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A sequential model is developed to disaggregate microwave-derived soil moisture from 40 km to 4 km 27 resolution using MODIS (Moderate Imaging Spectroradiometer) data and subsequently from 4 km to 500 m 28 resolution using ASTER (Advanced Scanning Thermal Emission and Reflection Radiometer) data. The 1 km 29 resolution airborne data collected during the three-week National Airborne Field Experiment 2006 30 (NAFE'06) are used to simulate the 40 km pixels, and a thermal-based disaggregation algorithm is applied 31 using 1 km resolution MODIS and 100 m resolution ASTER data. The downscaled soil moisture data are 32 subsequently evaluated using a combination of airborne and in situ soil moisture measurements. A key step 33 in the procedure is to identify an optimal downscaling resolution in terms of disaggregation accuracy and 34 sub-pixel soil moisture variability. Very consistent optimal downscaling resolutions are obtained for MODIS 35 aboard Terra, MODIS aboard Aqua and ASTER, which are 4 to 5 times the thermal sensor resolution. The root 36 mean square error between the 500 m resolution sequentially disaggregated and ground-measured soil 37 moisture is 0.

Introduction

Predicting the spatio-temporal variability of hydrological processes requires models that operate at different scales: evapotranspiration and infiltration at paddock-scale, run-off and drainage at catchment-scale, and atmospheric circulation at meso-scale. Due to the complexity of interacting processes [START_REF] Chehbouni | An integrated modelling and remote sensing approach for hydrological study in arid and semi-arid regions: The SUDMED Programme[END_REF], the reliability of model predictions is intimately related to the ability to represent dominant processes in space and time using observations. Remote sensing has shown promise for this application due to its multi-resolution and multi-spectral capabilities [START_REF] Choudhury | Synergism of multispectral satellite observations for estimating regional land surface evaporation[END_REF].

Among the variables observable from space, soil moisture is one of the most crucial parameters that control hydrometeorological processes from paddock-to meso-scale. However, current and near-future spaceborne soil moisture products have a spatial resolution of several tens of kilometers [START_REF] Crow | Upscaling of field-scale soil moisture mea ^surements using distributed land surface modeling[END_REF] -about ~40 km resolution for the forthcoming Soil Moisture and Ocean Salinity (SMOS, [START_REF] Kerr | Soil moisture retrieval from space: The soil moisture and ocean salinity (SMOS) mission[END_REF] mission-, which make their application to hydrological and agricultural models challenging.
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86 brightness temperature fields prior to soil moisture retrieval.

87

Similarly, Merlin et al. (2008a) developed a deterministic downscaling 88 algorithm that combines 1 km resolution MODIS (MODerate resolu-89 tion Imaging Spectroradiometer) data and a semi-empirical soil 90 evaporative efficiency model. The main advantage of those 91 approaches [START_REF] Bindlish | Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR[END_REF]Merlin et al., 2008a) over the 92 purely empirical ones based on log-log plots (e.g. Kim & Barros,93 2002a) is that some physical considerations are used to build a 94 relationship between soil moisture and an ancillary observable; radar 95 backscatter in [START_REF] Bindlish | Subpixel variability of remotely sensed soil moisture: An inter-comparison study of SAR and ESTAR[END_REF] and soil evaporative 96 efficiency in Merlin et al. (2008a).

97

In Merlin et al. (2008a), the disaggregation scale was fixed to 10 98 times the spatial resolution of MODIS thermal data to reduce the 99 random uncertainties in disaggregated soil moisture. The authors 100 observed that the sub-pixel variability of disaggregated soil moisture 101 was significantly correlated with the observed fine-scale soil moisture 102 variability, suggesting that the downscaling algorithm could be 103 applied to spatial resolutions finer than 10 km. Nevertheless, that 104 study did not apply the downscaling approach at multiple resolutions.

105

As a follow-up of Merlin et al. (2008a), this paper seeks to identify 106 optimal downscaling resolutions in terms of disaggregation accuracy In situ measurements of 0-5 cm soil moisture were made using 145 HDAS (Hydraprobe Data Acquisition System) on 16 November over three 9 km 2 sampling areas (denoted as Y2, Y9 and Y12) included in the 40 km by 60 km Yanco area (Merlin et al., 2008b). Within each 9km 2 sampling area, an average of three successive measurements was made ~1 m apart at each node of a 250 m resolution grid.

PLMR-derived soil moisture

The near-surface soil moisture was retrieved from the 1 km resolution brightness temperature collected by the Polarimetric L-band

Multibeam Radiometer (PLMR) on eleven days over the 40 km by 60 km a r e a :3 1O c t o b e r ,2 ,3 ,4 ,5 ,7 ,9 ,1 3 ,1 4 ,1 6 ,1 8N o v e m b e r [START_REF] Merlin | Assessing 726 the SMOS soil moisture retrieval parameters with high-resolution NAFE'06 data[END_REF]. The surface temperature data used for the PLMR soil moisture inversion came from MODIS data on clear sky days, and from in situ measurements on overcast days. The root mean square difference between PLMR-derived and ground-measured soil moisture at 1 km resolution was estimated to 0. ^03 vol./vol. in non-irrigated areas. A bias of about-0.09 ^vol./vol. was obtained over pixels including some irrigation.

This bias was explained by a difference in sensing depth between the L-band radiometer (~0-3cm)andinsitumeasurements(0-5.7 cm), associated with a strong vertical gradient in the top 0-6cm of the soil. Moreover on 3 November, which followed a rainfall event, the PLMR-derived soil moisture seemed to be affected by the presence of water intercepted by vegetation (Merlin et al., 2008b,a). In this study, data from this date were discarded.

MODIS data

The MODIS data used in this paper are the Version 5 MODIS/Terra (10:30 am) and MODIS/Aqua (1:30 pm) 1 km resolution daily surface temperature, and MODIS/Terra 250 m resolution 16-day Normalized Difference Vegetation Index (NDVI). The 16-day NDVI product was cloud free. In between the first (31 October) and last day (18 November) of 1 km resolution PLMR flights over the Yanco area, sixteen MODIS Version 5 surface temperature images with 0% cloud cover were acquired including nine aboard Terra (3,5,7,8,9,10,11,17,18 November) and seven aboard Aqua (31 October,3,4,6,8,9,17 November). Note that more cloud free images were obtained than from Version 4 surface temperature (Merlin et al., 2008a). The overestimation of cloud cover in Version 4 products and the subsequent increase of coverage in Version 5 land surface temperature products are discussed in [START_REF] Wan | New refinements and validation of the MODIS land-surface temperature/ 737 emissivity products[END_REF].MODIS data were re-sampled on the same 1 km resolution grid as PLMRderived soil moisture, and MODIS surface temperature was shifted of (+1 km E; -0.5 km N) and (+2 km E; 0 N) for Terra and Aqua respectively to maximize the spatial correlation with 1 km resolution MODIS NDVI, which was used as a reference for the co-registration.

ASTER data

The ASTER/Terra overpass of the NAFE'06 site was on 16 November 2006 at 10:30 am. Radiometric surface temperature was estimated from 90 m resolution L1B thermal radiances using the emissivity normalization method develop ^ed by [START_REF] Gillespie | Lithologic mapping of silicate rocks using TIMS[END_REF] and [START_REF] Realmuto | Separating the effects of temperature and emissivity: Emissivity 729 spectrum normalization[END_REF] and implemented in ENVI (ENvironment for Visualizing Images, http://www.ittvis.com/envi/) image processing software.

Temperature was computed for each of the five thermal channels using a ^uniform emissivity set to 1, and the actual radiometric temperature was assumed to be equal to the highest computed temperature. Pre-processing of ASTER-derived radiometric temperature consisted of (i) registering the image with an accuracy better than 90 m from reference points (ii) extracting data over three 12 km by 12 km areas centered over the three 9 km 2 sampling areas, (iii) removing data that were visually identified as cloud or as cloud shade on the ground (note that the scene was cloud free over the three 9km 2 sampling areas Y2, Y9 and Y12)and (iv) re-sampling data at 100 m resolution. An important point is that ASTER-derived radiometric surface temperature was not corrected for atmospheric effects.
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The rationale is that only the spatial variability of surface temperature The trade-off between downscaling resolution and accuracy within a 217 disaggregation framework was already mentioned in a previous study 218 (Merlin et al., 2008a). However, Merlin et al. (2008a) did not apply the The approach adopted is to (i) aggregate reference (either PLMR- resolutions, the pixels including no ground measurement were discarded from the analysis and only pixels immediately over the ground measurement sites included. For simplicity, the different spatial resolutions will be denoted using the subscript n, varying from 1 (native resolution) to 12 (for instance, SM PLMR,4 refers to PLMRderived soil moisture aggregated at 4 km resolution and SM mHDAS,5 refers to HDAS-measured soil moisture aggregated at 500 m resolution).

Disaggregation method

The thermal-based disaggregation approach used in this paper is that developed in Merlin et al. (2008a). The equations below represent the case of disaggregation using MODIS data for SMOSresolution pixels simulated by aggregating PLMR-derived soil moisture. Note that all equations also apply for disaggregation using ASTER data.

The soil moisture SM 

with T MODIS,n being the soil temperature estimated using MODISderived NDVI and surface temperature, T MODIS,40 its average within the SMOS pixel, and T min,1 the minimum MODIS-derived soil temperature at 1 km resolution. Note that the minimum soil temperature was approximated to the minimum MODIS surface temperature. In [START_REF] Komatsu | Towards a robust phenomenological expression of evaporation 705 efficiency for unsaturated soil surfaces[END_REF], the param ^eter SM C was calibrated for three different soils as function of wind speed

SM C =S M C0 1+ γ r ah ð4Þ 
with SM C0 (vol./vol.) being a soil-dependent parameter (ranging from about 0.01 ^vol./vol. for sand to 0.04 ^vol./vol. for clay), and r ah (s m -1 ) the aerodynamic resistance over bare soil. Aerodynamic resistance can be estimated from wind speed measurements u (m s -1 ) at reference height Z (m) given the soil roughness z 0m (m)

r ah = 1 k 2 u ln Z z 0m 2 ð5Þ 
with k being the von Karman constant. The soil temperature in Eq. ( 3) is estimated as

T MODIS;n = T surf ;MODIS;n À f v;MODIS;n T v;n 1 À f v;MODIS;n ð6Þ 
with T surf,MODIS,n being the MODIS-derived surface temperature, T v,n the vegetation temperature, and f v,MODIS,n the fractional vegetation cover. In Merlin et al. (2008a), the vegetation temperature was approximated to derived soil moisture, and -SD n;1 the mean standard deviation of 1 km 320 resolution PLMR-derived soil moisture computed within each n 2 km 2 321 pixel. The n km resolution error is computed as

RMSE n;n = ½ 1 N =n 2 ∑ðSM MODIS;n À SM PLMR;n Þ 2 0:5 ð9Þ 
322 323 with N being the number of 1 km resolution pixels within the 40 km 324 by 60 km study area. The mean sub-pixel variability is computed as

- SD n;1 = 1 N = n 2 ∑SD n;1 ð10Þ 
325 326 = 1 N = n 2 ∑ 1 n 2 À 1 ∑ðSM PLMR;n À SM PLMR;1 Þ 2 0:5 ð11Þ 
327 328

329

The second criterion denoted C2 is the condition that the error 330 evaluated at the native resolution (n = 1) is minimum. In other words,

331

C2 is satisfied when the downscaling resolution makes the disag-332 gregation output the most accurate with respect to the reference soil 333 moisture data obtained at the thermal sensor native resolution. C2 can 334 be formulated as

RMSE n;1 = 1 N ∑ðSM MODIS;n À SM PLMR;1 Þ 2 0:5 is minimum ð12Þ 
335 336 with RMSE n,1 being the root mean square error evaluated at 1 km 337 resolution between the n km resolution disaggregated and 1 km 338 resolution PLMR-derived soil moisture.

339

The criteria C1 and C2 can be applied to the three farms Y2, Y9 and 340 Y12 by replacing in Eqs. ( 8) ^to (12) ^PLMR and MODIS by HDAS and 341 ASTER respectively.

Application to MODIS

The disaggregation algorithm of Eq. ( 2) is applied to each of the eight MODIS/Terra images (5,7,8,9,10,11,17 and 18 November) and to each of the six MODIS/Aqua images (31 October, 4, 6, 8, 9 and 17 November), with a downscaling resolution ranging from 1 to 12 km. However, the range of soil moisture values is also reduced and consequently the larger the resolution, the more limited the spatial representation of the actual soil moisture heterogeneity is.

As MODIS data were used for the PLMR soil moisture inversion, PLMR-derived and MODIS-disaggregated soil moisture are theoretically not fully independent on clear sky days. However, it is argued that the cross-correlation of errors in the PLMR soil moisture measurements and the disaggregated soil moisture fields is not responsible for the good results in Fig. 1. One simple reason is that MODIS temperature has a positive impact on PLMR soil moisture retrievals (increasing with MODIS temperature) and a negative impact on disaggregated soil moisture (decreasing with MODIS temperature). Consequently, the cross-correlation of errors in PLMRderived and MODIS-disaggregated soil moisture would actually make the results poorer. Aqua and Terra. The standard deviation is equal to 0 at 1 km resolution because only one PLMR measurement is available per downscaled pixel at 1 km resolution. Following criterion C1 in Eq. ( 8), an optimal downscaling resolution exists where the RMSE and spatial variability lines cross. Inspection of Fig. 2 shows that the mean optimal resolution is about 3.7 km for MODIS aboard Aqua and 4.2 km for MODIS aboard Terra. Although relatively similar for both sensors, the RMSE of disaggregated soil moisture are remarkably more spread about the mean for Terra than for Aqua. The more consistent disaggregation results using MODIS/Aqua compared to MODIS/Terra was already mentioned in (Merlin et al., 2008a) when applied to 10 km resolution. This is due to the stronger coupling between SEE and soil moisture at 1:30 pm than at 10:30 am. (evaluated at the thermal sensor native resolution) as a function n for Aqua and Terra data. The mean error is higher for Terra than for Aqua, which is consistent with previous results. For both Terra and Aqua, the mean error slightly decreases as spatial resolution increases from 1 to 5 km, and slightly increases for spatial resolutions greater than 5 km.

Following criterion C2, an optimal downscaling resolution is identified at about 5 km for both MODIS/Terra and MODIS/Aqua. Nevertheless, the minimum of RMSE n,1 is not very well defined since the dynamics of the mean value are smaller than the variability observed within the In summary, the application of criteria C1 and C2 to MODIS/PLMR data demonstrates that the optimal downscaling resolution in terms of disaggregation accuracy (using the NAFE'06 data set) is about 4 to 5 km. Also, criterion C1 is better defined than C2 since it smooths out the uncertainties associated with random errors in PLMR-derived soil moisture. Since rice crops were flooded during NAFE'06, no HDAS measurement was made. Consequently, the nearby ground measurements did not represent well the overall "wetness" (including both soil moisture and standing water) of the surface that the disaggregation algorithm actually represents.

When comparing Figs. 1 and4, one observes that the disaggregation approach is much more accurate when applied to MODIS data than when applied to ASTER data. In particular for n =8, the correlation coefficient is about 0.80 for MODIS and0.60 for ASTER.

The relatively poor results obtained using ASTER data can be interpreted as a consequence of the spatial variability of soil moisture at fine scale. As the typical crop size in the study area was about 100-300 m, soil moisture fields were much more heterogeneous at 100 m resolution than at 1 km and above. It is suggested that point-scale measurements aggregated at 100-1000 m resolution were generally more uncertain than 1 km resolution remotely-sensed PLMR-derived soil moisture. 
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Fig. 5 also plots the error RMSE n,1 evaluated at the ASTER native resolution (100 m) as a function of n. Although one observes a minimum of the error for Y12 at n = 7, no minimum is observed for the other farms (Y2 and Y9). Several hypotheses can be postulated to explain these constrasting results. First, when using ground measurements instead of airborne L-band data, reference soil moisture data are representative of the point-scale and may not be representative of the scales integrated to several hundreds of meters, especially over highly heterogeneous irrigated areas like in Y9. Second, the farm-scale variability in Y2 was about the same as the local-scale variability (uncertainty in a single HDAS measurement). Consequently, the disaggregation over that farm was not expected to improve the accuracy of soil moisture at fine scale.

Third, it was seen in the case of MODIS/PLMR that criterion C2 was not very stable from date to date, so no clear result can be expected from only one date with ASTER/HDAS. In summary, the application of criteria C1 and C2 to ASTER/HDAS data suggests that the optimal downscaling resolution in terms of disaggregation accuracy (using the NAFE'06 data set) is about 4 to 5 times the thermal sensor resolution. Criterion C1 is again found to be better defined than C2.

Sequential disaggregation

The general approach of the sequential disaggregation using multiresolution thermal sensors is presented in Fig. 6 

SM S i +1 =SM S i + ∂SM ∂SEE ΔSEE S i+1 ð13Þ 
484 485

with S i being the sensor of index i. In our case, S 0 , S 1 and S 2 486 corresponds to SMOS, MODIS and ASTER respectively. By using this 487 notation, Eqs. ( 2) and (3) become

SM S i +1 =SM S i +SM C × SMP S i+1 ð14Þ 
488 489

with

SMP S i+1 = T S i À T S i +1 T S i À T min ð15Þ 
490 491

From the above equations, one is able to identify the parameters that 492 do not vary with scale. In particular, the minimum soil temperature T min and the soil property SM C are assumed to be scale-invariant. An important point is that these assumptions might not be valid in the case of heterogeneous soil within the SMOS-scale pixel. In particular, Merlin et al. (2008a) demonstrated that estimating SM C at high resolution improved significantly the disaggregation accuracy. However, the scale-invariance of SM C was not tested in this paper since only one ASTER image was available whereas a time series would be required (Merlin et al., 2008a).

Application

Based on the results of the previous section, the intermediate resolution is set to four times the MODIS native resolution (4 km) and the target resolution to five times the ASTER native resolution (500 m). In practice, three data sets were derived by defining a 4 km resolution pixel centered on each of the three sampling areas (see black outlines in Fig. 6). This pixel was used to create over the SMOS-scale pixel a 4 km resolution grid, on which the 1 km resolution MODIS and PLMR data were aggregated. The sequential model of Eq. ( 14) was finally applied to each data set. were used to simulate coarse-scale pixels, and a thermal-based disaggregation algorithm was applied using 1 km resolution MODIS and 100 m resolution ASTER data. A key step in the procedure was to identify an optimal downscaling resolution in terms of disaggregation accuracy and sub-pixel soil moisture variability by using two criteria.

The first criterion C1 was to look for the spatial resolution such that the RMSE evaluated at the downscaling resolution be equal to the subpixel soil moisture variability, while the second criterion C2 was to look for the spatial resolution that minimized the RMSE evaluated at the thermal sensor native resolution (1 km for MODIS or 100 m for ASTER). Very consistent optimal downscaling resolutions were obtained for MODIS aboard Terra, MODIS aboard Aqua and ASTER, which were 4 to 5 times the thermal sensor resolution. Note that the operational application of thermal-based methods would require high-spatial-resolution thermal data acquired at hightemporal-resolution, typically 2-3 days. However, high-spatial-resolution (ASTER-like) thermal data are currently available on a monthly basis, which raises the issue of disaggregating low-spatial-resolution (MODIS-like) thermal data at high-temporal-resolution [START_REF] Agam | A vegetation index based technique for spatial sharpening of thermal imagery[END_REF].

Refinements of the sequential disaggregation method would include a physical calibration of the soil evaporative efficiency model, which is at present semi-empirical. Moreover, the disaggregation accuracy is affected by the non-linearity of that exponential function. Recent developments have accounted for the non-linearity of the models used in the disaggregation of remote sensing data with the projection technique [START_REF] Merlin | A downscaling method for 716 distributing surface soil moisture within a microwave pixel: Application to the 717 Monsoon'90 data[END_REF] or the Taylor series including derivative terms at orders superior to 1 citepmerlin08c. The applicability of those approaches and their stability still need to be confirmed at a range of spatial resolutions.

  107 and sub-pixel spatial variability, and demonstrate the utility of this 108 approach for sequential disaggregation of spaceborne surface soil 109 moisture observations using multi-resolution thermal sensors. The 110 development of a sequential approach is motivated by (i) the fact that 111 high-resolution thermal data such as ASTER (Advanced Scanning 112 Thermal Emission and Reflection Radiometer) data generally have a 113 swath width smaller than the SMOS pixel and (ii) the hypothesis that 114 the use of an intermediate resolution provides a better linearized 115 approximation to a non linear function (e.g. soil evaporative efficiency 116 model). One objective of the paper is to assess this hypothesis using 117 data collected during the three-week National Airborne Field Experi-118 ment 2006 (NAFE'06). Airborne L-band data are used to simulate the 119 40 km resolution pixels expected from SMOS, and a thermal-based 120 disaggregation algorithm is applied using MODIS and ASTER data. 121 While the first part of the paper focuses on estimating optimal 122 downscaling resolutions with MODIS and ASTER data, the second part 123 takes advantage of these results to develop a sequential model for 124 disaggregating ~40 km resolution microwave-derived soil moisture 06 was conducted from 31 October to 20 November 2006 128 over a 40km by 60km area near Y anco (-35°N; 146°E) in 129 southeastern Australia. While a full description of the data set is 130 given in Merlin et al. (2008b), a brief overview of the most pertinent 131 details are provided here. The data used in this study are comprised of 132 wind speed measurements, L-band derived soil moisture and MODIS 133 data collected over the Yanco area on twelve days, and ground 134 measurements of 0-5 cm soil moisture and ASTER data collected over 135 three 9 km 2 areas included in the Yanco area on one day (16 136 November) of the experiment.

  monitored at 2 m by a meteorological station 139 (located in the southwestern corner of the Yanco area, see Fig. 1 of 140 Merlin et al. (2008b)) continuously during NAFE'06 with a time step 141 of ^20 min ^. The time series is illustrated in Fig. 1 of Merlin et al. 142 (2008a).

  143 2.2. Ground soil moisture 144

219

  downscaling approach at multiple resolutions. One objective of this 220 paper is to identify the optimal downscaling resolution(s) in terms of 221 disaggregation accuracy when using data from three sensors: MODIS 222 aboard Terra, MODIS aboard Aqua and ASTER.223 3.1. Approach 224

  225 derived or HDAS-measured) soil moisture to the maximum spatial 226 extent (40 km by 60 km for PLMR and 3 km by 3 km for HDAS), (ii) apply 227 the disaggregation method at a range of resolutions, and (iii) compare 228 the disaggregated soil moisture to the reference data for each down-229 scaling resolution. The disaggregation of soil moisture thus requires 230 simultaneous observations of surface temperature and NDVI. Moreover, 231 v a l i d a t i o nr e q u i r e ss o i lm o i s t u r eo b s e r v a t i o n sa tac o m m o ns p a t i a l 232 resolution. Among the twelve dates with at least one (either Terra or 233 Aqua) MODIS image with 0% cloud cover, seven are concurrent with 234 PLMR 1 km resolution flights. For the other five dates (6, 8, 10, 11 and 17 235 November), the PLMR-derived soil moisture data of the day before are 236 used. This extrapolation is valid because no rainfall occurred between the 237 PLMR flight and MODIS overpass on each date. Data are listed in Table 1. 238 Data derived from MODIS, PLMR, ASTER and HDAS are then 239 aggregated to a range of spatial resolutions. MODIS surface tempera-240 ture, MODIS NDVI and PLMR soil moisture are aggregated successively 241 from 1 to 12 km in 1 km increments over the 40 km by 60 km area. 242 Similarly, ASTER surface temperature, ASTER NDVI and HDAS soil 243 moisture are aggregated successively from 100 to 1200 m in 100 m 244 increments over the three 9 km 2 sampling areas. One should note that 245 the spacing between ground measurements (250 m) was smaller than 246 the two first aggregation resolutions (100 and 200 m). For these two 247

Fig. 1

 1 Fig. 1 plots the n km resolution disaggregated soil moisture versus the n km resolution PLMR-derived soil moisture for n =1 ,2,4,8and12.It is apparent that the noise on disaggregated soil moisture is successively reduced by increasing the downscaling resolution.

Fig. 2

 2 Fig. 2 plots the RMSE n,n evaluated at the downscaling resolution as a function of n for each MODIS overpass date, separated according to Aqua and Terra data. The average for all dates is also plotted for each platform. The mean error decreases from about 0.045 ^vol./vol. at 1 km resolution to about 0.015 ^vol./vol. at 12 km resolution for both Aqua and Terra. On the same graph is plotted the mean sub-pixel variability -SD n;1 for all dates. The mean sub-pixel variability increases from 0 to about 0.04 ^vol./vol. at 1 and 12 km resolution respectively for both

Fig. 3

 3 Fig. 3 plots the average and standard deviation of the error RMSE n,1

U

  N C O R R E C T E D P R O O F 397 data set (shown on Fig. 3 by the standard deviation σ). One limitation 398 of the criterion C2 is that it includes both the uncertainty in the 399 disaggregation output and the uncertainty in PLMR-derived soil 400 moisture at the observation scale, so that the RMSE n,1 can never be 401 lower than the measurement error at the native resolution.

Fig. 1 .

 1 Fig. 1. Scatterplots of the MODIS-disaggregated versus PLMR-derived soil moisture using all twelve days of data for different downscaling resolutions: 1 km, 2 km, 4 km, 8 km and 12 km. The correlation coefficient R2 is indicated on each plot.

Fig. 2 .

 2 Fig. 2. Estimating an optimal downscaling resolution by comparing the root mean square error (RMSE) and the sub-pixel soil moisture variability at the disaggregation scale. The mean (thick line) RMSE is equal to the mean sub-pixel variability at about 4 km for both MODIS/Aqua and MODIS/Terra. The other lines represent the different dates.

Fig. 3 .

 3 Fig.3. Root mean square error (RMSE) evaluated at 1 km resolution for downscaling resolutions increasing from 1 to 12 km. Although the standard deviation (σ) between dates is high, the RMSE is minimum at 5 km for both MODIS aboard Aqua and MODIS aboard Terra.

Fig. 5

 5 Fig. 5 plots the RMSE n,n evaluated at the downscaling resolution as a function of n. It is apparent that the error is approximately constant at 100 m and 200 m resolution, which is consistent with the fact that the spacing (250 m)of HDAS measurements was larger than the thermal sensor native resolution so that the spatial variability of HDAS measurements is not represented below 300 m. For all farms, the error is maximum at 200 m, and is minimum at 1200 m resolution with a value of about 0.02 ^vol./vol. On the same graph is plotted the mean sub-pixel variability -SD n;1 for each farm. The mean variability is about 0.02 vol./vol. at n = 1 and is generally maximum at n = 12. Note that

Fig. 4 .

 4 Fig. 4. Scatterplots of the ASTER-disaggregated versus ground-measured soil moisture on 16 November for different downscaling resolutions: 100 m, 200 m, 400 m, 500 m, 800 m and 1200 m. Highlighted pluses correspond to pixels containing standing water (flooded rice fields). The correlation coefficient R2 is indicated on each plot.

Fig. 5 .

 5 Fig. 5. Root mean square error (RMSE) evaluated at the downscaling resolution (top) and at 100 m resolution (bottom) for downscaling resolutions increasing from 100 to 1200 m.

  .The~40kmresolution SMOS-scale soil moisture generated from PLMR data on 16 November is 477 disaggregated at an intermediate resolution (4 km in Fig. 6)u s i n g 478 MODIS data and the MODIS-disaggregated soil moisture is disaggre-479 gated again at a finer resolution using ASTER data. Note that the MODIS 480 data on 16 November were not cloud free over the 40 km SMOS-scale 481 pixel so that the MODIS data on 17 November were used instead.

Fig. 6 .

 6 Fig.6. Schematic diagram presenting the sequential disaggregation of SMOS-scale soil moisture using MODIS and ASTER data.
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Fig. 7

 7 Fig. 7 plots the 4 km resolution MODIS-disaggregated soil moisture versus the 4 km resolution PLMR-derived soil moisture for each of the three data sets. The root mean square error is 0.026 ^vol./vol. ^Fig. 7 also plots the 500 m resolution ASTER-MODIS-disaggregated soil moisture versus the 500 m resolution HDAS-measured soil moisture in each farm. The sequentially disaggregated soil moisture has a RMSE of 0.062 ^vol./vol. and a bias of -0.045 ^vol./vol ^. Results are degraded compared to the case when the ASTER-disaggregated soil moisture was based on HDAS-aggregated measurements and not on MODISdisaggregated soil moisture. The increase of uncertainty could be due

Fig. 8 .

 8 Fig. 8. Scatterplots of the 1 km resolution ASTER-MODIS-disaggregated soil moisture versus HDAS measurements for three different intermediate resolutions: 4 km, 8 km and 12 km, and for the case of "no intermediate resolution".

Fig. 9 .

 9 Fig. 9. Root mean square error on the 1 km resolution ASTER-MODIS-disaggregated soil moisture for an intermediate resolution increasing from 3 to 12 km. The error obtained in the case of "no intermediate resolution" is also indicated.

  SMOS-scale soil moisture generated from airborne L-band data on 16 November was disaggregated at an intermediate resolution (4 km) using MODIS data and the MODISdisaggregated soil moisture was disaggregated again at 500 m resolution using ASTER data. The RMSE between the 500 m resolution sequentially-disaggregated and ground-measured soil moisture was 0.062 ^vol./vol. with a bias of -0.045 ^vol./vol. and soil moisture values ranging from 0.08 to 0.40 ^vol./vol. To assess the impact of the intermediate resolution on disaggregation accuracy, a different approach was proposed by setting the target resolution to 1 km and by increasing the intermediate resolution from 3 to 12 km. The optimal intermediate resolution was found to be 3-5 km, meaning that the use of MODIS data reduced the non-linearity effects across scales between SMOS and ASTER resolutions, despite the increase of uncertainties associated with the combination of MODIS and ASTER data.Beyond the application of multi-resolution soil moisture data to a range of environmental sciences, such an approach could greatly facilitate the validation of coarse-scale microwave-derived soil moisture data using point-scale ground measurements. The sequential model is being implemented over the Valencia Anchor Station area[START_REF] Lopez-Baeza | Representativity of the Valencia 711 and the Alacant anchor stations in the context of validation of remote sensing 712 algorithms and low-resolution products[END_REF] in the SMOS calibration/validation framework.

  MODIS,n disaggregated at n km resolution at first

	order around the SMOS-resolution soil moisture SM PLMR,40 is written as
	SM MODIS;n =S M PLMR;40 +	∂SM ∂SEE	ΔSEE MODIS;n	ð1Þ

with ∂SM/∂SEE being the partial derivative (evaluated at SM SMOS,40 ) of soil moisture to soil evaporative efficiency (SEE), and ΔSEE n the difference between the MODIS-derived SEE estimated at n km resolution and its average within the SMOS pixel. Eq. (

1

) can be further simplified by using the simple expression of SEE from

[START_REF] Komatsu | Towards a robust phenomenological expression of evaporation 705 efficiency for unsaturated soil surfaces[END_REF]

. The downscaling relationship becomes

SM MODIS;n =S M PLMR;40 +S M C × SMP MODIS;n

ð2Þ

with SM C being a semi-empirical parameter that depends on soil type and boundary layer conditions and SMP a normalized soil moisture proxy. In

Merlin et al. (2008a)

, the SMP was defined as SMP MODIS;n = T MODIS;40 À T MODIS;n T MODIS;40 À T min;1

  T min,1 by assuming that vegetation was not undergoing water stress, and 297 fractional vegetation cover was estimated asf v;MODIS;n = NDVI MODIS;n À NDVI min NDVI maxÀNDVI minð7Þ298 299 with NDVI min and NDVI max being the NDVI value that corresponds to 300 bare soil and fully vegetated pixels respectively.

	301	In this study, parameters SM C0 ,N D V I min and NDVI max , as well as
	302	wind speed (r ah ) are assumed to be uniform within the SMOS pixel
	303	(model parameters are listed in Table 2). This invariance assumption
	304	will be further assessed in view of the disaggregation results obtained
	305	at a range of spatial resolutions.			
	306	3.3. Downscaling resolution versus disaggregation accuracy
	t1:1 t1:2 t1:3 t1:4 t1:5 t1:6 t1:7 t1:8 t1:9 307 308 309 310 319	Table 1 List of acquisition dates, mean PLMR-derived soil moisture, wind speed measured at Terra (T) or Aqua (A) overpass time (10:30 am/1:30 pm), and minimum MODIS/Terra, MODIS/Aqua and ASTER surface temperature. Date SM PLMR,40 u (m s -1 ) T min,1 (°C) ASTER vol./vol. T A MODIS/T MODIS/A 31 October 0.046 6.0 36.2 4 November 0.11 7.6 36.5 5 November 0.065 5.0 35.0 6 November 0.065⁎ 7.5 37.6 7 November 0.043 7.4 33.3 Two different criteria are developed to estimate an optimal downscaling resolution for each of the three sensors. The first criterion denoted C1 is the condition that the disaggregation error evaluated at the downscaling resolution is equal to the observed sub-U N C O R R E C T E D P R O O F
	t1:10	8 November	0.043⁎	9.4	6.3	31.7	35.4
	t1:11	9 November	0.040	10.5	4.1	31.4	37.7
	t1:12	10 November	0.040⁎	11.9		36.1	
	t1:13	11 November	0.040⁎	5.3		36.8	
	t1:14	16 November	0.11	13.0			19.0
	t1:15	17 November	0.11⁎	4.5	3.6	32.2	36.3
	t1:16	18 November	0.055	5.1		34.7	
	t1:17	⁎ PLMR data from the day before.			

296 311 pixel variability. Intuitively, if the error on disaggregated soil moisture 312 is smaller than the sub-pixel variability, then the downscaling 313 resolution is too coarse to represent the actual variability; and 314 conversely if the error is larger, then the downscaling resolution is 315 too fine. C1 can be formulated as RMSE n;n = -SD n;1 ð8Þ 316 317 with RMSE n,n being the root mean square error evaluated at the 318 (n km) disaggregation resolution between disaggregated and PLMR-
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U N C O R R E C T E D P R O O F

541 particular, output errors are expected to be reduced by setting the 542 downscaling resolution to a value larger than the resolution that was 543 found to be optimal when using one sensor (MODIS or ASTER) 544 independently from the combination of both.