 0~=58 ° compared to the associated 
7% increase of the mean reflectance of the understory. 
Once more, the structure of the forest cover is responsi- 
ble of this anisotropic and irregular behavior of the 
scene BRDF. Undoubtedly the understory displays a 
more consistent directional behavior: Its reflectance 
increases steadily from 0.028 to 0.033 with viewing 
zenith angles from 0 ° to 58*. This effect is even ampli- 
fied with vertical sun illumination (simulations not 
shown here). Indeed,  compared to the (0s-- 143"; 
~0s = 135 °) illumination condition nadir scene reflectance 
is much larger (i.e, 0.22 instead of 0.013) due to the 
absence of shadows, whereas it is about the same (i.e., 
0.015) with the 58 ° zenith viewing angle. 

Figure 9e shows a simulated directional image with 
a (0~--37°; (0r--45 °) viewing direction. Shadows of 
trunks are oriented along the azimuthal illumination 
direction (i.e., 135°). They are perpendicular to the 
trunk axes, which are oriented along the azimuthal 
viewing direction. The small percentage of illuminated 
ground surface, the nonnegligible shadow extent, and 
the relatively small reflectance value of crowns explain 
the low value (i.e., 0.0124) of the scene reflectance. 
Figure 9g represents a directional image in the so-called 
hot spot configuration (i.e., 0o=370; ~=3150) .  The 
absence of shadow is clearly verified whereas grass and 
crowns have their maximum reflectance values, 0.044 
and 0.024, respectively. These two effects explain that 
the scene has its larger reflectance value in that viewing 
configuration. This is more or less twice the nadir scene 
reflectance, that is, 0.029 instead of 0.013. This configu- 
ration is undoubtedly potentially important for studying 
canopy structure because the scene reflectance value is 
strongly dependent  on the size, shape, and density 
of the tree cover. This point is of special importance 
with the advent of directional satellite sensors such as 
POLDER (Deschamps et al., 1994). 

The 2-D images (Figs. 9b, 9c, 9e, and 9g) of the 
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Table 2. Mean Illuminated Grass, Illuminated Crown, and Scene Reflectance Values. 

0~--- 0* 0v= 16", (oo=0 ° 0~=37 °, ~0o = 45 ° 0v = 37", ~0~ = 315" 00=58 °, ~0~=0 ° 

Grass 0.028 (17%) 0.031 (17%) 0.029 (6%) 0.044 (28%) 0.033 (5%) 
Crown 0.015 (46%) 0.017 (61%) 0.014 (74%) 0.024 (69%) 0.017 (80%) 
Scene 0.013 0.0158 0.0124 0.029 0.0153 

° Ground cover of illuminated grass and illuminated crowns are shown between brackets. 

reflectance factors R(~o) of the upper cells of the scene 
are not actual simulations of images that a sensor above 
the canopy would acquire with an (fly) viewing direc- 
tion. Indeed simulations of remote sensing acquisitions 
correspond to the projection of the upper cells reflec- 
tance factors R(fl~) onto a plane perpendicular to the 
viewing direction (t~). For example, geometrically cor- 
rected simulations of Figures 9f and 9h are the projec- 
tions of images of Figures 9e and 9g. Rectangular scenes 
are transformed into lozenges the size of which depends 
on the viewing direction. It should be noted that the 
dimensions of the images of Figures 9d, 9f, and 9h were 
vertically enlarged in order to fit with the other images. 

Preliminary analyses of the remotely acquired image 
at hand showed that from a statistical point of view the 
image simulated with clear sky conditions (Fig. 9a) 
compares very well with this remote sensing image; that 
is, it presents similar radiometric and textural informa- 
tion characteristics. This clearly stresses the potential 
of the DART model for studying vegetation with remote 
sensing information. 

CONCLUSION AND PERSPECTIVE 

The DART mode] was developed in order to simulate 
radiative transfer, and consequently BRDF, in heteroge- 
neous 3-D scenes, with two complementary objectives 
in mind: 1) to investigate and better model the potential 
information in remote sensing data about biophysical 
and biochemical characteristics of vegetation covers, 
and 2) to develop a model that could provide useful 
information for further vegetation functioning studies. 

This model can be used as an efficient tool for 
improving our understanding and interpretation of re- 
motely acquired data, for example, better determination 
of the albedo of earth surfaces. It can work with scenes 
that comprise different types of elements (leaves, grass, 
soil, water, and trunks), with any 3-D distribution. To- 
pography is simulated. Major physical mechanisms (e.g., 
polarization, heterogeneous atmospheric irradianee, and 
hot spot) are considered. The simulation of polarization 
is achieved without taking into account the polarization 
state of incident radiation. Only single scattering polar- 
ization mechanisms are modeled. Scalar summation of 
polarized radiation is performed under a drastic assump- 
tion: Single scattered radiation is assumed to have the 
same polarization direction. This is undoubtedly an 
oversimplifying assumption which is used only in order 

to give a rough estimate of the polarization degree 
of scattered radiation. The number and orientation of 
discrete directions and the space discretizing scheme 
are selected by the operator. Cells can have different 
dimensions along the Ox, Oy, and Oz axes. This possibil- 
ity, combined with an accurate simulation of within cell 
scattering, is aimed to simulations of large size scenes. 
The model is statistical when dealing with foliage within 
individual leaf and grass cells, but deterministic when 
dealing with the shape and spatial distribution of the 
objects that make up the scene. The deterministic ap- 
proach plays an essential and straightforward role for 
obtaining accurate simulations of radiative transfer in 
3-D heterogeneous scenes. An important advantage of 
the DART model is to distinguish radiation components 
that comprise and do not comprise leaf volume informa- 
tion. This is of special importance for studying the 
biochemistry of vegetation covers with remotely ac- 
quired data. Finally, the possibility of providing realistic 
simulations of remotely acquired directional spectral 
images is a major highlight of the DART model, for 
remote sensing based studies, especially when we want 
to determine from remote measurements the spatial 
distribution of biophysical and biochemical characteris- 
tics of vegetation covers. 

In a first series of tests the DART model was suc- 
cessfully validated against the SAIL model, in the case 
of homogeneous covers with spherical LAD. Different 
configurations (sun and viewing directions, canopy opti- 
cal and structural properties, and dimensions of the 
scene) were tested. Encouraging results were also ob- 
tained with other series of tests that were conducted 
with heterogeneous covers. Naturally, these preliminary 
tests should be pursued for a full validation of the DART 
model. In this context, two complementary approaches 
are being implemented. First, it will be conducted analy- 
ses of model sensitivity to the input parameters (optical, 
structural, and biological). Second, forward model calcu- 
lations will be compared with 1) laboratory and field 
BRDF measurements of natural and artificial targets, 
such as directional PARABOLA data (Deering et al., 
1994) and 2) directional and polarization airborne data 
acquired by the POLDER instrument (Deschamps et 
al., 1994) in the frame of the BOREAS project (Sellers 
et al., 1993). 

A major objective of remote sensing studies is to 
obtain quantitative information on the spatial and tem- 
poral distribution of biophysical and biochemical charac- 
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Figure 9. DART simulated directional images in the visible domain of a 52-years-old pine stand: a): 0~ = 0 °, b) and c) 
0o -- 16" and to~ --- 0", d): 0o = 58 ° and ¢Pv -- 0 °, e) and 0: 0~ = 37 ° and ~o~ = 45 °, g) and h) 0~ = 37 ° and ~0~ = 315 °, d), f) and h) 
are geometrically corrected simulations. Sun direction is (0, = 143°;¢, = 135 °) except for c) where SK'YL = 1. A 100 x 100 x 
50 cell matrix was used with 120 discrete directions. Canopy characteristics are mentioned in the text. 

teristics of vegetation. These characteristics are critical 
inputs to ecological models that describe the interaction 
between the land surface and climate, energy balance, 
and  h y d r o l o g i c  and  b i o c h e m i c a l  cyc l e s  (Wu and  
Stralher, 1994). In this context, we intend to use the 
DART model to investigate the capability of remote 
sensing, first with forward simulations applied to large 
areas and second with inversion techniques. Naturally, 
realistic simulations of the BRDF of large heterogeneous 

areas require important simplifying hypotheses. For ex- 
ample, the number of individual cells must be necessar- 
ily limited in order to limit computational expenses. 
Thus, with large areas, although the number  of cells is 
kept to an acceptable value, the representation of the 
optical properties of the individual cells may become 
more and more complex to compute and to handle. In 
fact, the DART model was designed to overcome this 
situation in a simple manner. The first step involves the 
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Figure 9. (continued) 

use of a find grid mesh scene with the computation of 
the so-called macroscopic optical characteristics, that 
is,- essentially the scattering phase function and the 
directional transmission function, of primitive 3-D ele- 
ments such as tree crowns. The latter are described by 
sets of contiguous cells, possibly with different optical 
and structural characteristics. Then, in a second step, 
these macroscopic characteristics are used as input pa- 
rameters associated with individual cells of the scene 
that is simulated with a large grid mesh. This approach 
allows us to deal with large scenes. It will be presented 

in a forthcoming artide. It provides a physical back- 
ground for investigating the so-called problem of spa- 
tialization of information that is typically met in the 
frame of remote sensing studies conducted with sensors 
that operate with different ground resolutions. 

The inversion of reflectance models with remote 
sensing data requires both sound atmospheric correc- 
tions and the use of a necessarily limited set of input 
parameters, that is, unknowns that describe the scene. 
In the case of the DART model, the number of input 
parameters can be greatly reduced through simple ap- 
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proximations. For example, the DART model can be 
operated with a scene that is simulated with a limited 
set of input parameters such as "tree height, ground 
cover, LAI, LAD, Pa,le~, ra.l~, atmospheric irradiance, 
sun irradiance, and Pgrou~d," with a random spatial distri- 
bution of vegetation elements (Pinel et al., 1995). In 
this context, we plan to test ordinary inversion ap- 
proaches, that is, optimum techniques to invert direc- 
tional data through minimizing a merit function con- 
sisting of the sum of the squares of the residuals and a 
penal ty function. To date, according to Liang and 
Stralher (1993), the most successful direct search algo- 
rithm is the method of Powell (1964), especially with 
the modifications suggested by Zangwill (1967) and 
Brent (1973), because it does not require computation of 
the derivatives of the merit function. Another inversion 
approach will be also investigated by the authors: fitting 
of simulations, conducted while varying a limited set of 
input parameters, with invertible mathematical expres- 
sions such as the statistical BRDF expressions of Liang 
and Stralher (1993). 

In addition to the above-mentioned validations and 
investigations, we plan also to use the DART model 
for conducting research works in the two following 
domains: 

• Biochemical investigations: Determination 
of the percentage of information specific to leaf 
interior in remote sensing acquisitions. This is 
possible because the DART model uses differ- 
ent transfer functions for leaf volume and sur- 
face scattering mechanisms. These functions 
may be computed by the model or simply used 
as input parameters, without any limiting hy- 
pothesis concerning their rotational invariance. 
The distinction between foliar and nonfoliar in- 
formation is essential for assessing the actual po- 
tential of remote sensing for studying the chem- 
istry (e.g, chlorophyll and nitrogen content) of 
vegetation (Gastellu-Etchegorry et al., 1995) 
from space. For example, direct DART simula- 
tions allow us to access to which extent the can- 
opy geometry confounds extraction of foliar in- 
formation. 

• Physiological investigations: Vegetation function- 
ing can be studied through the coupling of the 
DART model with leaf physiological models 
such as the three-parameter model of Johnson 
and Thornley (1984) or the semiempirical mech- 
anistic model of leaf photosynthesis and stoma- 
tal conductance of Collatz et al. (1991). Thanks 
to the determination of the 3-D distribution of 
photosynthetically active radiation (PAR) ab- 
sorbed by vegetation, this approach leads to an 
assessment of the photosynthetic efficiency of 
vegetation covers. 
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APPENDIX: MULTIPLE SCATTERING WITHIN 
LEAF CELLS 

Simulation of multiple scattering within leaf cells 
does not take into account polarization mechanisms. 
This is conducted with the computation of the intercep- 
tion (Fig. 4) of 3¢i'~(A/i,~--'f~o) along the path As~(~): 

~l.int(Zli,~'~s"~'~v) = [~al(A/,,f~,--}f~ d - ~a,(A/,,t28--'f&)] 
+ [ ~ ( a t , , ~ - + t ~ o )  - W , l ( a l , , ~ , - + ~ o ) ] .  

W e  have: 

~nnf, l,l,t( Ali,O,"~Ov) = nj~n,(Os)" sl(j, Os,~v) " ~l,~,t( A l i , ~ s " ~ ) .  

Integration over all exit directions (f~) leads to total 
intercepted energy: 

N 

~l,int( Ali ,~s) -~. ~x,int(A/,,f~s--}~) 
vff i l  

= [~1(1-T(Ast,~)) 'T(j ,"~,"~)]" Wi~t(Ali,~,). 

In turn, the energy intercepted ~l,int(mlt,~'~s) leads to 
scattering mechanisms of order larger than 1, which 
cannot be modeled exactly. Thus, in a first approxima- 
tion, radiation that has undergone more than one scat- 
tering within a cell is assumed to be nearly isotropic. 
This allows One to define for Cells of type  j m e a n  single 
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scattering albedos coo1 and to~ associated with diffuse 
and specular scattering, respectively: 

11•  I /a(j,~f,,,--O~) . d~o. df~ , 
Wdj ~-- 4-'-~" 4~ 4 

1 
= - - .  , ~ , , a o ) .  a a , ,  

4n v=l sffil 

0% - 4n 

= - - .  , O , , ~  • A O , .  
4n v = l  s=l 

In the case of foliar elements with lambertian and Fres- 
nel scattering phase functions, 

O.)dj~" Pdj + "~dj 

_ 1 . N . 2 . 

a n d  m~-- 7- ~K~(x,q/y,) Rs(n~,q/[,) Af~. 
/47[ s = l  

Thus, total mean single scattering albedo of cell i of 
type j is defined by we = O)d¢ + CO~. 

It results that total multiple-scattering source vector 
that escapes cell i is 

W~(A/,,f~,) = ;~l,in,(A/,,a,) 

• [ ~ o ~ . ( r , ) + ~ o / ( r i ) . [ ~ o ~ - ~ o ~ . < T , ) l + ~ o ~ . ( r , )  

• [,o~- ,o~. (r , ) ]  ~ + . . .  } 

o [1 - 

where <T~) is the mean transmission coefficient within 
cell i. This is assumed to be equal to the transmission 
coefficient from the center of cell i. With Am,{~) being 

Similarly, the multiply specularly scattered source vec- 
tor that escapes cell i is 

w..(al,,n.) = ~ , . , ( a / , , a , )  

+ o9,~. ( r , )  • [~o,~- a,~. (T , ) ]  ~ + . . .  ] 

w~" (T,> 
W,M(A/,,Os) = 1 - o9~-[1 - (T,)]')~,i,,(Al,,O,), 

Thus, multiple-scattering radiation associated with at 
least one leaf volume scattering is 

w~(al,,f~,) 
__.[ ,o~. < r , )  

- ,o~. [1 - (T,>] 
1 c o , j ' ~ !  T l';rq[i"t(Al~'O') 

- ~ o ~ . [  - ( ,)]J " 

Multiplicative terms <r,) 1-~r,-<r,)] are always less than 1, 

except if < T) = 1 (i.e., empty cell), or if wj = 1 (i.e., no 
absorption loss)• Thus we have 

W~( AIi,~s) < o)j" J~tf~l,int( Ali,~'~s) and 
W,~,(A/,,O,) < (.Osj'~cf~Lint(Ali,Os). 

Coefficients (Toj), codj, and co~j depend only on the type 
of leaf cell, that is, its leaf angle distribution and optical 
properties. They are computed in the first step of the 
DART simulation for each type of leaf cell, in order to 
minimize repetitive computations• 

The multiple-scattering source vector W~,(AI~, 
O,--}Oo) is assumed to be proportional to WM(A~,~,), to 
the transmittance along As~(O~) and to the sum of the 
differential scattering coefficients from any direction to 
the O, direction. 

WM(A/,,f~s~,) = W,(A/~,f~,) • 
exp[ -  G(j, Ov).uf(i).As,(~,)].I4,I21~,. ~t]" gf(J'~/)'f(j,~/,~F-*O~)- A f l ~ . 2 n  d~f" dO, 

J4 exp[ -  G(j,O~)"ut(i)'As,(~'lv)] " I4rtI2rzl~'~s " ~ l  " ~ ' f O ,  Of,'(')'s°'('~v)" d'C~f" dos" d~'~v 

the propagation length along direction (O) from the 
center of cell i, we have 

(Ti) = 1 .  I e- G(J'fJ)'uJ (i)'Ami(fl)" dfl 
4n J4n 

1 " 
= - - "  Z [T(j, no)]"~ ')~'<°°" a a ~ .  

4n v=l 
We can note that if the terms T(j ,~) are not too much 
anisotropic or if the cell leaf area density is not much 
larger than 1, then we have 

< T~) -~ ( Toj) ~0 with 

1 ,, F 1Ami(n) 

<r ; , j )  =-:-" ZITO,~o)l .aav. 
a n  voaL J 

Using the relation G(j,~,)= -In[T(j,O,)] the discret- 
ized form of WM(Ali,Os--*Ov) is 

W~(AI,,~) 

W~,(A/,,~,'-*t~) = 

A T( s,,~)'l ~TO,.~,~)'ln[TO,.,)]. At'l@ Af~ 

~lT( Asi,~) "I ~. lT(j,~,f~) " ln[T(j,t~)] " At~, 1" Af~" 

The terms TG(j,O~) = ~ T(j,O,,t'Io)-In[T(j,~,]. Ate, are 
sffil 

precomputed. 
With lambertian leaves without specular compo- 

nents, we have TG(j, Ov) = COd" G(j,O~) -- - oJa" ln[T(j,f~v)]. 
Thus, 
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w~(a~,a,-*ao) ffi w~(a~,o,) 

• exp[ - G(j,O~)'ul(i)" As(a~)] • G(j,ao) 'AO~) 
N 

E exp[ - G(j,t)o)'~i)As,(f~o)]'G(j,flo)" Afro 
v - I  

= W,(A~,a,). r(a~,,t~).ln[r(j,ao)].Af~ 
E r(As,,a~).ln[r(j, flo)]-ac~' 

v - I  

Similar considerations lead to the computaton of the 
expressions of W~,(A/i~oflv)  source vectors. In order 
to avoid using a computational expensive numerical 
scheme for higher-order diffuse reflection, we assume 
that 

v~ (TAs,,f~.)" ( ~  TO, fJ.,f~o)'ln[TO, f~.)]" Af~,)" Afg 

= ( r , ) .  ~ ~T( j , t~ ,~) . ln [T( j ,O, ) ] .At~ , .aO~.  
v f f i l s f f i l  

So, we have 

W~( AI,.~.'-}f~) = T( A( T:~) " s.U,~) " W~( AI,,t~s ) 

with 
N 

T.(j.f~Q~) • ln[T(j.~,)] • A~.- AD~ 

.~, ~,~ ,(j ,~,,",) "ln[T(j,t)~)] • 

The mean coefficients s,~(j,f~) depend only on the scat- 
tering direction and on the cell type; they are precom- 
puted values. 

It results that the nonfoliar multiple-scattering source 
vectors are approximated by 

W,/~,(A/,,f~,~f~) = nj~,(i'),)" 09__£. T(As,,~) 
(r,) 

• s,(/,~o) • w,~(a/, ,o,) .  

This equation satisfies the conservation of nonfoliar en- 
ergy for each incident source vector W(0,~,), that is, 

N 

E W,f~(Al,,t~,--'f&) = n~,(t~) 
Vf f i l  

• ~ .  w,,(al,,O,), if T(as,,~o) = (T,).  
a)j 

Otherwise, this condition may not be satisfied. Thus, 
this equation is a first-order approximation only. How- 
ever, the large number of incident vector sources on 
any cell leads to a large number of different middle 
points (Ms), which ensures that this condition tends to 
be verified when we consider all the incident source 
vectors. 

Therefore, the multiple-scattering source vector that 
escapes cell i along (O~) is 

[W~,( Al,,f~s--'t)~), Wny, M( A~.,f~,-"~v),O], 

where 


