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Abstract1

This paper presents a study undertaken in preparation of the work leading up to the 2

assimilation of SMOS observations into the land surface model (LSM) ISBA at Météo 3

France. This study consists of an inter-comparison experiment of different space-borne 4

platforms providing surface soil moisture information (AMSR-E and ERS-Scat) with the 5

reanalysis soil moisture predictions over France from the model suite SIM (SAFRAN-ISBA-6

MODCOU) of Météo France for the years 2003 to 2005. Both modelled and remotely sensed 7

data are initially validated against in-situ observations obtained at the experimental soil 8

moisture monitoring site SMOSREX in south-western France. Two different AMSR-E soil 9

moisture products are compared in the course of this study (the official AMSR-E product 10

from the National Snow and Ice Data Centre (NSIDC) and a new product developed at the 11

Vrije Universiteit Amsterdam and NASA (VUA-NASA)), which were obtained using two 12

different retrieval algorithms. This allows an additional assessment of the different 13

algorithms, while using identical brightness temperature data sets. This study shows that a 14

good correlation exists between AMSR-E (VUA-NASA), ERS-Scat, and SIM, generally for 15

low altitudes and low-to-moderate vegetation covers (1.5 to 3kg m² vegetation water content), 16

with a reduction in the correlation in mountainous regions. It is also shown that the AMSR-E 17

(NSIDC) soil moisture product has significant differences, when compared to the other data 18

sets. 19

20

21

22
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1. Introduction22

Soil moisture is the governing variable for modelling soil surface-to-atmosphere energy 23

exchanges and land surface model (LSM) initialisation, as it controls both evaporation and 24

transpiration from bare soil surfaces and vegetation covers. Consequently, a significant 25

amount of studies have been and are currently being conducted to obtain soil moisture 26

estimates through land surface modelling (e.g. Dirmeyer et al. 1999; Georgakakos and 27

Carpenter 2006) and remotely sensed surface soil moisture observations (e.g. Wagner et al. 28

1999ab; Kerr et al. 2001; Njoku et al. 2003).29

For the purpose of soil moisture remote sensing, observations in the microwave bands 30

have been found to produce the best results. The optimal wavelength lies within the L-band 31

range (~1-2GHz), as interference through vegetation water content at this frequency range is 32

lower than at higher frequencies.. However, instruments have in the past been and are 33

currently operated at higher frequencies (above 5GHz), mainly because none of these 34

missions were dedicated soil moisture missions. The first such dedicated soil moisture 35

mission will be the Soil Moisture and Ocean Salinity mission (SMOS), to be launched in 36

2009. The first microwave instrument operated for an extensive time and within adequate 37

wavelengths was the Scanning Multichannel Microwave Radiometer (SMMR) on Nimbus-7 38

(operational from 1978 to 1987), which operated at bands at and above 6.6GHz. SMMR was 39

followed by the Special Sensor Microwave/Imager (SSM/I; since 1987) and the similar 40

Tropical Rainfall Measuring Mission (TRMM) Microwave Imager (TMI; since 1997), which 41

operate at frequencies above 10GHz. Instruments which are currently operational at 42

frequencies similar to SMMR (and therefore closer to L-band), are the Advanced Microwave 43

Scanning Radiometer for the Earth Observing System (AMSR-E) on board NASA’s Aqua 44

satellite, WindSat on board the American Navy’s Coriolis satellite, and the scatterometers on 45

board the European Remote Sensing satellites (ERS-1 & -2). Finally, a new scatterometer 46
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(ASCAT) was launched on board ESA’s MetOp satellite in 2006 and its data will soon be 47

available operationally (Bartalis et al. 2007).48

Despite almost 30 years of experience with these microwave remote sensing instruments, 49

it is still necessary to validate the soil moisture products obtained from these instruments 50

through in-situ soil moisture observations. However, such ground-truthing has only been 51

achieved over small temporal and spatial scales (eg. the Soil Moisture Experiments (SMEX) 52

or the Campaign for validating the Operation of SMOS (CoSMOS)), as it is economically and 53

practically infeasible to observe soil moisture at high spatial and temporal resolution over 54

large scales using in-situ observations, mainly because of its high spatial variability.  Only in 55

the present decade there have been attempts to establish long-term and large scale soil 56

moisture observation networks or data banks such as the Global Soil Moisture Data Bank 57

(Robock et al. 2000), the Goulburn River experimental catchment in Australia (Rüdiger et al. 58

2007), or SMOSMANIA in south-western France (Calvet et al. 2005). However, these data 59

sets only represent single points in space. This lack of spatial extent limits the usefulness of 60

such data sets for assimilation into large scale land surface models and also for disaggregation 61

studies, as the large scale, but also subpixel variability is not captured with single point 62

measurements. Moreover, satellite products are generally available at scales of about 0.25° or 63

25km, which leads to problems in their validation process, due to the different spatial scales 64

(spatially averaged satellite products are compared to point measurements). Consequently, 65

new validation methods complementing the existing soil moisture networks have to be 66

conceived (Wagner et al. 2007). Under the assumption that LSMs, forced with high quality 67

atmospheric forcing data, adequately represent the surface soil moisture dynamics, the scale 68

issues can be reduced. This assumption in turn will then allow the large-scale and long-term 69

evaluation of the satellite products in terms of their temporal dynamics, as the products 70

considered are essentially independent models.71
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In this paper, both the need for large scale ground-truthing and understanding of the 72

subpixel heterogeneity of soil moisture are addressed. First, the temporal correlation of 73

satellite products at a large scale with a synthetic high-resolution surface soil moisture data 74

base is presented. The high-resolution meteorological observation network throughout France 75

(more than 1000 surface meteorological stations and more than 3500 daily rain gauges) has 76

resulted in a high-quality atmospheric forcing data base (Quintana-Seguí et al. 2008) for the 77

operational land surface model ISBA of Météo-France, within the modelling system SIM 78

(SAFRAN-ISBA-MODCOU; Habets et al., 2008). The SIM model simulates the soil moisture 79

dynamics.80

The satellite products used for this study were obtained from AMSR-E and ERS-2. 81

Furthermore, the recent development of a new retrieval algorithm for AMSR-E (Owe et al. 82

2007) allowed to compare the official AMSR-E product (Njoku et al. 2003) with this new 83

data base. In the first part of this study, the different data sets used are discussed, followed by 84

a brief comparison of those remotely sensed data sets and SIM with in-situ observations of the 85

SMOSREX experimental site near Toulouse, France (de Rosnay et al. 2006), to determine 86

their capability to represent the temporal soil moisture dynamics of a point or pixel. The good87

results of this analysis between the land surface model, in-situ observations, and satellite data 88

also shows that previous results obtained over Spain (Wagner et al. 2007; one single satellite 89

pixel), or over Australia (Draper et al. 2007; several in-situ observations for a number of 90

pixels) can be extrapolated to a national or even continental scale, as they show the same 91

tendencies. The differences between the various soil type data bases used in the satellite 92

retrieval schemes and the model data base, make it difficult to compare absolute values. 93

Consequently, the discussion of this paper will focus on the normalised data sets. In the 94

second part, the inter-comparison study then presents the correlations and mean differences 95

between all data sets (ie. also between the different satellite products).  96



6

97

2. Data Sets98

Due to the limitation in the spatial extent of SIM, this study is limited to watersheds of 99

mainland France. Nevertheless, the surface and climatic conditions throughout the country are 100

sufficiently variable (ranging from sub-humid to alpine), to give a statistically sound data 101

basis for a representative analysis. The years 2003-2005 were chosen for this study, as data 102

exists for all sources (SIM – 1970 to 2006; ERS-Scat – 1992 to 2006; AMSR-E – 2003 to 103

date; and SMOSREX – 2001 to date). Moreover, this 3-year period includes both very dry 104

and very wet climatic conditions, which are necessary to determine the dynamic range of the 105

soil moisture observations within each pixel. The following sections briefly outline the 106

various data sets, used for this study. 107

108

a. SAFRAN-ISBA-MODCOU (SIM)109

The modelled surface soil moisture data base was obtained from the modelling system 110

SAFRAN-ISBA-MODCOU (SAFRAN – atmospheric forcing data base; ISBA – land surface 111

model; MODCOU – hydrological routing model). Of these three model chain segments, only 112

SAFRAN and ISBA were of importance for the present study.113

SAFRAN (Système d'analyse fournissant des renseignements atmosphériques pour la 114

nivologie) is a reanalysis forcing data base, initially developed to improve snowfall and 115

avalanche forecasting. Within SAFRAN, the main atmospheric forcing parameters are 116

analysed. Each atmospheric parameter is analysed individually using an optimal interpolation 117

method. The final size of a grid cell within SAFRAN is 8x8 km
2
. For precipitation, however, 118

the actual pixel sizes of SAFRAN vary, as they represent zones of climatic conditions rather 119

than regularly gridded areas. Each climatic zone covers about 1000km², resulting in about 600 120
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such pixels over France. The forcing parameters are in principle assumed to be homogeneous 121

within one such pixel, however, they vary on a sub-pixel scale with topography. Apart from 122

precipitation the SAFRAN forcing data is available at 6-hourly intervals. Precipitation is 123

obtained using daily observations at the rain gauges and then interpolated into hourly time 124

steps as a function of the relative humidity during the day. The SAFRAN data base has 125

recently been validated against in-situ observations and found to be well correlated (Quintana-126

Seguí et al. 2008).127

The land surface model used in SIM is ISBA (Interactions of the Soil, Biosphere and 128

Atmosphere; Noilhan and Planton 1989; Mahfouf and Noilhan 1996), which is used 129

operationally as the land surface scheme within the numerical weather prediction system at 130

Météo-France. The soil layer and soil moisture dynamics are modelled within a 3-soil-layer 131

model (Boone et al. 1999), which is based on the force-restore approach, where the three soil 132

layers are a surface layer of 1cm depth, forming part of a root zone layer above the third, deep 133

layer. 134

There is no previous study presenting a verification of the SIM surface soil moisture 135

product. On the other hand, the ISBA model has been extensively validated for various 136

biomes. In particular, a number of studies exist comparing a point-specific calibrated ISBA 137

version to actual in-situ soil moisture observations in France (Calvet et al. 1998a,b, Boone et 138

al. 1999, Calvet and Noilhan 2000, and Sabater et al. 2007). The latter case corresponds to 139

SMOSREX, and the former to a previous experiment (MUREX) in the same region. The 140

RMSE for those cases is, respectively, 0.06 and 0.07 m3m-3, with a mean difference in the 141

order of 0.01 and 0.03 m
3
m

-3
. In both cases the Nash efficiency was calculated with 0.65/0.59. 142

Based on the results of Prigent et al. (2005), this level of error between in-situ observations 143

and model predictions is expected, while maintaining a good correlation despite the different 144

observation and model layer depths. The land surface parameters for ISBA are obtained from 145
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ECOCLIMAP (Masson et al. 2003). The parameters provided by ECOCLIMAP are originally 146

provided at 1km resolution and are aggregated to the model resolution of 8km. 147

148

b. AMSR-E149

AMSR-E is a passive microwave scanning radiometer, operating at six wavelengths 150

within the microwave spectrum (6.925, 10.65, 18.7, 23.8, 36.5, and 89GHz) in horizontal and 151

vertical polarisations, flown on NASA’s Aqua satellite. The total swath width during an 152

overpass is approximately 1445km, with footprint resolutions ranging from 56km (6.925GHz) 153

to 5km (89GHz). Aqua is a sun-synchronous satellite orbiting Earth approximately 14 times 154

each day, with morning/descending and afternoon/ascending overpasses, at around 155

1.30am/pm. This configuration results in a repeat coverage of approximately every three days 156

in the equatorial latitudes and more frequent coverage in higher latitudes. For the particular 157

case of France, Aqua overpasses take place at 4 out of 5 days for both ascending and 158

descending orbits.159

Currently, two different data products are freely available. The official product can be 160

obtained through the National Snow and Ice Data Center (NSIDC, hereafter AMSR-E 161

(NSIDC)), while a new product has recently been made available through the Vrije 162

Universiteit Amsterdam in collaboration with NASA (hereafter AMSR-E (VUA-NASA)). 163

Both products are briefly described in the following sections.164

i. AMSR-E (NSIDC) 165

The AMSR-E (NSIDC) data used for this study were obtained from the operational Level 166

3 B03 AMSR-E data set (Njoku 2006). While the original resolution at 10.65GHz is ~38km, 167

the data is binned into regular 0.25°x0.25° pixels, through oversampling at 10km intervals. 168
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The NSIDC method uses two low frequency dual polarized channels to optimize the three 169

parameters (soil moisture, vegetation optical depth and the effective soil temperature) 170

simultaneously. Originally, the method was developed and tested for the C- and X- band 171

channels. Unfortunately, severe radio-frequency interference (RFI) was discovered within C-172

band (6.925GHz) over the USA and Japan and X-band over Italy and Great Britain  (Li et al 173

2004, 2006). For this reason, the retrieval algorithm was applied to the X-band (10.65GHz) 174

and Ku-band (18.7 GHz) brightness temperatures. This has some important disadvantages: 1) 175

the 18 GHz channel introduces atmospheric influences and, 2) the observation depth of the 176

soil moisture product is reduced to 5-10mm, which is approximately half the potential range 177

of C-band and 3) vegetation attenuation effects are more significant than at lower frequencies. 178

ii. AMSR-E (VUA-NASA)179

The VUA-NASA retrieval products from AMSR-E are derived according to the Land 180

Surface Parameter Model (LPRM) (Owe et al. 2007). The LPRM is a three-parameter 181

retrieval model for passive microwave data, using one dual polarized channel (either 6.925 or 182

10.65GHz) for the retrieval of both surface soil moisture and vegetation water content 183

(VWC). The land surface temperature is derived separately from the vertically polarized 184

36.5GHz channel.185

The forward radiative transfer model in LPRM is based on one vegetation layer (τ-ω186

approach) and the vegetation optical depth is parameterized as a function of the Microwave 187

Polarization Difference Index (MPDI) and soil moisture according to Meesters et al. (2005). 188

This method is applied globally, and requires no regional calibration or fitting parameters to 189

aid the retrieval process.190

The main differences with the AMSR-E (NSIDC) soil moisture product lies in the use of 191

a higher frequency band for the retrieval of the land surface temperature (LST), and the 192
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parameterization of the vegetation optical depth, leaving only the soil moisture to be 193

optimized. 194

195

c. ERS-Scat196

The ERS-Scat data is obtained through active microwave remote sensing, ie. an energy 197

pulse is sent to the surface and the intensity of the returned signal is then used within the 198

retrieval algorithm to derive a relative soil moisture state. ERS-Scat is operated at 5.3GHz (C-199

band), observing only the vertically polarised backscatter within this band, thus resulting in a 200

similar observation depth as AMSR-E. RFI has been found to have little impact on active 201

microwave remote sensing at this frequency. ERS-Scat has a morning/descending and 202

evening/ascending orbit at 10.30am/pm, with a varying repeat coverage of about 2 to 8 days. 203

The spatial resolution of an ERS-Scat footprint is in the order of 50km, while the soil 204

moisture product is binned into pixels of 0.25° (north-south extent) and 25km (west-east 205

extent).206

The soil moisture product is provided in relative values, ranging from 0 to 100%. The 207

normalisation of the backscatter signal is done, using the minimum and maximum observed 208

backscatter from the 1992-2000 period, as dry and wet references. The retrieval algorithm is 209

described in detail in Wagner et al. (1999, 2003). 210

d. SMOSREX211

SMOSREX is an experimental field site for in-situ and remotely sensed soil moisture 212

observations jointly operated by various research institutes in France and located to the south 213

of Toulouse (43°23’N, 1°17’E) in south-western France (De Rosnay et al. 2006). The overall 214

size of SMOSREX is approximately 6000m² separated into two areas with either bare soil or 215

fallow. The climate is temperate with monthly mean maximum temperatures of 5°C in winter 216



11

and 24°C in summer and an average annual cumulative precipitation of about 650mm. The 217

surface soil consists of a sandy loam, with 16% clay, 47% silt, and 37% sand.218

Most instruments installed at the site have been in operation since 2001. The main feature 219

of this site is a tower-mounted L-band radiometer for the production of multi-angle brightness 220

temperatures. Other instrumentation include a weather station, and soil temperature and 221

moisture sensors, installed at various points and depths. The soil moisture sensors (Theta 222

Probes ©) used for this study are located at four points within the fallow section of the site 223

(most representative for the overall region and therefore the model simulations), with a 224

spacing of only a few metres. The sensors are vertically inserted at the surface, therefore 225

integrating the soil moisture content from 0 to 6cm, and a temporally averaged soil moisture 226

content is stored every 30 minutes individually for all sensors. The calibration of the sensors 227

is presented in (De Rosnay et al. 2006). 228

For the purpose of this study, the in-situ observations were aggregated into daily averages 229

and compared to the respective data sets obtained through the model and remote sensing. 230

Spatially averaging the observations of those four probes reduces the effect of spatial 231

variability within and increases the representativity of the soil moisture observations, and also 232

reduces the individual observations to one point in space. 233

234

e. Data Preparation 235

The results presented in this paper are based solely on the data sets from descending 236

orbits (nighttime) to avoid overly solar effects in the satellite data, due to sun glint and strong 237

temperature gradients between the vegetation and the surface, and also within the surface 238

layer, but also due to Faraday rotation and temperature gradients within the sensor which are 239

more pronounced during daytime overpasses (Kerr and Njoku 1990). Other effects such as 240
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quick dry-down or the lack thereof due to local changes in solar radiation, which can not be 241

adequately represented in an LSM and in reality may be affected by cloud coverage and wind, 242

among other factors play a significant role in the daytime evolution of surface soil moisture. 243

While the in-situ observations were spatially and temporally averaged, the soil moisture 244

simulations were extracted for the time steps close to the overpass times of the satellites. A 245

comparison of the differences between the individual measurements of the soil moisture 246

probes and their spatial average at 6am and also between the daily average with the spatial 247

average at 6am resulted in an RMSE of 0.036 m3m-3 in both cases. This shows that spatial and 248

diurnal variabilities contribute to the same extent to the uncertainty in the in-situ observations. 249

The use of a spatially and temporally daily average is therefore justifiable.250

All data have been reprojected from their original coordinate systems onto a regular 251

0.25°x0.25° grid using a nearest neighbour approach. As the overall footprints of AMSR-E 252

and ERS-Scat are in the order of 50km with a spacing of about 10km between the centre 253

points, and the gridded products used in this study are binned at 25km or 0.25°, respectively, a 254

spatial shift in the data due to the reprojection process (a maximum of 12km) is not expected  255

to add any additional noise to the data or affect the data quality, as a footprint with its centre 256

12km from the pixel centre would still include information from more than half of the land 257

surface corresponding to the pixel area due to its size. To obtain an average pixel value within 258

the reprojected pixels, all original pixels with their centre falling into one reprojected pixel 259

were averaged to one single value. This average value was then assumed to be the 260

representative soil moisture of the reprojected pixel. In the case of the satellite observations, 261

only one original pixel would generally fall into a reprojected pixel, due to the similarity in 262

size, so that no errors are introduced due to the averaging of two satellite pixels. For all data 263

sets, the same general rule applied for the reprojection process, to avoid inconsistencies 264

between the data sets introduced through the reprojection and aggregation process.265
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In a brief study it was examined whether the variability between the soil moisture of high 266

resolution SIM pixels with their averaged low resolution equivalent resulted in any errors 267

within the analysis. However, no relationship between the this subpixel heterogeneity and the 268

spatial distribution of the correlation coefficients between the different soil moisture products 269

presented in the following section was found. 270

The soil moisture data from the satellites and SMOSREX were normalised following the 271

approach presented by Pellarin et al. (2006), where the maximum and minimum of the soil 272

moisture range was not determined by the soil type, but rather by the observed dynamic range 273

within each individual pixel within the full study period (2003-2005). To exclude any 274

abnormal outliers due to observational errors or instrument noise, the 90% confidence interval 275

was chosen to define the upper and lower soil moisture content, respectively, using (1) and 276

(2).277

( ) ( ) ( )SMSMSMint σ*64.1μ +=+ (1)278

and279

( ) ( ) ( )SMSMSMint σ*64.1μ −=− (2)280

where int+ and int- are the upper and lower confidence limits; µ(SM) is the average soil 281

moisture content for the pixel; and σ(SM) the standard deviation of the soil moisture content 282

for each pixel.  With the knowledge of the upper and lower soil moisture content the absolute 283

soil moisture value is then normalised using (3): 284

−+

−

−
−

=θ
intint

intSM
obs

n
(3)285

where SMobs is the individual soil moisture observation and θn is its normalised soil moisture 286

value. As a simplification it is assumed that the data are normally distributed, so that 90% of 287

the data lie by definition within a range of µ±1.64σ. All data outside of this range were 288
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discarded. Also, pixel values were excluded from the overall analysis, where SIM predicted 289

frozen soil water. As model simulations as such have no outliers due to instrumentation 290

errors, no screening of extreme values is required. The soil moisture from SIM is therefore 291

normalised using the modelled maxima and minima of each individual pixel, instead of int
+

292

and int
-
.293

Pixels located over major urban agglomerations (ie. Lille, Paris, Lyon, Bordeaux, 294

Toulouse, and Marseille) were not excluded. However, the correct representation of the soil 295

moisture is doubtful, as SIM is not capable to give realistic soil moisture conditions over 296

urban (and consequently sealed) areas, and moreover, the possibility of pixels subjected to 297

potential radio-frequency interference (Li et al. 2004) is higher in these areas. Nevertheless, 298

the number of these pixels is small (<0.5% of the total), compared to the total over France and 299

their overall effect on the statistical analyses was found to be negligible. 300

301

3. Comparison of the soil moisture products with in-situ observations302

An evaluation of the surface soil moisture products obtained from SIM and the satellites 303

was undertaken, using the same three years of in-situ soil moisture observations as for the 304

remainder of this study (2003-2005). The in-situ data were obtained from the observations at 305

the experimental site SMOSREX. The data from the four surface soil moisture sensors 306

installed at SMOSREX, were averaged both spatially and over time, so that one daily 307

averaged observation was obtained for each day. This approach reduced the existing noise 308

levels in the in-situ observations, as discussed in the previous section. The model and satellite 309

data used here are the binned and reprojected data as for the large scale study in section 4, as 310

described above. SIM was not especially calibrated to the conditions at SMOSREX. For this 311

evaluation study various statistical parameters were calculated: the root mean square error 312
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(RMSE), the mean difference or bias between two data sets, the correlation coefficient (r) 313

between two data sets, and the Nash efficiency coefficient (N). All statistics presented in the 314

following sections were calculated for the normalised soil moisture values and are therefore 315

dimensionless.316

In a first step, the absolute values of the soil moisture products were compared with the 317

in-situ data. For this purpose, the already normalised ERS-Scat data were transferred into 318

absolute values, using the known maximum and minimum surface soil moisture observations 319

at SMOSREX. While a good correlation exists between SIM and SMOSREX data sets, a 320

severe lack of soil moisture dynamics is observed for the AMSR-E (NSIDC) data set (not 321

shown). However, the AMSR-E (VUA-NASA) data is well correlated despite an apparent wet 322

bias. Finally, the ERS-Scat observations are also well correlated in terms of their temporal 323

dynamics. In contrast to the AMSR-E (VUA-NASA) data, the ERS-Scat data exhibits a dry 324

bias. Due to the different soil moisture dynamics and biases, it is difficult to compare the 325

various data sets in detail, consequently, all comparison in the remainder of this paper will be 326

undertaken with normalised data (Fig. 1).327

The comparison of the normalised SIM and SMOSREX data sets shows a good temporal 328

correlation (r = 0.755; N=0.478), with a bias (-0.083) towards the in-situ observations (ie. the 329

in-situ observations tend to be drier), with the exceptions of very dry conditions, when the 330

model has the tendency to overestimate the soil moisture at this site (Fig. 2). Throughout the 331

years, a higher level of surface soil moisture dynamics is observed within the model data (Fig. 332

1), which results in a root mean square error (RMSE) of 0.198. This phenomenon is explained 333

by inaccuracies in the forcing data due to the spatial interpolation process within SIM and the 334

differences in the thickness of the observed soil layers (1cm for SIM against 0-6cm for the 335

ThetaProbes). However, there are only few data points causing this noise and this is 336

consequently deemed acceptable. 337
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The normalised AMSR-E (NSIDC) data display a very high variation, with interchanging 338

peaks and troughs every three months (Fig. 1). Every year, minimal values are reached during 339

winter and their maximum in summer. This recurring negative correlation with the in-situ data 340

results in a high RMSE and low overall correlation (r = 0.132; N=-0.734; bias = 0.132; RMSE 341

= 0.356). In contrast to the comparison of the absolute data, the persistent wet bias in the 342

AMSR-E (VUA-NASA) data has been reduced due to the normalisation. Similar to the SIM 343

predictions, a strong correlation between in-situ and remotely sensed data is found in this case 344

with a wet bias towards the AMSR-E data (r = 0.775; N=0.471; bias = 0.072; RMSE = 0.194). 345

Finally, the ERS-Scat observations are also well correlated over time with the in-situ data (r = 346

0.618; N=0.125), however a dry bias (-0.085) results in a more significant RMSE of 0.244 347

than for the AMSR-E (VUA-NASA) data.  As ERS-Scat data are only available from August 348

2003 onwards, the identical periods of data cover (ie. August 2003 – December 2005) for the 349

other surface soil moisture products was undertaken (not shown), in order to verify that the 350

first seven months did not introduce significant biases in the statistical analyses, which then 351

would not be seen in the ERS-Scat comparisons.  The differences in correlation, RMSE, and 352

bias did not change significantly for any of the inter-comparisons covering either the full three 353

years or the period August 2003 – December 2005.  Consequently, all comparisons shown in 354

the remainder of this paper are based on the full period. The Nash efficiency coefficient for 355

SIM and AMSR-E (VUA-NASA) are acceptable. They are also similar to each other 356

suggesting that the two data sets perform equally well compared to the in-situ observations, 357

while the low Nash efficiency of ERS-Scat is due to the relatively strong bias in the satellite 358

data. In the case of the AMSR-E (NSIDC) data, the negative Nash efficiency suggests by 359

definition that an average value of the in-situ observations would compare better with the 360

overall observations than the remotely sensed observations. This is an important finding as it 361

shows the extreme difference between the in-situ observations and the satellite product.362
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Four aspects have to be considered for the cause of the differences observed in this 363

evaluation: i) the scale difference (8km and 0.25° for the model and the satellite, respectively, 364

against a single point observation), as the comparison or validation of soil moisture products 365

at different spatial scales will remain difficult in most cases, unless a representative catchment 366

average soil moisture monitoring site (Grayson and Western 1998) can be identified; ii) the 367

soil data base, as the model soil information constitutes an average of the soil particle size 368

distribution within an 8km/0.25° pixel, which may result in significant differences compared 369

to the soil conditions at the point of observation (the particle size analysis for SMOSREX 370

yielded 16% clay, 47% silt, and 37% sand; the particle size distribution within ECOCLIMAP 371

is 25%/25%/50%), iii) the forcing data, as it is obtained by interpolation between observations 372

and atmospheric predictions, which may miss localised events, iv) the observation depth, with 373

the model layer of 1cm and approximately the same depth for the satellite observations 374

against the integrated soil moisture content at 0-6cm for the in-situ observations, may result in 375

different dynamics. 376

Considering the above four aspects, SIM, AMSR-E (VUA-NASA) and ERS-Scat perform 377

well when compared to the SMOSREX in-situ observations, and also show a good 378

representation of the dynamic behaviour of the soil moisture content. For SIM, an RMSE of 379

0.198 with a dynamic range of the surface soil moisture at the site of ~0.3 m
3
m

-3
, can be 380

translated into an absolute error in the soil moisture of just under 0.06 m
3
m

-3
. This result is 381

particularly good, as SIM was not calibrated to the conditions at SMOSREX, but rather used 382

the vegetation and soil conditions obtained from ECOCLIMAP. Moreover, despite the 383

differences in scale these errors are identical to the performance of the site-specific calibrated 384

model. 385

Depending on the application, the calculated error may be considered large or acceptable. 386

For atmospheric studies, it is more important to obtain a good representation of the temporal 387
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dynamics, while the absolute soil moisture state is less important. On the other hand, an error 388

of 0.06 m
3
m

-3
exceeds the validation goals of future satellite missions (Kerr et al, 2001). In 389

the first case, the evaluation of satellite data against any benchmark is necessary, shown by 390

the lack of temporal dynamics in the AMSR-E (NSIDC) data. In the second case, two factors 391

influencing the RMSE have to be considered to qualify the above value of 0.06 m
3
m

-3
: i) the 392

mean difference or bias between SIM and SMOSREX and ii) the spatial uncertainty of the in-393

situ observation. Biases, in the case of the normalised data 0.084 (or 0.025 m3m-3), may be 394

removed using various techniques (eg. Drusch et al., 2005), while the uncertainty in the 395

spatial averaging of the four in-situ observations is in the order of 0.036 m3m-3. In particular 396

the removal of the bias would lead to a significant decrease of the RMSE. Consequently, it is 397

concluded that SIM may be used with reasonable confidence for a large scale model 398

intercomparison study, assuming that ECOCLIMAP provides similarly good information for 399

all other model pixels.400

While the correlations derived from Fig. 1 are relatively large for SIM, AMSR-E (VUA-401

NASA) and ERS-Scat, much of the captured variability is seasonal (dry in summer, wet in 402

winter). In order to assess the coherence with the in-situ observations and to avoid seasonal 403

effects, monthly anomalies are calculated. The difference to the mean is calculated for a 404

sliding window of five weeks, and the difference is scaled to the standard deviation. Table 1 405

shows seasonal scores, including the Kendall statistics and p-value. All the products are 406

significantly correlated to the in-situ observations, except for satellite products at specific 407

periods of the year. While SIM presents significant correlations throughout the year, all the 408

satellite products are not significantly correlated to in-situ observations at wintertime (DJF). 409

This may be explained by the sensitivity of the microwave signal (either active or passive) to 410

soil freezing and by the reduced dynamics of the surface soil moisture at wintertime. Both 411

VUA-NASA and NSIDC products present high correlations of the anomalies for the other 412
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seasons. On the other hand, ERS-Scat has significant correlations at springtime (MAM), only. 413

The lack of significance of ERS-Scat during the summer and autumn seasons (JJA and SON, 414

respectively), may be explained by the small number of observations over the SMOSREX site 415

(28 and 41, respectively), compared with AMSR-E (184 and 175, respectively, for the VUA-416

NASA product).417

418

419

420

421

422

4. Inter-Comparison (all Data Sets)423

a. General Correlation (all data)424

Fig. 3 shows correlation maps of the different remote sensing and modelled data sets for 425

all surface conditions and all years. A good correlation exists between the three data sets 426

AMSR-E (VUA-NASA), ERS-Scat, and SIM, in particular for regions of herbaceous 427

vegetation over regions with little relief, with a range of the coefficient of correlation from 0.2 428

to 0.9. Areas with denser vegetation, such as the forest of Les Landes in the South-West along 429

the Atlantic coast show a lower level of correlation, which would have to be expected due to 430

the masking effect on the microwave emissions of the soil moisture through vegetation. 431

Similarly, low correlations are found in regions with strong relief such as the Massif Central 432

and the Alps. The good correlation of ERS-Scat with SIM in the Italian Alps should be 433

ignored, as only a few data points were available due to the overpass rate of ERS over the 434

region and the filtering of days with frozen soils or snow. Mountainous regions cause errors in 435

both the modelling of soil moisture and its retrieval from satellite observations. First, there 436
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exists a high level of uncertainty in the soil depth and its variability in those regions, which 437

impacts on the predictions of the soil moisture dynamics in the SIM model. Secondly, relief 438

interferes with the retrieval of low resolution remotely sensed soil moisture observations and 439

may cause considerable levels of errors (Mätzler and Standley 2000).  The AMSR-E (NSIDC) 440

product has virtually only low correlations with any of the other data sets, even producing 441

negative correlations overall (Table 2). 442

This analysis also shows that previous results obtained over Spain (Wagner et al. 2007; 443

one single satellite pixel), or over Australia (Draper et al. 2007; several in-situ observations 444

for a number of pixels) can be extrapolated to a national or even continental scale, as they 445

show the same tendencies. In particular, the lack of soil moisture dynamics within the AMSR-446

E (NSIDC) data set are apparent and are shown in all studies.447

The data used to derive the spatial plots of Fig. 3 are summarised in Table 2 as showing 448

the respective coefficient of correlation (r), root mean square error (RMSE) and bias between 449

the data sets. Compared to SIM, the ERS-Scat data set has the highest overall correlation (r = 450

0.728) and lowest RMSE (0.201), followed by AMSR-E (VUA-NASA) with an r = 0.491 and 451

an RMSE of 0.297. As mentioned before, AMSR-E (NSIDC) has a negative correlation of –452

0.014 with an RMSE of 0.370. The RMSE presented here is the RMSE obtained from the 453

normalised results, ie. it represents the relative error of the soil moisture dynamical range. 454

Assuming an average dynamic range of 0.3 m3m-3 and that SIM gives accurate in-situ 455

observations, this would translate into an average error of 0.056 m3m-3 for ERS-Scat, which is 456

higher than the design accuracy of SMOS (0.04 m3m-3). 457

Like the bias between the SIM and SMOSREX data sets, the biases shown between SIM 458

and the three satellite products are all positive. This suggests that a consistent dry bias exists 459

within SIM. A first explanation for the bias between SIM and SMOSREX are the different 460

thickness of the observed soil layers (1cm in the model against 0-6cm in-situ), as the deeper 461
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profile of the in-situ observations is likely to maintain a higher soil moisture content, as it is 462

less affected by evaporation than the thin surface layer in the model. Furthermore, other 463

aspects such as erroneous soil type information, biased forcing data, and biases in the soil 464

moisture retrieval for the satellites may result in consistent biases. 465

b. Correlations Specific to Land Surface Cover 466

A comparison of vegetation maps with the results of Fig. 3 suggested a connection 467

between the accuracy of the remotely sensed soil moisture information and the land cover. 468

Therefore, the dominant land surface cover within each satellite-type pixel was determined, 469

using the information from ECOCLIMAP, in order to identify vegetation specific correlations 470

for each data product. For this purpose, the different vegetation types within each 0.25° pixel 471

were aggregated into three dominant cover types: i) cultivated soils, ii) grasslands, and iii) 472

forests (Fig. 4). Relatively good correlations exist between SIM, ERS-Scat and AMSR-E 473

(VUA-NASA) for the two herbaceous vegetation covers (Fig. 5a & b). Like in the analysis of 474

the overall data set, ERS-Scat and SIM have the highest correlation coefficient and lowest 475

RMSE. Similarly, the pairs SIM/AMSR-E (VUA-NASA) and AMSR-E (VUA-NASA)/ERS-476

Scat have slightly lower correlation coefficients and higher RMSEs, and AMSR-E (NSIDC) 477

having negative correlations throughout. These results (with the exception of the AMSR-E 478

(NSIDC) data) are not surprising given that remotely sensed soil moisture information should 479

theoretically be retrievable with a high level of accuracy over herbaceous vegetation types. In 480

herbaceous vegetation covers, active and passive methodologies are expected to show similar 481

performances, especially when using a similar frequency. The higher correlations of ERS-482

Scat and SIM as compared to AMSR-E (VUA-NASA) and SIM, shows potential for 483

improvement of the AMSR-E (VUA-NASA) product. Part of the difference might be 484

explained by the limited range of moisture values in the optimization routine for the AMSR-E 485

(VUA-NASA) product (0-50%). For the retrieval of the current AMSR-E (VUA-NASA) data, 486
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the soil moisture content is limited to a maximum of 0.5 m3m-3. However, it was found that 487

the surface soil moisture states often reached this point of saturation (Fig. 1). Consequently, if 488

this constraint were to be relaxed, and the retrieval process were allowed to produce higher 489

values, a quasi-normalised soil moisture product may be obtained (this aspect has been 490

considered for the next version of soil moisture data, which has recently been made 491

available). However, as a consequence of this constraint, the maximum soil moisture is 492

currently underestimated, which leads to an underestimation of the dynamic range, and 493

consequently a wet bias in the AMSR-E (VUA-NASA) data. The methodology behind the 494

ERS product avoids this caveat, by scaling between minimum and maximum observed signal 495

over the period 1992-2000.496

The comparison of the various data sets for forested regions (Fig. 5c) overall shows lower 497

correlations and higher RMSEs. Again, ERS-Scat produces the best correlation with SIM, 498

followed by AMSR-E (VUA-NASA) and AMSR-E (NSIDC). Moreover, the ERS-Scat soil 499

moisture product appears to conserve its good correlation with SIM from the analysis of the 500

herbaceous vegetation types. Under the assumption that SIM is equally valid for forested 501

regions as for regions with low vegetation, it may be concluded that two effects may influence 502

the consistency of ERS-Scat for different vegetation types. Firstly, the retrieval process of 503

ERS-Scat implicitly takes into consideration the vegetation type by scaling the current signal 504

between the wet end dry ends of its long-term data base. This statement has significance for 505

other soil moisture missions in both active and passive microwave remote sensing, as the 506

approach taken for the retrieval of ERS-Scat soil moisture may be applied along with more 507

sophisticated radiative transfer models. Secondly, the ERS-Scat is well calibrated and has a 508

low radiometric noise of about 0.15 dB, which allows estimating soil moisture even in areas 509

where abundant forest cover reduces the effective sensitivity of backscatter to soil moisture.510
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An aspect of the data visible within the scatterplots of Fig. 5 is the apparent bi-modality 511

of the SIM data with data clouds forming for the lower and upper value ranges. Fig. 6 and 7 512

show histograms of the surface soil moisture from the four different low-resolution data 513

sources (SIM, AMSR-E (VUA-NASA), AMSR-E (NSIDC), and ERS-Scat) for SMOSREX 514

and for the whole of France, respectively. The histograms of the various data sources show 515

different patterns at the local scale (Fig. 6). While SIM and ERS-Scat show clear bi-516

modalities, this is not the case for the two AMSR-E products, with AMSR-E (VUA-NASA) 517

having several peaks with a saturation at 1, and AMSR-E (NSIDC) data being almost 518

normally distributed, though all data sets, have a minima in the range of 0.4 to 0.6. The 519

histogram of the in-situ data at SMOSREX (Fig. 6e) also shows a bi-modality, although with 520

its maximum in the wet spectrum. This would suggest that preferred soil moisture states exist 521

at SMOSREX, but that the distribution is not correctly captured by the various models. 522

The non-normal distribution of the histograms have significance for the normalisation 523

process, as it was previously assumed that the soil moisture distribution was sufficiently 524

normal at each point. A violation of the assumption of normality would mean that the 90% 525

confidence interval could not be calculated with the equations (1) and (2). To assess this, the 526

distribution of the soil moisture states at the national scale was studied (Fig. 7). 527

An exception here is SIM with a clear peak in the dry spectrum (0.2) and AMSR-E 528

(VUA-NASA) being skewed towards the wet end (Fig. 7). The overall distributions show that 529

SIM retains its clear bi-modality with a peak in the dry spectrum, while the ERS-Scat and 530

AMSR-E data become more normally distributed. For the AMSR-E data sets, the distribution 531

of AMSR-E (NSIDC) data becomes almost Gaussian with a slight skew towards the wet end, 532

while the AMSR-E (VUA-NASA) data is more evenly distributed. As the normalisation 533

procedure of Pellarin et al. (2006) is only applied to the AMSR-E data, it is concluded that the 534

normalisation process is still applicable to the majority of the pixels throughout France. 535
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The results shown here are in line with other studies. For example, Teuling et al. (2005) 536

showed that preferred soil moisture states may exist locally. However, they found that this 537

effect could not be observed at all sites studied and that it could not be linked to local soil 538

conditions and may therefore be a random effect. This conclusion is supported by Fig. 6 and 539

7, where the histograms for the data at SMOSREX suggest that local preferred wet and dry 540

states exist, while the distribution of all observations over France is not bimodal. 541

c. Intra-seasonal Correlation542

The bi-modality presented in the previous section is unlikely to be caused by differences 543

in the soil types, as the soil moisture data were normalised, and SMOSREX also appears to 544

have this distribution (Fig. 6e). The bi-modality is related to the varying soil moisture states, 545

which are caused by either precipitation events or seasons. As the effect of precipitation 546

events on the soil moisture distribution is difficult to obtain, the results obtained for the 547

cultivated soils in Fig. 5 were separated according to the various seasons. This analysis (Fig. 548

8) clearly shows the different preferred soil moisture states in summer (dry) and winter (wet), 549

which are consequently the main reason for the creation of the data clouds in Fig. 5. Similar 550

results of preferred soil moisture states during the various seasons has been shown by Settin et 551

al. (2007), where they were largely attributed to the precipitation intervals and intensities 552

during the various seasons. Interestingly, the two AMSR-E products have nearly the same 553

correlations with SIM during springtime, which would suggest that the two radiative transfer 554

models work similarly well during this period. 555

556

557

5. Conclusion558
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In this paper, an intercomparison study of several remotely sensed surface soil moisture 559

products with the re-analysis LSM predictions over France has been presented. First, the LSM 560

predictions, and the satellite observations were compared with a 3-year in-situ surface soil 561

moisture data set from an experimental site in south-western France (SMOSREX) to 562

determine their capability to represent the temporal dynamics of a point or pixel. A good 563

correlation was found between the model predictions and the in-situ data, despite a slight dry 564

bias within the model predictions. Based on this evaluation, it was then assumed that the land 565

surface model predictions over France may be used as a credible approximate estimate in the 566

absence of more direct surface soil moisture observations for the whole country. 567

The analyses of this study, have shown that two of the three satellite data sets (AMSR-E 568

(VUA-NASA) and ERS-Scat) have generally a good correlation with the model predictions, 569

while the AMSR-E (NSIDC) data set did not correlate well with any of the other data sets. 570

Generally, the AMSR-E (NSIDC) data showed a significant lack of seasonal soil moisture 571

dynamics, which was well captured by the other data sets. These results suggest that the 572

AMSR-E (NSIDC) data set is not correct, as three other independent models (a physically 573

based radiative transfer model, an empiric soil moisture retrieval scheme, and a land surface 574

model) show a good correlation with each other. This is further supported by the good 575

correlation between SIM, AMSR-E (VUA-NASA), ERS-Scat and the in-situ observations at 576

SMOSREX. It is possible that those three models are all wrong and coincidentally produce 577

the same results, though the comparison with SMOSREX suggest that this is not likely. The 578

results of the observations obtained from the scatterometer additionally highlights the 579

potential use of active microwave data sets, which will be continued by the MetOp ASCAT 580

observations.581

The analysis of de-trended time series (monthly anomalies) of surface soil moisture over 582

the SMOSREX site shows that short term variations of SIM and all the satellite products 583
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(included the NSIDC AMSR-E product) are meaningful. The significance is less for ERS-584

Scat, which has a high sampling time.585

For the moment it has to be acknowledged that there exists a good correlation between 586

some products for densely vegetated areas, but further studies are required to validate their 587

physical meaning or relevance. Given that the we present only the temporal dynamics in this 588

paper, it is interesting to learn that some satellite products appear to represent those dynamics 589

better than others, even for forested areas.590

While in-situ observations averaged to the land surface model or remotely sensed pixel 591

scale may be better suited for the evaluation of both land surface or radiative transfer models, 592

these observations are still sparse and difficult to obtain. This study presents an alternative to 593

the use of in-situ observations for such large scale evaluations through the inter-comparison 594

of independent and apparently similar soil moisture estimates from different models. 595

596

Finally, the good correlations between point observations and the low resolution model 597

predictions and satellite observations also show the importance of single point observations 598

for the verification of LSM and remotely sensed soil moisture products. They also support the 599

need of the installation of new and the maintenance of existing soil moisture monitoring 600

networks. This is particularly true for forested and mountainous regions, which in the past 601

have been neglected when new soil moisture monitoring sites were established. With the need 602

for the evaluation of land surface model performances and satellite validation campaigns, the 603

relatively few existing networks are not sufficient.604

605
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Figures

Figures

Figure 1. Time series plots (2003-2005) of the normalised values of the in-situ observations at 

SMOSREX (black lines) and the four surface soil moisture products, SIM, AMSR-E 

(NSIDC), AMSR-E (VUA), and ERS-Scat (+). The model predictions and satellite 

observations were obtained from respective low-resolution pixels covering SMOSREX. 

Figure 2. Scatterplot of the normalised in-situ soil moisture observations at SMOSREX 

(vertical axis) with the four low-resolution data sets (SIM, AMSR-E (VUA), AMSR-E 

(NSIDC), and ERS-Scat) for the years 2003-2005. Darker regions show a higher density of 

data points.

Figure 3. Maps of the coefficient of correlation between the various soil moisture products 

(normalised values) over mainland France. The circles highlight the 6 major metropolitan 

areas of France. 

Figure 4. Location of pixels with the different dominant land cover types (cultivated soils, 

grasslands, and forests), based on the fractional covers obtained from Ecoclimap and 

aggregated to 0.25° resolution.

Figure 5. Vegetation type specific comparison of the different soil moisture products for the 

three dominant vegetation types (a) cultivated soils, b) grasslands, c) forests), using the data 

from the period 2003-2005. The scatterplots and their corresponding statistics are located on 

opposite sides of each figure, ie. the scatterplot of the data pair SIM-AMSR (VUA) is in the 
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top left hand corner, while the respective statistical values are found in the bottom right hand 

corner. Darker regions show a higher density of data points.

Figure 6. Histograms showing the relative frequency (vertical axis) of the various normalised 

soil moisture observations (horizontal axis) and predictions for the years 2003-2005 for the 

SMOSREX site: SIM model, AMSR-E product of VUA-NASA, AMSR-E product of NSIDC, 

ERS-Scat product of University of Vienna, in situ observations. 

Figure 7. Histograms showing the relative frequency (vertical axis) of the various normalised 

soil moisture observations (horizontal axis) and predictions for the years 2003-2005 for whole 

of France: SIM model, AMSR-E product of VUA-NASA, AMSR-E product of NSIDC, ERS-

Scat product of University of Vienna.

Figure 8. Scatterplots showing the comparison of the various soil moisture products for pixels 

with herbaceous vegetation only (cultivated soils and grasslands) for the four seasons a) 

spring, b) summer, c) autumn, and d) winter. The scatterplots and their corresponding 

statistics are located on opposite sides of each figure, ie. the scatterplot of the data pair SIM-

AMSR (VUA) is in the top left hand corner, while the respective statistical values are found 

in the bottom right hand corner. Darker regions show a higher density of data points.
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Tables

Table 1 – Comparison of monthly anomalies of surface soil moisture products (SIM, AMSR-

E, ERS-Scat) with in-situ 0-6cm observations at the SMOSREX site, for three pooled annual 

cycles (2003 to 2005). 

Product Season Number Correlation Bias RMSE Kendall  

τ

Kendall 

p-value

SIM All 794 0.61 0.01 0.79 0.63 ****

SIM DJF 121 0.44 -0.03 0.93 0.53 **

SIM MAM 219 0.74 0.01 0.65 0.73 ****

SIM JJA 255 0.58 0.03 0.78 0.58 ****

SIM SON 199 0.65 0.04 0.79 0.66 ****

AMSR-E (NSIDC) All 698 0.46 0.01 0.88 0.39 ****

AMSR-E (NSIDC) DJF 95 0.27 -0.20 0.99 0.17 NS

AMSR-E (NSIDC) MAM 192 0.62 0.11 0.77 0.54 ****

AMSR-E (NSIDC) JJA 219 0.23 0.02 1.03 0.21 **

AMSR-E (NSIDC) SON 192 0.54 0.01 0.88 0.48 ****

AMSR-E (VUA-NASA) All 606 0.38 0.01 0.97 0.38 ****

AMSR-E (VUA-NASA) DJF 75 0.12 -0.07 1.05 0.01 NS

AMSR-E (VUA-NASA) MAM 172 0.49 0.09 0.90 0.53 ****

AMSR-E (VUA-NASA) JJA 184 0.28 0.01 1.00 0.28 ***

AMSR-E (VUA-NASA) SON 175 0.42 0.00 1.01 0.44 ****

ERS-Scat All 133 0.34 -0.08 0.85 0.30 **

ERS-Scat DJF 32 0.57 -0.12 0.51 0.39 NS

ERS-Scat MAM 32 0.55 -0.06 0.54 0.57 *

ERS-Scat JJA 28 0.28 -0.10 0.64 0.30 NS

ERS-Scat SON 41 0.19 0.02 0.81 0.07 NS
The monthly anomaly is the difference to the mean divided by the standard deviation, for a period of 5 weeks. The

Kendall τ is a non-parametric measure of correlation that assesses how well an arbitrary monotonic function could 

describe the relationship between two variables, without making any assumptions about the frequency distribution of the 

variables. It is used to measure the degree of correspondence between two rankings and assessing the significance of this 

correspondence. The p-value indicates the significance of the test, if it is small (below 0.05 at least), it means that the 

correlation is not a coincidence. The following thresholds on p-values are used: (i) NS (non significant) for p-value 

greater than 0.05, (ii) * between 0.05 and 0.01, (iii) ** between 0.01 and 0.001, (iv) *** between 0.001 and 0.0001 and (v) 

**** below a value of 0.0001.



34

Table 2 – Statistics of the inter-comparison between the difference data sets (normalised 

surface soil moisture data). The values in each cell correspond to the coefficient of 

correlation, bias, and RMSE, respectively.

SIM ERS-Scat
AMSR-E 

(VUA-NASA)

AMSR-E 

(NSIDC)

r

bias

RMSE

-0.014

0.215

0.370

-0.099

0.040

0.363

-0.115

0.043

0.361

AMSR-E 
(VUA-NASA)

r
bias

RMSE

0.491
0.177

0.297

0.397
0.099

0.296

ERS-Scat

r

bias

RMSE

0.728

0.093

0.201



Figures

Fig. 1 Time series plots (2003-2005) of the normalised values of the in-situ observations at 

SMOSREX (black lines) and the four surface soil moisture products, SIM, AMSR-E 

(NSIDC), AMSR-E (VUA), and ERS-Scat (+). The model predictions and satellite 

observations were obtained from respective low-resolution pixels covering SMOSREX. 



Fig. 2 Scatterplot of the normalised in-situ soil moisture observations at SMOSREX (vertical 

axis) with the four low-resolution data sets (SIM, AMSR-E (VUA), AMSR-E (NSIDC), and 

ERS-Scat) for the years 2003-2005. Darker regions show a higher density of data points.



Fig. 3 Maps of the coefficient of correlation between the various soil moisture products 

(normalised values) over mainland France. The circles highlight the 6 major metropolitan 

areas of France. 



Fig. 4 Location of pixels with the different dominant land cover types (cultivated soils, 

grasslands, and forests), based on the fractional covers obtained from Ecoclimap and 

aggregated to 0.25° resolution.



Fig. 5 Vegetation type specific comparison of the different soil moisture products for the three 

dominant vegetation types (a) cultivated soils, b) grasslands, c) forests), using the data from 

the period 2003-2005. The scatterplots and their corresponding statistics are located on 

opposite sides of each figure, ie. the scatterplot of the data pair SIM-AMSR (VUA) is in the 

top left hand corner, while the respective statistical values are found in the bottom right hand 

corner. Darker regions show a higher density of data points.

a

c

b



Fig 6. Histograms showing the relative frequency (vertical axis) of the various normalised soil 

moisture observations (horizontal axis) and predictions for the years 2003-2005 for the 

SMOSREX site: SIM model, AMSR-E product of VUA-NASA, AMSR-E product of NSIDC, 

ERS-Scat product of University of Vienna, in situ observations. 



Fig 7. Histograms showing the relative frequency (vertical axis) of the various normalised soil 

moisture observations (horizontal axis) and predictions for the years 2003-2005 for whole of 

France: SIM model, AMSR-E product of VUA-NASA, AMSR-E product of NSIDC, ERS-

Scat product of University of Vienna.



Fig. 8 Scatterplots showing the comparison of the various soil moisture products for pixels 

with herbaceous vegetation only (cultivated soils and grasslands) for the four seasons a) 

spring, b) summer, c) autumn, and d) winter. The scatterplots and their corresponding 

statistics are located on opposite sides of each figure, ie. the scatterplot of the data pair SIM-

AMSR (VUA) is in the top left hand corner, while the respective statistical values are found 

in the bottom right hand corner. Darker regions show a higher density of data points.
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