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Response of surface energy balance to water regime and vegetation development in a 

Sahelian landscape. 
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The West African monsoon interacts strongly with the land surface, yet knowledge of these 

interactions is severely limited by the lack of observations of surface energy fluxes. Within 

the framework of the AMMA project, three eddy covariance flux stations were installed to 

sample the three main surface types near Hombori (Mali) in the central Sahel at 15.3°N, and a 

fourth station was installed near Bamba in the northern Sahel  at 17.1°N to sample semi-desert 

conditions. Observed land types near Hombori comprised a grassland growing on sandy soil 

(near the village of Agoufou), a flooded forest in a clay-soil depression (Kelma), and a bare 

rocky soil (Eguerit). The energy balance closure at the grassland site was satisfactory, but less 

so at the flooded forest site. Surface water heat storage during the flood and advection 

probably were responsible for most of the imbalance.  

The daily sensible heat flux (H) was fairly constant throughout the year at Bamba and Eguerit, 

with only a slight increase during the monsoon season corresponding to increased net 

radiation. By contrast, the seasonal cycle of the grassland site was marked, with H decreasing 

during the monsoon season from 70 Wm-2 in May to 20 Wm-2 in August. The flooded 

woodland exhibited the strongest contrast between the dry and wet seasons, with daily 

sensible heat flux close to zero during the flood. During the peak monsoon season, the two 

vegetated sites had the highest net radiation and the lowest sensible heat flux, as a 

consequence of the strong evapotranspiration rates caused by both high soil moisture 

availability and high Leaf Area Index. Lateral fluxes of water were found to be strong drivers 

of inter-site sensible and latent heat fluxes variability, with water leaving bare rocky soils as 

surface runoff and ending in the clay depressions (e.g., Kelma), whereas the sandy soils were 

locally endorheic, with most of the rainfall being rapidly returned to the atmosphere. 
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An attempt was made to scale the sensible heat flux up to the scale of the AMMA northern 

supersite (60 km by 60 km), following a simple scaling scheme, which accounted for the 

contrasting surface types and water regimes. The super-site average sensible heat flux proved 

to be close to the grassland sensible heat flux, in part because grassland occupies 55% of the 

area. A strong spatial variability was caused by the difference in water regime and vegetation 

type, at a scale large enough to potentially influence the atmospheric properties such as the 

boundary layer. 

Keywords : Sahel – sensible heat flux – latent heat flux – net radiation – grassland – bare soil 

– flooded forest - AMMA 

 

Introduction 

 

The West African monsoon (WAM) has been shown to depend significantly on surface-

atmosphere interaction, at the large scale (Charney et al. 1975, Nicholson et al. 1998, Zeng et 

al. 1999, Nicholson 2000) as well as at the meso-scale (Clark et al. 2004, Taylor et al. 2007, 

Mohr et al. 2003). The land surface is currently thought to act as a strong amplifier of the 

WAM inter-annual variability, which is at least partially triggered by ocean SST anomalies 

(Gianini et al. 2003). As a result, the whole water cycle of the monsoon is affected by the land 

surface energy and mass fluxes. There is a need to understand and quantify the processes, 

which control the surface fluxes in West-Africa, as well as to evaluate land surface models 

(de Rosnay et al. 2006). Evaluation can be performed at the local scale, using flux time series 

where they exist (FLUXNET, Baldocchi et al. 2001), but it becomes increasingly important to 

assess the surface fluxes at the landscape scale. Both the average value, which corresponds to 

the grid cell of large scale models, and the spatial variability of the fluxes are of interest (e.g. 

LeMone et al. 2007). The land surface is characterized by a significant heterogeneity created 
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by topography, soil type, land use, and land cover. In addition, the surface fluxes are 

modulated by atmospheric forcings, with precipitation being of utmost importance in semi-

arid regions. It has been shown that mesoscale heterogeneity greatly influences the 

atmospheric boundary layer and thermodynamics, mesoscale circulations, and convection 

triggering and intensity (LeMone et al. 2007 and references therein, Clark et al. 2004). 

Modelling studies have suggested that surface heterogeneity potentially has an effect on 

rainfall in the tropics (Avissar et al. 2004). 

Unfortunately, the current understanding of the surface / atmosphere interactions is severely 

limited by a lack of observations, West-Africa being one of the less instrumented regions of 

the world. The AMMA/Catch (African Monsoon Multidisciplinary Analyses / Couplage de 

l’Atmosphère Tropicale et du Cycle Hydrologique) network provides datasets, which can be 

used to scrutinize land surface fluxes with unprecedented focus and accuracy. For instance, 

the development of a network of flux measurement stations provides the opportunity to 

explore the time and space variability of these fluxes along a latitudinal transect, as well as 

the scaling of the fluxes from local to meso-scale. In this article, surface sensible heat fluxes 

measured at 15.3°N and 17°N, over the northernmost AMMA/Catch meso-scale site, in the 

Malian Gourma, are presented. Instruments were deployed in the central and northern parts of 

the Sahel, for which no flux observations had been collected previously. The closest 

documented ecosystems are found in the southern Sahel, near Niamey (Niger), where the 

SEBEX and HAPEX-Sahel experiments took place, mostly during the ‘dry-down’ phase of 

the monsoon (Allen et al. 1994, Gash et al. 1997). The resulting data for millet crops, bush 

fallow and tiger bush proved critical in assessing model performance, (e.g. Taylor et al., 2002, 

Kahan et al., 2006). There is a need to carry out in-depth examination of land surface 

processes over different surface types in the central and northern Sahel regions. The seasonal 

cycle of the sensible heat, latent heat and radiation surface fluxes for the different landscape 
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types is described and the driving variables are identified. Since lateral water redistribution is 

crucial to the soil moisture regime and vegetation development in this area, the roles of run-

off, run-on and locally endorheic systems on the sensible heat flux are investigated. 

 

Site description 

 

A comprehensive description of the northernmost AMMA/Catch site is provided by Mougin 

et al., (this issue). Hiernaux et al. (this issue) describe the vegetation, Samain et al (2008), 

Guichard et al., Frappart et al., (this issue) and de Rosnay et al. (this issue) document the 

meteorological, radiation and soil moisture networks. The climate is controlled by the 

monsoon, with south-westerly winds providing moist air from June to September, and north-

easterly Harmattan winds bringing hot and dry air during the rest of the year. Rainfall 

averages 350 mm at Hombori and 150 at Bamba (semi-desert site of figure 1) and is brought 

by convective systems, mostly from early July to mid-September. The so-called Hombori 

super-site is a 60 km by 60 km area embedded in the larger meso-scale site, which extends 

from 14.5° N to 17.5°N (Fig. 1). Within the Hombori super-site, 55% of the area is covered 

by grasslands growing on sandy dunes (Fig. 2, grey), 35% is bare soil (Fig. 2, white), 

comprising rocks topped with gravels (20%), and loamy shallow soils (15%), and 10%  

consist of valleys and low-lands referred to as ‘bas-fonds’ in French, with clay soil (Fig. 2, 

black). Ponds and seasonally flooded woodlands are found in the lowest part of these 

depressions (5%). Sandy dunes are locally endorheic (no runoff except over very short 

distance, of less than 100 m), whereas bare soils generate substantial run-off into the 

depressions. Tree cover is low or non existent (of the order of 1%) over bare soil. It is low 

over grasslands (generally between 0 end 5%), but can reach 60% in flooded Acacia stands in 

the clay soil depressions.  
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Data  

 

Four flux stations were operated in 2005, 2006 and 2007 to sample the three main surface 

types as well as the latitudinal climate gradient (15.3°N, 17.1°N). Three flux stations were 

deployed within the super-site of 60 km by 60 km area, as shown in figures 1 and 2. As such, 

they broadly undergo the same climate conditions, apart from rainfall, which can differ, 

especially when short time scales are considered, such as the scale of an event or a convective 

cell within an event. In Eguerit, the flux station is installed on a bare, dark, hard pan outcrop. 

Net radiation has also been measured on nearby bright loamy bare soil during 56 days in 

2008. The grassland (Agoufou) grows over bright sandy soil, dominated by annual grasses 

and forbs with 2% tree cover, mostly scattered Acacia, Combretum, Balanites and 

Leptadenia. Kelma is a seasonally flooded open woodland site, with a 40% tree cover (mostly 

from Acacia seyal and Acacia nilotica), growing on a loamy-clay soil. These sites are referred 

to as “bare rocky soil” (Eguerit), “grassland” (Agoufou) and “flooded forest” (Kelma). In 

addition to the 3 super-site stations, a fourth station was installed near Bamba at 17.1°N to 

sample semi-desert surface at the margins of the Sahara. This site belongs to a different eco-

climatic zone (Frappart et al., this issue) and is referred to as the “semi-desert site”. The soil is 

sandy and bright and vegetation is sparse at most, with a few scattered trees, perennial and 

short annual grasses. At the three supersite stations, grass Leaf Area Index (LAI) and tree 

Plant Area Index (PAI, including stems and branches) are monitored on a 10 day basis along a 

1 km transect.  

The four components (incoming and outgoing short- and long-wave) of the radiation budget 

were measured with a CNR1 (Kipp and Zonen, Delft, Holland) at the four sites and 

calibration was checked in 2006. Additional radiation data were collected in September 2008 
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to document bare soil albedo variability. Volumetric soil water content was monitored with 

CS616 reflectometers (Campbell Scientific Inc., Logan, UT, USA), except in the loamy-clay 

soil of Kelma, where ML2x theta probes (Delta T Devices Ltd, UK) were used. Gravimetric 

measurements were performed at different stages of the rainy and dry seasons to ensure 

calibration in various soil moisture conditions (see de Rosnay et al. this issue). Relative 

humidity (%) and air temperature (°C) were also measured at 2.2 m, and 7 m above ground in 

the forest. HMP45C probes (Vaisala inc., Woburn, MA, USA) were used at the grassland and 

semi-desert site, WXT510 (Vaisala inc., Woburn, MA, USA), weather transmitters were used 

at the bare rocky soil and forest sites. All those parameters were measured every 10 seconds 

and stored at a 30 min averaging interval. 

Sensible heat flux was measured with sonic anemometers (Solent R3) measuring the three 

vector components of the wind at 20 Hz. Solent R3 (Gill Instruments, Lymington, UK) eddy-

covariance systems at the grassland and forest sites were replaced by Campbell CR3000-

CSAT3-LiCor7500 systems (Campbell Scientific Inc., Logan, UT, USA, Li-Cor Inc., Lincoln, 

NE, USA) in 2007, which allowed computation of latent heat fluxes. Soil heat flux was 

computed from soil temperature at two levels and compared with the flux measured by heat 

flux plates at 5 cm in the soil. 

 

Methods 

 

The sensible heat, latent heat and CO2 fluxes were computed according to the eddy 

covariance methodology following the CarboEurope recommendations (Foken 2008, Mauder 

and Foken technical report, 

24 

25 

http://www.geo.uni-bayreuth.de/mikrometeorologie/ARBERG/ARBERG26.pdf)  

using standardised routines and the EdiRe software 
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(http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe).  

The following processing steps were performed:  detection and elimination of raw spikes, flux 

loss corrections due to angle of attack applied to Solent R3 anemometers, 2D coordinate 

rotation, conversion of buoyancy flux into heat flux (Schotanus et al. 1983) using relative 

humidity when the molecular density of H2O was not available from Infra Red Gas Analysers, 

spectral and stability corrections, and WPL calculations. 

Ground heat fluxes were calculated by means of a Fourier decomposition of soil temperature 

time series. It has been shown that this method provides ground heat fluxes which close the 

surface energy balance with a good accuracy (Heusinkveld et al., 2004). The methodology is 

recalled in Guyot et al. (this issue). It consists of producing, day by day, Fourier series of the 

temperature at depth z1. A daily thermal diffusion coefficient Dg is calculated from the ratio of 

the amplitude of the temperature series at z1 and z2 (Verhoef et al. 1996). The diffusion heat 

equation for homogeneous ground is solved and provides the temperature T(z,t) and its 

vertical gradient T z∂ ∂ at any depth z and any time t. The ground heat flux is obtained from 

eq. 1 where λ

14 

15 

16 

17 

18 

19 

20 

21 

g is the thermal conductivity of the ground. The latter is calculated from   

λg = Dg .ρg.Cg where ρg is the density and Cg the heat capacity of the ground. ρg.Cg is 

estimated from dry soil characteristics ρs.Cs with ρg.Cg = ρs.Cs + θ.ρw.Cw, where θ is the 

volumetric soil humidity at z1, and ρw and Cw, are the density and heat capacity of water. A 

soil moisture dependence is then accounted for through these ground characteristics. 

Measured values for ρs (1610 kg.m-3) and a literature value for Cs (875 Jkg-1K-1, Hillel 1998) 

have been used. 

    0z gG Tλ= = − ∂ ∂ 0zz =22 

23 

24 

   (eq. 1) 

The energy balance closure is examined by computing the imbalance according to equation 2.  

EI = RNET – H –LE – G – S   (eq. 2) 
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where EI is for the energy imbalance and S represents the storage terms. Over the last two 

decades, persistent observations of imbalance ranging between 10 and 40% of the available 
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NET - G led to the development of different correction terms in the calculation of the 

turbulent fluxes, as mentioned above, and to the examination of all the so-called minor terms 

(heat storage between the sonic and the ground, photosynthesis). Dedicated experiments have 

been designed to address the energy balance closure problems (EBEX, Oncley et al. 2007). 

Foken (2008) provides a synthesis of these findings. Here, we examine the energy balance 

closure at three time scales.  The sum of the turbulent fluxes H and LE plus the storage term S 

is regressed against the available energy RNET - G  using all data at the 30 minutes time scale. 

Day-time and 24h averages are also computed. The storage terms include the sensible heat 

stored in the air (Sair) and the biomass (Sbio) between the sonic anemometer and the surface as 

well as the energy used in biochemical reactions (Spho), following Oncley et al. (2007).  

Sair = ρ.Cp.Z.(∆Tair/∆t)   (eq. 3) 

Sbio=Cb.B.(∆Tair/∆t)     (eq. 4) 

Spho = Lp. FCO2    (eq. 5) 

where Z is the measurement height, Cb is the heat capacity of woody biomass  (3000 Jkg-1K-1), 

B is the aboveground fresh biomass (4.5 kgm-2 for the forest site), Lp = 482 Jmole-1 CO2 

(Jacobs et al., 2008) and FCO2  is the net CO2 flux (mole s-1 m-2). 

Latent heat flux was estimated as the residual of the surface energy balance for the bare rocky  

soil (Eguerit) and semi-desert (Bamba) sites, in the absence of eddy covariance measurements 

of water vapour, using equation: 

LE  =  RNET – H – G – S   (eq. 6) 

Considering that the site is bare soil, the flux tower is low, and there is no photosynthesis flux, 

no storage terms were necessary for Eguerit and Bamba. The semi-desert site at 17°.1 N 

(Bamba) is prone to substantial sand deposition during dust storms, which produces 
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significant accumulations over the soil temperature sensors, being as high as 50 cm per year. 

The estimation of LE as the residual of the energy balance at this site had therefore to rely on 

the assumption that the soil heat flux is zero at the 24 h time scale. 

 

Due to the harsh environment and the remoteness of the sites, instrument failures cause gaps 

in the data. No gap filling was performed except for between day of year (DoY) 206 to DoY 

225 of 2007 to estimate accumulated evaporation for the grassland site, where a daily average 

evaporative fraction LE / RNET was computed using ten days before and after the gap. Long 

time series were obtained for 2005 and 2007 at the grassland site (with limited data in 2006) 

and for 2006 and 2007 at the forest site, whereas 2006 provided the longest record for the 

northern semi-desert site and 2005 for the bare rocky soil site. 

  

In the following, data for different years are shown and pooled together to give a 

comprehensive view of all data collected over these sites during the AMMA Enhanced 

Observation Period (2005-2007). 

 

Results 

Energy balance closure 

 

The energy balance closure provides a natural test to check the consistency of eddy 

covariance flux data. Indeed, if all terms were exactly known, the energy imbalance should be 

zero, according to equation (6). At the 30 minute time-scale, the regression obtained for the 

grassland site is: 

H + LE +S = 0.87 (RNET – G) + 14.5       (r2 = 0.92, n=8062) 
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Such a closure of the surface energy balance is well within the range of what is expected from 

eddy covariance measurements (Foken 2008). The soil heat flux and its diurnal dynamics 

proved to be extremely important, because the bare ground fraction is high at this site. In 

August, the midday (11h-13h) average value of G is 172 W/m2 at the grassland site, while the 

grass cover is at its maximum. A comparison with soil heat flux measured with heat flux 

plates at 5 cm in the soil shows that accounting for the heat stored in the soil between -5cm 

and the surface is critical. Using the flux plates and soil temperature at -5cm to estimate soil 

heat storage provides a less satisfactory energy balance closure than G estimated with the 

harmonics method (not shown). In that respect, our results are in line with Heusinkveld et al. 

(2004) and Jacob et al. (2008) and confirm the relevance of the harmonic computation for 

semi-arid sites. The energy consumed by biochemical processes reaches 15 to 20 Wm
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-2 at 

midday and an August average of 3 Wm-2. Figure 3a shows the energy balance closure 

computed with day-time values (defined as data with RNET >0) expressed as 24h averages, 

which leads to the following relation:  

Hd + LEd + Sd = 0.78 (RNETd - Gd ) + 12.8     (r2 = 0.89, n=150) 

where the subscript d is for day-time average. 

Such a relation is also commonly found with eddy covariance data in relatively favourable 

sites. In addition to the uncertainty affecting the ground heat flux, a lack of turbulent fluxes 

may come from large eddies and meso-scale circulations, which are not accounted for because 

the fluxes are calculated at the 30 minute time-scale (Finnigan et al. 2003, Foken 2008). 

Discarding the data occurring during low turbulence periods, identified by friction velocity u* 

< 0.15, does not change this analysis and slightly improves the energy balance closure at 

negative RNET. 

When full 24-hour periods are considered, the imbalance averages to -0.67 W.m-2 (SD = 

16.2) over the season. At this time scale, the soil heat flux is less critical, and both the heat 
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flux plates and the harmonics methods give similarly small numbers, but the photosynthesis 

energy becomes significant, since it is not balanced on a 24 hour basis during the growing 

season. The imbalance is small and even slightly negative during the dry season (-5 W.m-2, 

S.D.=14), implying that the sensible fluxes are accurately measured. During the rain season, 

the imbalance is 9 W.m-2, (S.D. = 14.6), which provides an estimate of the error on the 

turbulent fluxes. An order of 10 W.m-2 for the accuracy of 24 hour averaged fluxes can be 

retained. 

The forest site is a non-ideal site for eddy covariance measurements (Finnigan 2008, Foken 

2008). Indeed, in sahelian landscapes, forested flooded sites rarely extend over large 

homogeneous areas, since they occur in valleys and low-lands only. The flux tower is located 

in the largest forest patch of the so-called AMMA super-site, which covers a 2 km x 1.5 km 

area. The low-land is surrounded by drier ecosystems, and this favours advection and 

atmospheric circulations or large eddies, as will be implied by the examination of the seasonal 

cycle of the sensible and latent heat fluxes (see next section). In addition, the seasonal flood 

affects a fraction of the footprint, which varies with time. The flood also impacts soil heat flux 

measurement (heat storage in the water layer and energy inflow/outflow since water 

circulates) and therefore the energy balance closure in the foot-print. 

At a 30 minute time-scale, the closure is 

H + LE + S = 0.72 (RNET – G) + 22.0            (r2 = 0.92, n=8970) 

whereas daytime averaged energy balance closure (figure 3b) gives  

Hd + LEd + Sd = 0.60 (RNETd - Gd ) + 31.7    (r2 = 0.72, n = 209) 

The energy balance closure is less good for the forest site than for the grassland site, although 

it is still in the range of commonly obtained values for non-ideal sites. Slopes of 0.72 for half-

hourly data and 0.60 for day-time data indicate a lack of flux. The heat stored in the water 

during daytime is probably large during the flood, and may explain a significant part of the 
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imbalance. The daytime-averaged value of G is 30 Wm-2 smaller during the flood than during 

the periods before and after. Unfortunately, estimations of water volume in the footprint and 

water temperature are not available to really quantify this storage term. The heat stored in the 

biomass is not negligible at these time-scales, and biochemical storage has to be accounted 

for, even at longer time-steps, since it does not equilibrate on a 24 h period.. Indeed, the CO
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2 

flux measured over the forest reaches very high values, mostly due to the rapid growth of C4 

grasses (Merbold et al. 2008), leading to an energy flux larger than 30 Wm-2 at midday, with a 

monthly-average value of 6 Wm-2  in August.  

At the 24 hour time-scale, the imbalance reaches 19.5 Wm-2 on average over the measurement 

period, which corresponds to 14% of the net radiation. It has a clear seasonal cycle, with a 

maximum of 24.8 Wm-2 (S.D. = 32) during the flood period, and a minimum of -0.2 Wm-2 

(S.D. = 10.3) during the dry period when the Harmattan wind is blowing (after DoY 300). 

These characteristics, together with the sensible and latent heat flux seasonality (see next 

section), suggest a significant advection term, corresponding to horizontal moisture gradient 

and transport, and possible atmospheric circulations. Indeed, the flooded forest constantly 

receives dry air from the surroundings, making horizontal advection a plausible candidate for 

the lack of flux of the energy balance. The typical error on the H flux is most probably of the 

order of 10 Wm-2 and the latent heat flux is thought to be underestimated during the wet 

season. 

A comprehensive examination of the energy balance closure of the bare rocky soil and semi-

desert sites can not be performed. However, assuming that dry season evaporation is zero, the 

energy imbalance reduces to the residual of the radiation, sensible and ground heat flux. On a 

24 hour basis, the imbalance averages -3.7 Wm-2 (S.D. = 10) at the bare rocky soil site. At the 

northern semi-desert site, the 24 hour average residual during the dry season (DoY < 165) has 

a mean of  -1.6 Wm-2 (S.D. = 5.7), which can be attributed either to seasonal heat storage in 
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the soil or a slight excess of energy. Nevertheless, these small numbers give reasonable 

confidence in the flux calculations at this time scale. 

 

Seasonal cycle of sensible heat flux, latent heat flux and radiation balance 

 

The seasonal course of the daily sensible heat flux for the four sites is shown in figure 4, the 

net radiation and latent heat fluxes are shown in figure 5 and 6. The different years have been 

superimposed to illustrate the seasonal cycle as completely as possible. 

When averaged over 24h for each day, the sensible heat flux at the semi-desert site is fairly 

constant over the summer (Fig. 4a). A similar flatness of the seasonal cycle is observed at the 

bare rocky soil site as well, with almost no difference between the dry period (e.g. May and 

June) and the monsoon period (August), except for a slight increase during the core of the 

monsoon (Fig. 4b). The seasonal cycle of H is influenced by the cycle of the solar angle, 

which results in lower values of the incoming solar radiation around the winter solstice, as 

well as by an increase of the net long-wave radiation during the rainy season  (Guichard et al. 

this issue). Low daily values occurring between day of year 150 and 250 correspond to rain 

events. By contrast, the seasonal cycle of the grassland site is more pronounced and it 

displays an opposite pattern, with H decreasing during the monsoon season, from 70 W.m-2 in 

May to 20 W.m-2 in August and increasing back to the dry season value after DoY 260 (Fig. 

4c). The forest site, (Fig.4d) exhibits the strongest contrast between the dry and wet season, 

with three well-marked periods. The sensible heat flux is strongest from April to June then the 

flux decreases during the early monsoon season. Last, a dramatic change occurs when the site 

is flooded, starting around day of year 220 in both 2006 and 2007. From this day onward, the 

sensible heat flux is close to zero, often with a downward flux after noon. This reflects the 
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fact that most of the energy is being converted into the latent heat flux. It should be noted that 

the flood season continues for a much longer period than the rainy season. 

 

The magnitude of the sensible heat flux is primarily constrained by the availability of energy, 

in the form of net radiation, and the partitioning of this energy into latent heat, sensible heat, 

and the ground heat. The four sites noticeably differ in terms of RNET (Fig. 5). Daily RNET 

values corresponding to the days when sensible heat flux data are available at each site are 

plotted with the same symbols as Fig. 4, whereas other available data are added to better 

illustrate the seasonal course. 

 

The seasonal cycle of net radiation is weak for the two bare soil sites (Fig. 5a and 5b). Much 

lower values of RNET at the northern semi-desert site result mainly from the large albedo, the 

sandy soil being brighter than the dark hard pan soil of Eguerit (bare rocky soil site). By 

comparison, the contrast between the dry and wet season net radiation is much higher at the 

grassland and forest sites (Fig.5c and 5d). 

The four components of the radiation balance of the grassland and semi-desert sites are 

discussed in detail in Samain et al. 2008 and Guichard et al (this issue). Differences in net 

radiation during the dry season are primarily caused by soil type, ranging from bright sandy 

soils (semi-desert and grassland sites) to darker clay soil (forest) and even darker ferruginous 

hard pan outcrops (bare soil site). Plant material also plays a role during the dry season. For 

instance, litter and standing straw have been shown to affect albedo values (Samain et al. 

2008). In addition, the structure of the plant canopy in woodlands leads to the lowest albedo 

values, due to light absorption by stems and trunks. These factors explain the differences in 

RNET during the dry season, with albedo in mid-May to mid-June (DoY 135-165) averaging 
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0.43, 0.32, 0.25 and 0.17 for the semi-desert, grassland, bare rocky soil and forest sites 

respectively. 

Two main phenomena result in higher surface net radiation in the peak monsoon season at the 

two vegetated sites. The first one is the growth of plants, triggered by the monsoon rainfall for 

all grasses and forbs and for most of the trees (Fig. 7 a and b). The expansion of the darker 

plant leaves decreases albedo (Samain et al 2008) and reduces the long wave losses because 

the plant canopies are cooler than bare soil during daytime. Leaf area index (LAI) of the 

grassland and the open forest sites show similar seasonal evolution for the grass layer, but the 

forest LAI reaches much higher values with both grasses and trees contributing almost 

equally to total LAI (Fig. 7b). The LAI cycle is longer at the forest site than at the grassland 

site, because the Acacia, and to a lesser extent, the grass layer, maintain green leaves over a 

longer period (Fig.7 b) since water is available for plants over a longer period. Plant growth 

therefore imposes a strong cycle on RNET at both the grassland and forest site. By contrast, 

plant cover within the footprint of the flux station of the bare rocky soil and semi-desert sites 

is very low, with a LAI of 0.05 being measured at Eguerit on DoY 227 and an LAI of 0.01 at 

Bamba on DoY 233 of 2006. 

The second factor leading to higher net radiation during the monsoon season is the availability 

of soil moisture, illustrated in figure 8 for the grassland and open woodland sites. At the 

grassland site, soil moisture in the root zone quickly responds to rain events. Since the soil is 

more than 90% sand, the amount of water retained in the surface layers is much lower than for 

the forest, where the soil is mostly clay. At the forest site, a drastic change of soil moisture 

occurs when the flood arrives, and saturated conditions are maintained over 2 to 3 months 

(Fig.8b). Moreover, open water is present above the soil during that period. Since water 

availability favours latent heat over sensible heat, it increases surface cooling and diminishes 
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long wave losses, thus increasing net radiation. In addition to this direct effect, soil moisture 

also enables plant growth, and indirectly increases R
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NET, as mentioned above.  

By contrast, the rocky soil of Eguerit generates considerable runoff, precluding plant growth, 

and the net radiation is controlled by the variations of down-welling shortwave and up-

welling and down-welling long wave fluxes. The sandy soil of the northern semi-desert site 

generates limited runoff and retains some moisture (see de Rosnay et al, this issue), but in 

rather small amounts and over short periods because rainfall averages 150 mm per year only, 

which considerably hampers vegetation growth. As a result, the surface exerts only a weak 

control on net radiation at the seasonal scale at the semi-desert site. 

 

The seasonal increase in net radiation coincides with a marked decrease in sensible heat flux 

(Figures 4 and 5, vegetated sites). The main reason for this mismatch is that the factors 

driving the increase in RNET also change considerably the surface flux partitioning towards 

increased latent heat flux at the expense of sensible heat flux. A clear illustration of this 

situation is revealed by the flooded forest site. As opposed to the seasonal cycle of H (Fig. 4), 

RNET is not much affected by the flood. Indeed, between DoY 150 and 220, daily H decreases 

by 120 Wm-2, whereas RNET increases by circa 90 Wm-2, with no obvious change in the 

seasonal cycle. 

When the four different sites are compared, the differences in net radiation translate as 

differences in sensible heat in all seasons for bare soil sites (northern semi-desert and bare 

rocky soil) and in the dry season only for the vegetated sites (grassland and forest). Indeed, 

the diurnal cycle of RNET and H averaged over mid-May to mid-June (Fig. 9 a and b) are 

similar in terms of rank, with higher fluxes at the forest, then bare rocky soil, grassland and 

finally semi-desert sites. A fraction of RNET is consumed by LE at the grassland and forest 

sites, because of the first rains, which occurred in early June. As a result, the sensible heat 
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flux of the grassland and semi-desert are very similar although the grassland net radiation is 

slightly higher. Nevertheless, R
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NET explains most of the inter-site differences at that time of 

year. As a rule, in late winter and spring (dry season), daily RNET and sensible heat flux 

coincide. 

A completely different situation prevails during the rain season (Fig. 9 c and d) because the 

two vegetated sites have the highest net radiation and the lowest sensible heat flux value. 

Evapotranspiration (ETR) due to plant development and soil moisture availability is 

responsible for such a seasonal shift in H. Latent heat fluxes for the northern semi-desert, the 

bare soil, the grassland and the forest sites are shown in Figure 6. The daily latent heat fluxes 

differ among the four sites in terms of intensity, seasonality and day-to-day variability. The 

maximum daily rate is reached at the flooded forest, which maintains losses of the order of 6 

mm d-1 (or 175 Wm-2) during the flood. The grassland evapotranspiration commonly reaches 

3 to 4 mm d-1, whilst the northern semi-desert site occasionally reaches 3.5 mm d-1. Such 

differences reflect differences in available energy (RNET and H), since water is not limiting 

ETR just after a strong rain event. This is not the case for the bare rocky soil, where ETR 

never rises above 2.6 mm d-1 because the soil dries out rapidly (in a couple of hours) after a 

rain event and the soil superficial reservoir can not sustain high ETR rate during a full day. 

The seasonal cycle of ETR follows the rain cycle, except in the forest during the flood. 

Wetting and drying cycles are visible at each site except during the forest flood. Shorter 

cycles are found at the northern semi-desert site and the bare rocky soil site, whereas the 

vegetated sites show longer drying period and slower decrease of ETR, due to water 

extraction by the root systems (for instance before DoY 250 for the grassland site, or DoY 

200 at the forest site). 

The flooded open woodland is an extreme illustration of the physical preference in energy 

partitioning for latent heat flux over sensible heat flux in the peak monsoon season. Figure 9c 
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shows that the sensible heat flux is only slightly positive during the morning hours, and turns 

negative in the late afternoon. The negative sensible heat flux in the afternoon implies that an 

oasis effect is at work, with dry and hot air flowing from the surrounding areas and heating 

the surface.  

 

Impact of surface hydrology on heat fluxes and energy balance 

 

The landscape in the Gourma can be classified into three main types characterized by 

different local water balance and lateral water fluxes. As shown in figure 2, the first type 

consists of sandy soil including mobile and fixed dunes and sandy plains, where rainwater 

runs off the dune slopes into the inter-dune depression over a few tens to hundreds of meters, 

making this landscape type locally endorheic. The Agoufou grassland and Bamba semi-desert 

typify this type of landscape. The second type comprises rocky outcrops (sandstone, schists 

and ferruginous hard pans) locally coated with shallow loamy colluviums. Such a surface type 

converts most rainfall into surface runoff, which concentrates in gullies and is transported 

towards valleys and ponds. The Eguerit bare soil type is an example of this type of landscape. 

The third landscape type comprises gullies, loamy-clay valleys and depressions, and open 

water ponds. There, the water balance is fed by substantial surface run-on. Some of the 

loamy-clay depressions, such as the Kelma forest site, are flooded on a regular basis, 

depending on the intensity and distribution of rainfall events as well as on the size of the run-

off area which feeds them. These depressions sustain the growth of acacia forest. 

The local water balance has been computed by accumulating rainfall and evapotranspiration 

for the four sites (figure 10) along with net radiation converted to equivalent millimetres of 

evaporation. The two locally endorheic sites (grassland and semi-desert) display a similar 

behaviour, with accumulated rainfall being rapidly lost through the evapotranspiration 
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process. Latent heat consumes a dominant fraction of the net radiation for the grassland but 

not for the semi-desert site, since the total rainfall is much lower. ETR slightly exceeds 

rainfall at the semi-desert site, as a result of the limitations of the residual method. For the 

grassland site, 90% of the precipitation is rapidly returned to the atmosphere. By contrast, the 

bare rocky soil site exhibits limited evaporation. The difference between rainfall and 

evaporation indicates that run-off is the dominant loss of water, which can reach 70% of total 

precipitation. Most of the net radiation is converted into sensible heat flux. Conversely, 

accumulated evapotranspiration at the flooded forest site is more than twice as much as the 

precipitation amount, indicating substantial run-on. Net radiation during the flood is entirely 

converted into evapotranspiration, with even a possible slight under-estimation of the latent 

heat flux as previously discussed. 

 

As a result of the structure of the landscape, lateral water fluxes exert a strong control on the 

seasonal cycle of the heat fluxes and radiation balance in the Gourma. For instance, at the 

Eguerit bare soil site, the radiation balance and the partitioning between sensible and latent 

heat do not change much during the rainy season, since there is no vegetation development 

and a limited surface soil moisture reservoir. Conversely, locally endorheic sites receiving 

significant rainfall exhibit a significant seasonal cycle in soil moisture and plant growth, 

resulting in strong variations in net radiation, sensible and latent heat fluxes. ‘Run-on’ sites 

like the forested depression exhibit the strongest seasonal cycle in sensible heat flux, since 

run-on sustains above average plant growth and ample soil moisture availability. The control 

that lateral water redistribution exerts on surface fluxes is therefore dominant at the seasonal 

time-scale. There are also effects at shorter time-scales, typically of the order of a few days. In 

general, a rainfall event causes a sharp decrease in sensible heat flux, followed by a recovery 

period of several days, and an opposite response of the latent heat flux. This response is 
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shorter over the bare rocky soil of Eguerit, because little water is stored in the soil due to large 

run-off. During the flood of the forest site, rainfall events have no effect on the heat fluxes, 

except through a drop of the incoming shortwave radiation during the event.  

  

Sensible heat fluxes at the landscape scale 

 

There is a strong interest in scaling the fluxes up to the scale of a grid-cell of atmospheric 

models, typically of the order of a few tens of kilometres. Up-scaling of fluxes however is a 

difficult exercise, as shown by Jarvis (1995). An attempt is made here to estimate the sensible 

heat flux at the scale of the AMMA northern supersite (60km x 60km), following a simple 

aggregation scheme. The site has been classified from remote sensing data according to soil 

type, vegetation type and water regime (run-off prone units, locally endorheic units or run-on 

prone units), as detailed in Mougin et al., (this issue). Sensible heat fluxes from the three 

stations within the supersite are weighted by the relative area covered by each main land types 

(Figure 1 and Mougin et al., this issue), with the bare soil category being split into dark rocky 

soils (20%) and bright loamy soils (15%) 

The spatially average flux Have is written as: 

Have = α.Hg + β.Hbs_d  + γ.Hbs_b + δ.Hf     (eq. 7) 

where Hg is the grassland sensible heat flux, Hbs_d is the measured dark rocky soil sensible 

heat flux, Hbs_b is the estimated bright bare soil sensible heat flux, and Hk is the forest sensible 

heat flux. α, β, γ and δ are the relative areas covered by the four surface types (see table 2). 

The H flux for bright bare soils is derived from the dark bare soil flux using a ratio of the RNET  

of these two surface types under the assumption that the proportion of H to RNET is similar. 

According to measurements with two paired radiation stations in late 2008, RNET over the 

bright soil averages 0.57 (n=56) of RNET over the dark soil. Therefore, we assume Hbs_b  = 0.57 
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Hbs_d. In addition to the baseline case, alternative formulations are used to bracket the 

spatially-averaged H flux. The bare soil surface is considered either as ‘all dark’ (β = 0.35 and 

γ = 0 in eq. 7) or ‘all bright’ (β = 0, γ = 0.35), which are two extreme cases.  

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

An additional weighting is designed to account for temporary flooded areas over clay soil, 

which can cover 5% of the supersite area (Mougin et al. this issue, Gardelle et al., submitted). 

This surface type, where flood is of short duration, is considered either as ‘flooded forest’ (in 

the baseline case, α = 0.55, δ =0.10) or as ‘grassland’ (α= 0.60, δ =0.05). 

For each 10-day period, the minimum and maximum of these 4 alternative weighting schemes 

are retained and depicted as a shaded area on figure 11, with the objective of bracketing the 

supersite average flux, during the period when fluxes are available for the three surface types 

(DoY 145 to 365, composite of all data over 2005-2007). 

 

The up-scaled flux is found to closely follow the grassland time series, albeit showing slightly 

weaker seasonal dynamics. Figure 11 further establishes that the forest site, even if it shows a 

strong seasonal cycle, has a rather weak impact on the supersite scale sensible heat flux. The 

bare soil site dampens the seasonal cycle, without significantly affecting the average value, 

especially when the high albedo of the loamy soils is considered. The net effect of the bare 

soil and flooded site is to slightly moderate and delay the decline of the sensible heat during 

the monsoon. The grassland site is clearly close to the supersite average flux, the two other 

types of surface shaping the spatial variability within the supersite. 

 

The deployment of the flux stations was purposely planned to sample the main surface types. 

However, a simple averaging of the fluxes from three stations is potentially affected by the 

small scale spatial heterogeneity of rainfall, which can change from one year to another, and 

therefore gaps in the sampling period. The inter-annual variability is extremely weak for the 
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bare soil site, as judged by the comparison of the different years for sensible heat flux. At the 

forest site, the inter-annual variability depends on both the date of arrival of the main rainfalls 

and the duration of the flood, which occurred at similar dates in 2006 and 2007. Inter-annual 

variability is more significant at the grassland site, in line with variations in LAI, soil 

moisture and albedo. However, discarding one year or the other does not change the 

aggregated flux significantly. Overall, this reinforces the conclusion that the super-site 

average is close to the grassland flux and that the strong spatial variability is a robust feature, 

because the seasonal cycle and the inter-site differences are much larger than the inter-annual 

variability, at least for the measurement period. No scaling was attempted for the larger so-

called meso-scale AMMA site (3 degrees of latitude, 1 degree of longitude, figure 1), for 

which the landscape types are similar and found in relatively similar fractions: 65% of sandy 

soils, 18% of dark bare soils, 10% of bright loamy bare soils, 5% of bare clay soils, 2% of 

open water and flooded woodland. However at such a scale, it is not possible to assume that 

the precipitation pattern is less important than the surface type (vegetation, soil), even when 

longer time periods are considered. As an example, the grassland and semi-desert sites share 

the same soil properties but display completely different sensible flux, because of different 

precipitation leading to different soil wetness and vegetation type and growth. 

 

Discussion and conclusion 

 

The magnitude of the seasonal cycle of the sensible heat, latent heat, and net radiation fluxes 

measured above the Agoufou grassland in central Sahel can be compared to the data from the 

southern Sahel (SEBEX, Verhoef et al. 1999, HAPEX-Sahel, Gash et al. 1997, AMMA, 

Ramier et al. this issue). All these sites broadly share the same seasonal rhythm, with a short 

rainy season in summer and a long dry season, which is cool in the winter and hot in the 
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spring. The Agoufou grassland however displays a more pronounced peak of net radiation and 

simultaneous decrease in sensible heat flux during the wet season. This is due to the 

difference in latitude, which results in a shorter rainy season at 15.3 °N. Differences also arise 

from, among other factors, the presence of bushes in the fallow sites near Niamey, which have 

a longer leaf-out period than the annual grasses of the Agoufou grassland, where tree and 

shrub cover is 2% only. Both factors influence the R
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NET and H seasonal variability. Such 

differences are further illustrated when the grassland fluxes are compared to the data from a 

site in Burkina-Faso at 11°N (Bagayoko et al. 2007), where crops are grown between ranks of 

trees. The semi-desert, bare rocky soil and flooded forest sites are very different from what 

has been measured so far in Africa, because of the scarcity of flux data in this continent. 

The flux data collected over the three main landscape types provide a comprehensive but 

contrasted view of the sensible heat flux and energy balance of this typical Sahelian 

landscape. Since such surface types form large landscape units, typically bands 15 km wide 

and 40 km long in the Gourma, such a contrast has the potential to create horizontal gradients 

of surface heat flux, which persist during the whole rainy season. In turn, these gradients may 

translate into differential boundary layer growth, meso-scale circulations and may even affect 

convection triggering and development. The flooded area has a more limited extension, 

covering approximately 5% of the landscape, with an additional 5% being flooded over much 

shorter periods, of the order of a few days. Its behaviour, in terms of flux partitioning, is 

singular, but because of the small spatial scales over which it occurs (typically of the order of 

1 kilometre) it may have less impact on the atmospheric boundary layer.  

The heterogeneity of the rainfall increases the heterogeneity of surface fluxes, which has been 

shown to impact convection and land-atmosphere interactions. Some of these effects have 

been established in the case of surface contrasts caused by soil moisture (e.g. Taylor et al. 

2007). Here, we argue that for periods of a few days to a season, lateral water redistribution, 
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soil type and vegetation patterns significantly shape the heterogeneity of the surface fluxes in 

the central Sahel. 

Site-level flux data are scarce in Africa, and have proved very useful to evaluate surface 

models (Kahan et al. 2006, Clark et al. 2004, Cayrol et al. 2000, among others). Landscape-

scale variability has received less attention. The different landscape types that were 

instrumented during the dry-down season in HAPEX-Sahel (bush fallow, millet crop and tiger 

bush) produced much less spatial contrast (Gash et al. 1997) than found here. In the Gourma, 

the fluxes over the bare soil area and the flooded forest are tightly controlled by surface water 

redistribution, both directly through evapotranspiration and indirectly through vegetation 

growth. The presence of negative sensible heat fluxes during the flood period points towards 

lateral interactions between the landscape units mediated by atmospheric circulations. In that 

respect, this Sahelian landscape mirrors the so called ‘tiger bush’ (“Brousse tigrée”), with 

areas of bare soil generating runoff and areas collecting water as run-on allowing important 

vegetation development. The spatial scale is much larger, by one order of magnitude, in the 

case of the Gourma site, though.  

In the future, this dataset will be used together with the data collected over the Niger and 

Benin super-sites (Ramier et al. this issue, Guyot et al. this issue) to evaluate the ability of 

land surface models to simulate the area-average and the landscape-scale heterogeneity of the 

surface fluxes, starting with the AMMA Land Surface Models Intercomparison Project 

(Boone et al., accepted), which inter-compares off-line simulation of surface fluxes, and the 

AMMA Climate Models inter-comparison project (Hourdin et al. accepted), which evaluate 

coupled surface/climate simulations of the African monsoon. 
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1 Figure 1 

  

 Figure 1. Map of the meso-scale Gourma site, with the four eddy covariance sites. The semi-

desert site (sd) is north of the Niger river, whereas the three others, grassland (g), bare rocky 

soil (bs) and forest (f), are located in the so-called super-site. (x) are for the villages of 

Hombori and Bamba.  

 

2 

3 

 

 

 31



 

 

 

 Figure 2. Map of the main soil types over the Hombori 

AMMA super-site. In grey, sandy soils, which are locally 

endorheic. In white, sandstone and hard pan outcrops, 

exporting surface run off. In black, loamy-clay soils receiving 

run-on, which includes ponds and flooded acacia woodland. 

Stars indicate the three flux stations. 
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Figure 3 a): Daily daytime-average of the sum of 

latent, sensible, and storage heat fluxes versus net 

radiation minus ground heat flux for the grassland 

site. b) Same as a) but for the forest site. 
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1 Figure 4 
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 Figure 4: 24h-average sensible heat flux over the four sites. Open symbols are for 2005, 
grey for 2006, black for 2007 and early 2008. 2006 rainfall is shown for semi-desert, 
2005 and 2007 rainfall are shown for the grassland (top and bottom of panel c). 

 

 34



1 Figure 5 
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 Figure 5: Same as Fig. 4 but for 24h-average net radiation. (+) correspond to days when 
no sensible heat data are available. 

 

 35



1 Figure 6 
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 Figure 6: 24h-average latent heat flux calculated by residual method (semi-desert (a) and 
bare rocky soil sites (b)) or measured by eddy-covariance (grassland (c) and forest (d)).  
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1 Figure 7 
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Figure 7 a) Time series of Leaf Area Index 

for the grassland site in 2005 (open symbol), 

2006 (grey) and 2007 (black). 

b) Time series of Leaf Area Index for the 

grass (circle) and Plant Area Index for the 

tree (square) at the forest site in 2006 (grey) 

and 2007 (black). 
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1 Figure 8 
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Figure 8 a) Time series of soil moisture 

content integrated over 1 m for the grassland 

site (sandy soil). Open symbols are for 2005, 

grey for 2006 and black for 2007.  

b) Same as a) but for the flooded forest site 

(loamy-clay soil). Grey symbols are for 2006 

and black for 2007. 
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1 Figure 9 
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Figure 9 a) Diurnal cycle of H averaged over mid-May to mid-June. b) same as a), but for net 

radiation, c) same as a but for August, d) same as b) but for August. 
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1 Figure 10 
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Figure 10: Accumulated net radiation (dotted line), rainfall (black) and latent heat flux 

(grey) for the semi-desert site in 2006 (a), the bare rocky soil in 2005 (b), the grassland 

(c) and forest (d) in  2007. 
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1 Figure 11 
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 Figure 11: Sensible heat flux scaled up to the super-site scale (shaded area) along 

with sensible heat flux from the three flux stations of the super-site using all data 

over the 2005-2007 period. 
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1 Table 1 

Site Sensor Measurement height 

(m) 

cover 

(%) 

Vegetation height  

(m) 

Semi-desert Solent R3 Gill 2.5 Grass 1% 0.2 

Bare soil Solent R3 Gill  2.5 - - 

Grassland  Solent R3 Gill  

(2005 – 2006) 

CSAT3 

Campbell 

(2007 – 02/2008) 

3.5 Grass 1-70% 

Tree   2%, 

0.01 to 0.3 

1.5 to 2.5 

Forest Solent R3 Gill 

(2005 – 2006) 

CSAT3 

Campbell 

(2007 – 02/2008) 

13 Tree  45%, 

Grass 1-90% 

8 

2 

3 

4 

5 

 

Table 1: Eddy-covariance site characteristics.  
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Table 2 
 
 α β γ δ 
Baseline case 0.55 0.20 0.15 0.10 
Dark case 0.55 0.35 0. 0.10 
Bright case 0.55 0 0.35 0.10 
Grass case 0.60 0.20 0.15 0.05 

4 
5 
6 
7 
8 

 
 
Table 2. Values of the parameters used in the 4 scenarios to scale the sensible heat flux up to 
the super-site scale.   
 

 43


