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Those LUTs are subsequently used to invert Landsat-TM and Landsat-ETM+ image series (12 dates from March to September 2003). The Look Up Tables are adapted to different crop types, identified on the images by ground survey and by Landsat classification. The retrieved LAI values are compared to in-situ measurements available from the campaign conducted in mid July-2003. Very good agreement (a high linear correlation) is obtained for LAI values from 0.1 to 6.0. LAI maps are then produced for each of the 12 dates. The LAI temporal variation shows consistency with the crop phenological stages. The inversion method is favourably compared to a method relying on the empirical relationship between LAI and NDVI from Landsat data. This offers perspectives for future optical satellite data that will ensure high resolution and high temporal frequency.

INTRODUCTION:

Monitoring agricultural crops during the growing season becomes increasingly important in order to adjust the management (e.g. irrigation, fertilizers) and to provide information for obtaining yield predictions before harvest time. Crop growth models and soil-vegetationatmosphere process models are more and more used for such monitoring activities. However, it is difficult for the models to account for the spatial heterogeneity in vegetation and soil conditions as well as the inherent difficulties of phenology modelling. One solution consists in calibrating the models using measurements of biophysical parameters (e.g. Brisson et al., 1998, Spitters et al.;1989[START_REF] Bondeau | Comparing global models of terrestrial net primary productivity (NPP): Importance of vegetation structure on seasonal NPP estimates[END_REF][START_REF] Launay | Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications[END_REF].

For calibrating crop growth models, a key variable is the leaf area index (LAI), which accounts for the leaf surface intercepting in-coming radiation. LAI stands out because it takes part in functioning processes through the allocation of carbon to leaves. LAI is also involved in the description of soil-vegetation-atmosphere exchanges like evapotranspiration, photosynthesis and biogenic emissions. For instance, in irrigation management, LAI is required to model the surface resistance when calculating evapotranspiration (ET) by direct application of the Penman-Monteith's equation [START_REF] Allen | Using the FAO-56 dual crop coefficient method over an irrigated region as part of an evapotranspiration intercomparison study[END_REF]. ET models based on surface energy balance and hydrological models that take into account the role of vegetation also require LAI as input for partitioning ET into evaporation and transpiration [START_REF] Norman | A two-source approach for estimating soil and vegetation energy fluxes from observations of directional radiometric surface temperature[END_REF][START_REF] Montaldo | Multi-scale assimilation of surface soil moisture data for robust root zone moisture predictions[END_REF]; see also [START_REF] Hadria | Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency[END_REF].

In crop monitoring studies conducted in recent years in the region of Barrax, Spain [START_REF] Berger | The DAISEX Campaigns in Support of a Future Land-Surface-Processes Mission[END_REF][START_REF] Moreno | The SPECTRA Barrax Campaign (SPARC): overview and first results from CHRIS data[END_REF], in situ LAI measurements have been performed during specific remote sensing experiments and can be used to calibrate crop growth models and coupled vegetation and hydrological models. However, given the large number of crop types, the large differences in crop calendar and the diversity of field management in the region, in situ LAI measurements appeared insufficient as they are usually available for only a limited number of fields and dates.

Multitemporal high resolution optical remote sensing is considered an advantageous alternative to infer both spatial and temporal LAI, provided that the retrieval of LAI from satellite data is effective for the diversity of crop types in the region.

Methodologies to derive LAI from satellite optical data have been the subject of a large amount of work. In contrast, few papers have addressed the effective model inversion of high resolution satellite images for a complete temporal series of data for various crop types in a given region.

The crop types present in the region of Barrax include: cereals, corn, alfalfa, sugar beet, onion, garlic, papaver. Some of the crop types (onion, garlic, papaver) have not been addressed in previous studies.

In the present study, we focused on the assessment of a LAI model inversion approach applied to multitemporal optical data over the region of Barrax. Both the inversion approach and data sources are chosen because of their wide use: the inversion makes use of the PROSPECT+SAIL model and the satellite data are LANDSAT images. First, the PROSPECT+SAIL model benefits from in situ measurements of crop biophysical properties used as constraints on the model parameters; second, we use a model inversion technique consisting of a Look Up Table to invert a complete time series of Landsat-TM and ETM+ scenes acquired all along the crop growth period in the Barrax area (i.e. from March to September). The image data used here consisted of twelve Landsat-TM and ETM+ scenes. Our objective is to obtain temporal LAI curves for the diversity of crops in the area of Barrax.

The paper is organised as follows: first, the study area, ground measurements and satellite dataset used in this work are described. Second, the methodology is detailed including a review of models and inversion approaches, which results in the choice of the retained model and approach. The methodology itself, which includes the derivation of a land use map and an inversion of the selected model, is described. Finally results and validation are presented followed by a discussion.

SITE DESCRIPTION AND DATASETS

Site description:

The area of Barrax (Castilla-La Mancha, Albacete, Spain) is located on a central plateau at 700 m above sea level. Relevant characteristics of this region are its flat topography and the presence of large uniform land-use units. Castilla-La Mancha is one of the driest regions of Europe with mean annual precipitation of about 400 mm, which is mostly concentrated in spring and autumn. The study site covers an area of 51 km × 38 km. Vegetation in this site is representative of the crop types and agricultural practices of Castilla-La Mancha. Two thirds of the study area is dry land with dominant winter/spring cereals (60%) and bare soil/fallow land (30%), and the rest is irrigated land cropped with corn, wheat, barley, sunflower, alfalfa, onion and vegetables.

Ground biophysical measurements:

Biophysical parameters and ground information used in this work were collected in the 2003 growing season in the framework of two different activities: the experimental campaigns of ESA/SPARC-2003 [START_REF] Moreno | The SPECTRA Barrax Campaign (SPARC): overview and first results from CHRIS data[END_REF], and the field activities planned in the DEMETER project [START_REF] Calera | Operational space assisted Irrigation Advisory Services: overview of the DEMETER Project[END_REF].

Intensive field measurements of biophysical properties were collected during the period 11-15 July 2003. These measurements were concentrated in a 10 km × 10 km site within the "Las Tiesas" experimental facilities of the Diputación Provincial de Albacete. The measured biophysical parameters comprised the following: LAI, Leaf Chlorophyll content CC, Leaf Water Content WC and Leaf Dry Matter DM. The measurements were taken in fields of alfalfa (Medicago sativa L.), corn (Zea mays L.), garlic (Allium sativum L.), onion (Allium cepa L.), papaver (Papaver somniferum L.), potato (Solanum tuberosum L.) and sugar beet (Beta Vulgaris L.). The Leaf Chlorophyll Content was measured using the CCM-200 Chlorophyll Content Meter, which was calibrated through laboratory analysis of specific samples (Gandía et al., 2004). Leaf Water Content and Leaf Dry Matter were determined by weighing the wet and dry samples and by estimating the leaf area through the analysis of digital pictures. LAI measurements were made using the Plant Canopy Analyser, LAI-2000 (LI-COR Inc., Lincoln, NE, USA). LAI measurements were carried out under uniform clear diffuse skies at low solar elevation to prevent the effects of direct sunlight on the sensor. Figure1 shows a Landsat closeup of the "Las Tiesas" site with the measured fields highlighted in colour, and the location of the individual samples that were collected. In this figure, the circular fields have diameters that range between 300 m and almost 2 km. These circular fields correspond to irrigation units known as "pivot". The figure shows that a large part of the image is not covered by vegetation at the date of 15 July. The non vegetated areas include mainly harvested cereal fields with variable reflectances, whereas bare soil surfaces have higher reflectance. The nomenclature chosen in this paper for the fields is Fn, where F is a letter denoting the field type (A stands for Alfalfa, C for Corn, G for Garlic, ON for Onion, P for Potato, PA for Papaver and SB for Sugar Beet) and n is a digit corresponding to the field number. For consistency with other analyses using the same datasets [START_REF] Moreno | The SPECTRA Barrax Campaign (SPARC): overview and first results from CHRIS data[END_REF], the numbering of the fields from the original dataset is maintained. Table 1 lists the mean and standard deviation values of DM, WC, CC and Fraction of Vegetation Cover (FVC) measured for each crop. LAI measurements for each individual field are given in Table2. Here, an average value was calculated for each individual field from the sets of measurements performed on the various samples measured within every given field. For a more detailed description of the ground data-set of the SPARC-2003 campaign, see [START_REF] Moreno | The SPECTRA Barrax Campaign (SPARC): overview and first results from CHRIS data[END_REF]. The different parameters in Tables 1 and2 were found weakly correlated (with r2 of the order of r2~0.25), except LAI and Dry Matter Content (r2 ~0.5) [START_REF] Fernández | Statistical variability of field measurements of biophysical parameters in SPARC-2003 and SPARC-2004 data campaigns[END_REF]. In particular, for the same Fraction of Vegetation Cover, e.g. 0.6 for corn, onion and alfalfa in Table 3 lists the twelve Landsat 5 and 7 images acquisition dates and the illumination geometries. Pre-processing of the Landsat images comprised first their geo-coding, then calibration and finally the atmospheric correction providing surface reflectance images. The geo-coding of the twelve images was performed by using a total of more than 100 ground control points (GCPs) distributed over the Landsat scenes and measured in-situ with GPS. The images were first rectified using a polynomial transformation with an error lower than 1 pixel, and then resampled at 30 m spatial resolution by using the nearest neighbour algorithm. The images were subsequently calibrated by calculating the at-sensor radiance, and the surface reflectances were retrieved by performing the atmospheric correction following [START_REF] Guanter | A method for the atmospheric correction of ENVISAT/MERIS data over land targets[END_REF]. In this step, the atmosphere is considered invariant across 30 × 30 km windows, while the surface reflectance is allowed to vary from pixel to pixel, and it is assumed to be represented as a linear combination of two vegetation and soil endmembers. An inversion of the top of atmosphere (TOA) radiances in 5 reference pixels is performed to obtain aerosol optical thickness (AOT), water vapor and the proportions of vegetation and soil in the 5 pixels. The estimated atmospheric component concentrations are then used to convert the TOA radiances to surface reflectances. This atmospheric correction method has been validated with MERIS and sun-photometer data [START_REF] Guanter | A method for the atmospheric correction of ENVISAT/MERIS data over land targets[END_REF].

METHODOLOGY

Land use map:

The time series of Landsat images was first used to generate a land use map of the area. The classification method was based on a multitemporal supervised algorithm that takes advantage of the different phenological development of the crops in the area. The resulting classification has eleven general classes initially defined for irrigation management purposes. Apart from urban areas and water/wet areas, the land use and land cover classes include: Natural vegetation, Spring irrigated crops (mostly small grain cereals), Summer irrigated crops (mostly corn and sugar beet, locally other crops), Double harvest (cereals in spring followed by irrigated summer crops), Alfalfa, Fallow/Bare Soil (in this area fallow is equivalent to bare soil), Dry crops (mainly non irrigated cereals), Other crops (unknown), Vineyard (Vitis vinifera Lin.)/Fruit trees.

The validation was done with 519 plots. The Kappa coefficient, K, which is an indicator of the overall accuracy of the classification was K=0.92. The producer's accuracy is respectively of 80% for Natural Vegetation, 100% for Spring irrigated crops, 98% for Summer irrigated crops, 79% for Double harvest, 100% for Alfalfa, 100% for Fallow/Bare Soil, 88% for Dry crops and 83% for Vineyard. A further classification step has been done, based on more detailed information that was available for some fields through field survey, to partition the land use/land cover classes into crop types. This information was overlaid to the general classification giving refined classes for corn, sugar beet, wheat (Triticum L.), barley (Hordeum vulgare L.), onion, garlic, sunflower (Helianthus annuus L.), peas (Pisum sativum L.), potatoes, oat (Avena sativa L.), pepper (Capsicum annuum), rye-grass (Lolium L.), kenaf (Hibiscus cannabinus L.) and papaver fields. Figure 2 shows the final land use map of the study area.

Therefore, the classification of Figure 2 contains general classes (class 1 to class 11) and detail classes for a subset of fields (class 12 to class 21). For purposes of LAI retrieval, some categories such as Urban areas, Water/wet areas and Fallow fields, were masked in the Landsat images prior to inversion.

Retrieval of LAI:

This section presents a short review of the LAI retrieval methods and explains the choice of the approach to be used in this work. Secondly, the approach itself is described. a) Review of literature:

In recent decades, a large amount of work has been published on the derivation of LAI and other biophysical parameters (e.g. fraction of photosynthetically active radiation, chlorophyll content and water content) from optical data. Two main approaches have been used: empirical and physically-based approaches.

Empirical approaches are based on the experimental relationships between combinations of reflectances in different spectral bands (indices) and the parameter to be retrieved. This approach has been frequently applied to various satellite data to calculate the LAI of large classes or categories of vegetation. In particular, Turner et al. (1999) used Landsat data with empirical relationships to derive the LAI of grassland, shrubland, hardwood and coniferous forest; [START_REF] Chen | Derivation and validation of Canada-wide 25 coarse-resolution leaf area index maps using high-resolution satellite imagery and ground measurements[END_REF] used AVHRR, SPOT VGT and Landsat data to retrieve the LAI of forests and crops. In a similar way, this approach was applied to particular crop types, such as wheat, with Landsat-TM data [START_REF] Duchemin | Monitoring wheat phenology and irrigation in Central Morocco: On the use of relationships between evapotranspiration, crops coefficients, leaf area index and remotely-sensed vegetation indices[END_REF] and with SPOT HRV data (Clevers et al., 2002 among others).

A drawback is that the general applicability of these empirical approaches is reduced because the vegetation indices (VI) are affected by many factors including atmospheric effects, leaf structure, canopy geometry, vegetation developmental stage, geometry of observation, understory vegetation and soil conditions [START_REF] Baret | Potencials and limits of vegetation indices for LAI and APAR assessment[END_REF]Turner et al., 1999;[START_REF] Gitelson | Remote estimation of canopy chlorophyll content in crops[END_REF][START_REF] Boegh | Airborne multispectral data for quantifying leaf area index, nitrogen concentration, and photosynthetic efficiency in agriculture[END_REF].

Physically-based approaches (e. g. [START_REF] Kimes | Inversion Methods for Physically-Based Models[END_REF] are based on the application of Radiative Transfer models. These models describe the physical processes of radiative transfer in the soil vegetation system, connecting the canopy biophysical variables and the canopy reflectance. These approaches, though more complex, are more general in application because they can account for the different sources of variability, although in many cases the information needed to constrain model inputs is not available.

For the objective of this study, which is to investigate the applicability and accuracy of LAI inversion over a complex agricultural landscape, we retain a physically-based approach, taking the benefit of having experimental data to be used as model constraints. Nevertheless, we will compare the results from a physically-based approach to those obtained using an empirical approach.

Among physically-based approaches, the most widely used consists of the inversion of a simple canopy radiative transfer model coupled with a leaf model. Examples of canopy models are: SAIL [START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL model[END_REF], [START_REF] Nilson | A reflectance model for the homogeneous plant canopy and its inversion[END_REF][START_REF] Kuusk | A fast invertible canopy reflectance model[END_REF] and NADI [START_REF] Gobron | A semidiscrete model for the scattering of light by vegetation[END_REF]. Well-known leaf models are PROSPECT [START_REF] Jacquemoud | PROSPECT : A model of leaf optical properties spectra[END_REF], LIBERTY [START_REF] Dawson | LIBERTY-modeling the effects of leaf biochemical concentration on reflectance spectra[END_REF], and LEAFMOD [START_REF] Ganapol | LCM2: A coupled leaf/canopy radiative transfer model[END_REF]. Regarding inversion techniques different approaches have been used: a) direct numerical inversion [START_REF] Gao | Model inversion of satellite-measured reflectances for obtaining surface biophysical and bidirectional reflectance characteristics of grassland[END_REF][START_REF] Bicheron | A method of biophysical parameter retrieval at global scale by inversion of a vegetation reflectance model[END_REF], b) Look Up Tables [START_REF] Weiss | Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data[END_REF]Combal et al, 2002(a)), c) neural network techniques [START_REF] Weiss | Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data[END_REF][START_REF] Qi | Leaf area index estimates using remotely sensed data and BRDF models in a semiarid region[END_REF]Fang and Liang, 2003) andd) genetic algorithms (Fang et al., 2003).

Among the available models and inversion techniques, we retained models which have been widely applied and an inversion technique which is easy to implement: the model is PROSPECT+SAIL and the inversion is based on Look Up Tables (LUTs).

b) PROSPECT and SAIL models:

In this study, we used the '4 inputs' version of the PROSPECT model, PROSPECT v. 3.01 (5 May 1998), available from http://www.sigu7.jussieu.fr/Led/LED_prospect_e.htm. This 4 inputs model version has been widely used in the literature: for instance Jacquemoud and [START_REF] Jacquemoud | PROSPECT : A model of leaf optical properties spectra[END_REF][START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF]. The model was calibrated with the LOPEX dataset [START_REF] Hosgood | Leaf optical properties experiment 93 (LOPEX93)[END_REF]Jacquemoud, 1996).

The PROSPECT model simulates the reflectance and transmittance of a leaf in the region from 400 to 2500 nm. The model assumes that the leaf is a stack of N elementary layers separated by N-1 air spaces, and that the biochemical components are mixed homogeneously in the leaf. The absorption coefficient of the leaf ) ( k is then given by the following equation:

   i i i N k C k k ) ( ) ( ) ( 0    (Eq. 1)
where, N is the structural mesophyll parameter,  is the wavelength, i C the concentration of the constituent, i k the specific absorption coefficient of the constituent and 0 k the absorption of an albino leaf under 500 nm. The specific absorption coefficient of each constituent can be determined by calibrating the model.

There is also a 5 inputs version of PROSPECT model that includes the so-called brown pigments or senescent pigments concentration [START_REF] Demarez | Seasonal variation of leaf chlorophyll content of a temperate forest. Inversion of the PROSPECT model[END_REF]Zhang et al., 2005).

However this version of the model has not benefit from a less extensive calibration.

The SAIL version available for this study is the 4SAIL developed by Verhoef (unpublished), available for the FluorMod project [START_REF] Miller | Overview of FluorMOD: A Project to Develop an Integrated Leaf-Canopy Fluorescence Simulation Model[END_REF]. A version of FluorMod is available from: http://www.ias.csic.es/fluormod/. 4SAIL is a version of the original SAIL model [START_REF] Verhoef | Light scattering by leaf layers with application to canopy reflectance modelling: the SAIL model[END_REF], which includes the hot spot effect and has been improved numerically and computationally with respect to previous versions. and vertical leaves [START_REF] Verhoef | Improved modelling of multiple scattering in leaf canopies: the model SAIL++[END_REF].

c) Chosen inversion approach:

Even in the case of simple radiative transfer models, the estimation of LAI through inversion of reflectance data is an ill-posed problem, as the number of unknown parameters is higher than the spectral information. The problem can be solved by using a-priori information (Combal et al., 2002(b)), for instance using in-situ measurements to limit the range of parameters values.

Thus, taking advantage of the vegetation biophysical measurements that were acquired for our study area, the more general physically-based approached has been preferred to a semiempirical approach.

In a probabilistic description of the inverse problem [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF], the cost function f describing the discrepancies between the simulations and the measurements will be proportional to the term:
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where, is the covariance matrix of the measurements accounting for measurement errors. The elements off-diagonal are not null when errors are correlated between bands. Usually, correlations are unknown, and a first approximation to the problem consists in neglecting them.

The inversion of our Look Up Tables consisted in finding which spectrum from the Look Up 
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The later equation implies that measurement errors are assumed equal (as the same weight has been given to all bands) and without correlations (elements off-diagonal are zero).

Due to the lack of information to quantify the covariance matrix, it has been chosen to give the same weight to all bands. Moreover, in this sort of methodology, measured reflectances are compared with "ideal" simulated reflectances, as it is assumed that the model has no errors.

Errors in the model are indeed very difficult to quantify, also they may be comparable or even higher than measurements errors.

The inversion following Eq. 3 is applied to each of the Landsat images, on a pixel by pixel basis, for each specific crop type according to the land use map (see Figure 2).

The inversion method consists in using crop-specific Look Up Tables (LUTs) which have been created using the outputs of PROSPECT+SAIL models. The PROSPECT model computes the leaf reflectance and transmittance needed for running the SAIL model.

Both PROSPECT and SAIL models were run by steps of 2.5 nm wavelength. To simulate Landsat-like spectra, the SAIL model was run in the range 400 to 2500 nm. The atmospheric parameters needed for this version of SAIL (extraterrestrial solar irradiance, direct solar transmittance, atmospheric spherical albedo and diffuse solar transmittance) were calculated in the full range from 400 nm to 2500 nm using MODTRAN-4. The 2.5 nm step simulated hyperspectral reflectance is then aggregated using Landsat sensor filters to give a 6 bands spectrum. Look Up Tables adapted to solar zenith angle for each Landsat date (see Table 3) were generated for alfalfa, corn, garlic, onion, sugar beet, potato, sunflower, vineyard/fruit trees, wheat/barley and natural vegetation. In addition, a general LUT was created for the rest of crops (peas, pepper, etc).

Inputs to the PROSPECT+SAIL models are experimental data, when available, completed by information from literature. The structural parameters a and b are established based on our knowledge of the plant structure (erectophile, planophile, extremophile …) and the related LAD parameterisation values in SAIL. Table 4 andTable 5 list these parameters and their ranges of values. In a first approximation, the ranges of values centered on in situ measurements collected in July 2003 (and also in July 2004) were applied to the whole season assuming that the ranges measured at these dates are sufficiently large to cover all plausible values. One exception concerns chlorophyll content, which commonly varies within the plant cycle. The distribution of chlorophyll has been widened for dates other than June 29 to July 15. To run the models, we choose to give discrete values within the interval with a regular step. The exact number of steps use for each crop is indicated in Tables 4 and5. Typical values in the LUT are at 5 g.cm-2 steps for CC; 100 mg.m-2 for CW; 10 mg.cm-2 for DM; and 0.1 steps for a, h and LAI. The LAI range is between 0.1 and 6.0 for all crops except for vineyards which varies from 0.1 to 2.5.

Vineyard in the region has low fractional cover (<5%), [START_REF] Lanjeri | A multi-temporal masking classification method for vineyard monitoring in central Spain[END_REF] and low LAI. For the LAD parameter b, and the leaf structural parameter N, a unique value was given for each crop type, as it is frequently done in literature (e.g., [START_REF] Jacquemoud | Extraction of vegetation biphysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors[END_REF]Combal et al., 2002(a); [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF].

We use as input to SAIL, the soil spectrum extracted from a HyMAP airborne hyperspectral sensor image at nadir, acquired simultaneously to the SPARC campaign in Barrax, in July 2003.

The spectrum has been chosen to have finer spectral resolution than Landsat: 2.5nm wavelength resolution interpolated from the original spectrum. The Hymap spectrum is found very close to the mean spectrum derived from bare soil/fallow class in the Landsat July image (Table 6). We use a fixed soil spectrum in the SAIL model, because the Barrax study site is a dry area, with low variability in soil type. This assumption may not hold for irrigated fields. However, since the evapotranspiration rates are high, we consider that the effect of irrigation is not resilient. The effect will be important for crops that have been irrigated a few hours prior to the image acquisition, and at low stage development (crops with low FCV).

RESULTS AND VALIDATION:

LAI mapping:

A map of LAI was generated for every Landsat image, which are listed in Table 3. Figure 3 shows the LAI map for July 15. For this date, non vegetated pixels (bare soil/fallow fields, and already harvested small grain cereal fields) have been masked out. LAI values range from 0.1 to 6. The lowest LAI values (in light pink colour) correspond mainly to vineyards, and the highest LAI values (dark violet and black colour) to summer-irrigated crops (sugar beet, corn, potatoes) and alfalfa. The mean value of LAI for vegetated pixels is 1.1, and the standard deviation (STD) is 1.2. The LAI distribution is as follows: 80% of the vegetation pixels have LAI<2, 16% have a LAI in the range [2-4] and 4% of the pixels have LAI>4. If we exclude vineyard and natural vegetation, the mean LAI value for crops is LAI=1.8 with a STD=1.4, with 59% of the pixels having LAI<2, 33% in the range [2-4] and 7% having LAI>4. The low mean value of LAI, and the large LAI range (0.1 to 6) are typical of semi arid agricultural regions where irrigation allows sustained growth despite a rather dry climate. The twelve LAI images denote a dynamic patchy landscape with high contrasts among three vegetation categories (natural vegetation, spring crops and summer crops) and bare soil surfaces. It can be foreseen that the temporal monitoring of crops in such a region is difficult to be done with low resolution data (e.g. MODIS or MERIS), for which a pixel can contain several fields.

Validation using ground data:

The LAI values retrieved for July 8 and July 15 were validated against in-situ LAI measurements, which were both averaged over the fields where ground data have been collected (Cf. fig. 1). Ground measurements were taken during 5 consecutive days (11 to 15 July), thus the retrieved LAI values were interpolated between the two image dates. The comparison shows a high linear correlation (r2=0.97) for the 13 data points of 7 crop types, being: LAI retrieved =0.83*LAI observed + 0.70. The results do not show any saturation in the whole LAI range (0 to 6), although these results, obtained using only one field with LAI>4 (potato), do not prove that saturation does not exist in the range (4-6). The standard deviation of the inverted LAI ranges from 1% (alfalfa field A2) to 30% (garlic field G1 and papaver field PA1) reflecting field heterogeneity.

A similar agreement is obtained for the July validation when using the LUTs designed for the inversion along the season (larger chlorophyll range).

LAI temporal monitoring:

Temporal curves of the retrieved LAI for different crop types were analysed with respect to Figure 5 shows the results for two potato fields with shifted calendars and different cycle length. P2 has a longer cycle than P3: emergence is two weeks earlier and harvest is two months later. The retrieved temporal LAI variation follows well the observed phenology. It can also be noted in Figure 5 that the standard deviation is large during period from flowering to potato growing. This may result from the heterogeneity of the field during this fast varying period.

Figure 6 shows the temporal LAI curve for an onion field, which also shows consistency with the in situ observed phenology. The temporal variation does not appear very consistent with respect to the development stage.

Field C7 has unexpectedly low LAI for a standard corn crop, but it would be more consistent with a sweet corn which usually has low LAI values in the region. Unfortunately additional ground information that could be used to verify this hypothesis was not available. Field C2 (but also for fields C3 and C6, not presented) has large fluctuations during the reproductive phase, where LAI is expected to be the highest. Similar fluctuations have also been observed with sugar beet fields during the peak period. As a consequence, the inversion for those summer irrigated fields with high LAI will need further studies. Figures 9 and 10 show the temporal curves for papaver and garlic fields. Although few data have been acquired during the key development stage of the crops, the temporal variation appears smooth. In addition, for these crops with low fractional vegetation cover (onion, garlic and papaver), the changes in soil conditions (mainly soil moisture) can affect the retrieval results. The smooth behaviour is consistent with the approximation of not considering soil moisture variations in our study area.

In summary, the inversion results shown in Figs 5 to 10 indicate the following: a) the results seem correct except for corn and sugar beet, b) the retrieved values are consistent with specific LAI values for each crop; c) the temporal variation of the retrieved LAI is smooth, meaning that the date by date retrieval is consistent.

To better understand these results, we examine the different sources of errors in the methodology. Those include: a) Radiometric quality of the satellite data (due to absolute miscalibration or temporal radiometric calibration instability, radiometric sensitivity and residual errors after atmospheric corrections). This problem is more important in NIR-SWIR for which temporal instability in the case of Landsat is higher (sinusoidal variation of the calibration coefficients). NIR is the part of the spectra which is the most sensitive to LAI. Crops with high vegetation density, such as corn, require accurate calibration in all bands as LAI retrievals are also affected by total canopy water content. The poor results obtained with corn and sugar beet could be explained by the radiometric quality of the data. b) Error and uncertainties linked to the a-priori parameters for crop characteristics used in LUT generation. The small retrieval errors as compared to in situ LAI (Figure 4) can be explained by the use of in situ crop parameters measured at the same date to create the LUT. Greater errors are expected for the other dates where input parameters are not measured, as the parameters space is under-sampled. c) Limitation of the inversion method. Even though we have reduced the space of possible solutions when constructing the LUTs with a limited range of variation in the parameters, the inversion problem may still be ill-posed. For instance compensation between LAI and other parameters can bias LAI retrievals. This may occur in the inversion for corn and sugar beet. In this study, solutions for individual pixels in a field have been averaged to reduce the error. Further improvement could be to use the temporal dimension for the search of a better solution, adding a temporal dependent term (a temporal constraint) in the merit function to be minimized. The work of [START_REF] Koetz | Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics[END_REF] showed improvements in corn LAI retrievals when taking into account the temporal dimension by using the phenological LAI dynamics to better define the a-priori information in a refined LUT based inversion method. Other studies also explored the spatial aspects [START_REF] Atzberger | Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models[END_REF] and both temporal and spatial dimension (Lauvernet and Baret,2005). e) The specific crop parameters used in the LUTs: the LUT inversion requires knowledge of crop parameters ranges in the area under study. When applying this methodology to other regions, the question is whether these parameters should be adapted locally. In the literature, there is a lack of documentation about the parameters that have been used in the PROSPECT+SAIL models for LAI inversions. In particular, dry matter content is often poorly documented. Surprisingly the largest uncertainties were found in well-studied crops like corn, rather than crops like onion or garlic. For these last crops, a priori parameters are readily different (e.g. large leaf water content) but the inversions are correct. Further field work could help to properly characterize crop parameters and their temporal variation to be used as a-priori in simple RT modelling inversion.

f)

Soil variability (soil type and soil moisture)

When a single soil spectrum is used, the soil variability caused by soil type or soil irrigation can give errors in the simulated vegetation spectra, propagating to errors in LAI inversion. Simulations show that the effect of soil background is more important for erectophile than for planophile vegetation, at lower fraction cover than at higher fraction cover (not shown). Also, a brighter soil reduces the dynamic range of reflectance in the NIR as a function of LAI. This case is less favourable to LAI inversions. However, as the reflectance variation with LAI is different with the wavelength, it is not clear how this could actually affect the inversions using the full spectra. To quantify the background effect on the inversion, we used two soil spectra, the fixed spectrum used in the LUT multiplied by brightness factor 1.1 and 0.9 (+/-10%) for LAI retrieved from date 29/06 to date 09/08 in the inversion of alfalfa and corn surfaces. We found that the effect on alfalfa was negligible, whereas the retrieved LAI of corn field differs by +/-0.3. For the Barrax region, the effect of soil background variability does not appear to be a major source of error. The particular cases of recent rainfall and recently irrigated fields could not be taken into account in this study, except through the a posteriori examination of the time profiles.

DISCUSSION:

In this study, we have retrieved LAI from Landsat data, on a pixel basis, for 12 images from March to September 2003 in the agricultural region of Barrax, a semi arid region with a diversity of crop types and crop growth cycles.

The results are compared with in situ LAI measurements available in mid July, with very good agreement but a slight bias. The LAI temporal variation of the analysed fields shows consistency with the crop phenological stages for most crop types with the exception of corn and sugar beet fields where some fluctuations in the retrieved LAI are found during a period when LAI is typically high.

Several issues are discussed below in a broader context:

-Effective LAI:

20
Green LAI is defined for flat leaves as the sum of the one-sided green leaf area per unit ground area [START_REF] Chen | Defining leaf area index for non-flat leaves[END_REF]. In plants, leaves are usually grouped together rather than distributed uniformly: this is known as the foliar clumping. The LAI (also called true-LAI) is the "effective" LAI corrected for clumping [START_REF] Chen | Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands[END_REF][START_REF] Lacaze | Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument[END_REF]. The LAI "seen" by optical instruments (i.e. LANDSAT and LAI-2000) is the effective LAI. The scope of this work is to give an estimation of the effective green LAI. Furthermore, optical instruments, which measurements are based on light absorption, are sensitive not only to leaves but also to other plant elements (stems). Thus we have been abusively using LAI in place of plant area index [START_REF] Bréda | Ground-based measurements of leaf area index: a review of methods, instruments and current controversies[END_REF].

When comparing total LAI destructive measurements with optically-retrieved LAI, discrepancies will be found, in particular for canopy with high LAI. This is due to the clumping effect, and due to the physical saturation of the reflectances in the optical region. The effective LAI is directly linked to the light absorption processes, photosynthesis and evapotranspiration, whereas true LAI is related to carbon allocation and growth processes.

-Empirical relationships (NDVI-LAI) versus model inversion:

To assess the possibility to retrieve LAI using empirical relationships between LAI and vegetation indices, e.g. NDVI, LAI for different fields retrieved at different dates are analysed against NDVI derived from the Landsat images. The graphs indicate that large uncertainties can be expected when deriving LAI from NDVI using a non crop-specific relationship, especially at high values of NDVI (0.6 to 0.8).

The main advantage of model inversion in comparison with empirical NDVI-LAI relationship is that LAI can be inverted in a higher range (Figure 4 and Figure 12). This is important for agriculture as crops can reach high LAI values (Table 2). One possibility to combine the two approaches is to use the crop-specific NDVI-LAI relationships derived from model simulations (such as in Figure 11.) for a given region. The approach would benefit from the prior crop classification using the time series of satellite data. For our study site, the simulated NDVI-LAI relationships need to be further validated for the whole growth cycle and for their inter-annual variation, before their use in such a semi-empirical retrieval scheme.

-Instrument requirements:

To benefit from the whole potential of model inversion techniques, a sufficient number of appropriate spectral bands (i.e. with appropriate central wavelengths and narrow bandwidths) are necessary. The information provided by these bands has to be radiometrically accurate and as much spectrally uncorrelated as possible. The spectral information should be sufficient for aerosol correction and for decoupling the contribution of chlorophyll and water content. This means that the performance of the model inversion techniques would also depend on the satellite data used. Other current sensors with more and narrower bands (i.e. MODIS or MERIS) have, in return, the problem of spectral signal mixing due to their lower spatial resolution over most agricultural mosaics (heterogeneous landscapes). They may be used to monitor the largest fields but will have a majority of mixed pixels at the regional scale. As the relationship between reflectance and LAI is non-linear, inversions using coarse resolution data under the assumption of spatially homogeneous pixel will introduce a bias on the LAI [START_REF] Tian | Relationships between leaf area index and Landsat TM spectral vegetation indices across three temperate zone sites[END_REF][START_REF] Garrigues | Influence of landscape spatial heterogeneity on the non-linear estimation of leaf area index from moderate spatial resolution remote sensing data[END_REF]. The spatial resolution of Landsat (30m) is adequate enough to ensure accurate retrievals of LAI in our study area.

For the type of heterogeneous landscape we studied, high spatial resolution is necessary to avoid mixed pixels. Higher temporal frequency is also necessary in the period of fast development of the plants. For instance, in our dataset, a critical period (beginning of May) was missed. The presence of clouds ultimately represents a major limitation for multitemporal studies. A higher frequency of acquisitions for optical data to compensate for potential loss of images due to cloudiness would have a major impact on the applicability of the methodology described in this paper.

In particular, this methodology can be suitable for future missions (GMES Sentinel-2, FORMOSAT-2, VENUS, etc…) which will have better radiometric stability and narrower bands than Landsat but, more importantly, will ensure both the high spatial and temporal resolution necessary for most agricultural landscapes.

ACKNOWLEDMENTS:
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Answer:

Thank you a lot for your careful revision.

Comments of Reviewer #1:

First some things related to citations and references to literature.

P10: spelling error in Ganopol / Ganapol? P11: Combal et al., 2002>> Combal et al., 2002(b) P13 We are sorry for these errors. We have corrected them in the revised paper (and doublechecked all references).

Comments of Reviewer #1:

Other issues.

P11, bottom: The cost function describes a weighted sum of squared differences. The weighting is normally done to account for measurement errors in the reflectance data.

Modeling errors have nothing to do with it, since these should be described in variable space, not in observable space.

Answer:

The text has been rewritten to avoid confusion between the observable and model spaces, as shown below. The confusion rose from the fact that we wanted to point out that the model itself also has inaccuracies, which are neglected. We hope it is clear now.

Response to reviews and summary of revisions 2 "In a probabilistic description of the inverse problem [START_REF] Tarantola | Inverse Problem Theory and Methods for Model Parameter Estimation[END_REF], the cost function f describing the discrepancies between the simulations and the measurements will be proportional to the term:

    LUT LANDSAT T LUT LANDSAT C f            1 (Eq. 2)
where, C is the covariance matrix of the measurements accounting for measurement errors. The elements off-diagonal are not null when errors are correlated between bands. Usually, correlations are unknown, and a first approximation to the problem consists in neglecting them. The inversion of our Look Up Tables consisted in finding which spectrum from the Look Up Table minimizes the following expression:

  2 6 1      b LUT b LANDSAT b   (Eq. 3)
The later equation implies that measurement errors are assumed equal (as the same weight has been given to all bands) and without correlations (elements off-diagonal are zero).

Comments of Reviewer #1:

P12, top: I think you should justify why you are using unweighted reflectance values, since this might give too much emphasis to the infrared regions, where reflectance values for vegetation objects are much larger than in the visible bands. Also, you cannot state that by using unweighted reflectances modeling errors are ignored. This again has nothing to do with it.

The phrase "out of the diagonal" could be replaced by off-diagonal.

Answer:

Using weights for the different wavelength is attractive. To our knowledge, there is no consensus on how to define the weights, and in fact, few studies implement weights. It requires errors to be known, not only sensor noise but also errors during calibration (as we discuss in the source of errors section of the paper), atmospheric correction and even errors in the modelling and inversion process.

Recent studies (Hagolle, 2007) have shown that performance of LAI inversion using PROSPECT+SAIL is much more degraded because of unknown parameters (i.e. bad characterisation of background soil) that because of instrumental noise. This study concludes that a SNR (signal to noise ratio) level of 50 for all spectral bands (which includes all sensor error sources) is sufficient for biophysical parameter retrieval objectives. Landsat instrument performances fulfil this requirement except for very low radiance levels (Mika et al., 1997).

Hagolle (personal communication) also states that the shorter wavelengths are more prone to errors due to approximations of atmospheric variables. In that respect, SWIR and NIR should be given more weight than red and green, as far as the atmospheric correction errors are concerned.

Furthermore, in our case, the inaccuracies that come from the model errors are comparable or even higher that those related to the observables. Using weights (and prescribing them) is therefore not easily accomplishable. All things considered, we believe it is difficult to prescribe weights to the different bands. Moreover, readers may be confused if bands are given unequal treatment without accurate derivation of these weights. Our logic in this paper is to keep the method as simple as possible to address the problem of dealing with different crops in a general way.

We have added the following paragraph to explain the merit function chosen:

Due to the lack of information to quantify the covariance matrix, it has been chosen to give the same weight to all bands. Moreover, in this sort of methodology, measured reflectances are compared with 'ideal" simulated reflectances, as it is assumed that the model has no errors. Errors in the model are indeed very difficult to quantify, also they may be comparable or even higher than measurements errors.

We have changed the paragraph of P12 to avoid referring to the modelling errors when using the observable space description, as has been said in the previous answer.

We have replaced out of the diagonal with the term off-diagonal along the manuscript. not answer. As they are using LiCor LAI2000 for measurements, I assume they consider an effective PAI. For more information, please refer to: Bréda, N, 2003. Ground-based measurements of leaf area index: a review of methods, instruments and current controversies. Journal of Experimental Botany, Vol. 54, No. 392, pp. 

2403-2417

Answer:

To avoid any confusion, we have rewritten the LAI definition paragraph in this way: "Green LAI is defined for flat leaves as the sum of the one-sided green leaf area per unit ground area [START_REF] Chen | Defining leaf area index for non-flat leaves[END_REF]. In plants, leaves are usually grouped together rather than distributed uniformly: this is known as the foliar clumping. The LAI (also called true-LAI) is the "effective" LAI corrected for clumping [START_REF] Chen | Optically-based methods for measuring seasonal variation of leaf area index in boreal conifer stands[END_REF][START_REF] Lacaze | Retrieval of vegetation clumping index using hot spot signatures measured by POLDER instrument[END_REF]. The LAI "seen" by optical instruments (i.e. LANDSAT and LAI-2000) is the effective LAI. The scope of this work is to give an estimation of the effective green LAI."

We hope now it is clear. Breda et al., 2003 defined PAI as follows: "In fact, the indirect methods do not measure leaf area index, as all canopy elements intercepting radiation are included. Therefore, the terms of plant area index (PAI) or surface area index (SAI) are preferred if no correction to remove branches and stems is made". For crops, which usually have 'green' and sometimes thin stems, the distinction between PAI and LAI is less straightforward than for trees. For crops, stems are commonly lumped with leaves. Additionally, when applying a 1-D RT model with a simple description of plant structure to different crop types, it is difficult to really separate the roles of the plant parts (leaves, stems etc.). We have therefore added this sentence: "Furthermore, optical instruments, which measurements are based on light absorption, are sensitive not only to leaves but also to other plant elements (stems). Thus we have been abusively using LAI in place of plant area index (Breda et al., 2003). " (We previously understood reviewer#1's remark as mostly focused on the distinction between green/non-green LAI, as he discussed about the inclusion of brown pigments in PROSPECT).

-Concerning reviewer 1 suggestion on the use of the temporal dimension for inversion: the correction made by the authors is OK for me but they should add something about the papers (some of them are cited by reviewer 2) that deals with that kind of methods. The same should be applied to papers dealing with the spatial aspect.

Answer:

The paragraph dealing with the temporal dimension was eliminated in the revised paper. We have extended the section c) of sources of errors (pages 17-18), including references to such articles. The new sentences are:

"The work of [START_REF] Koetz | Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics[END_REF] showed improvements in corn LAI retrievals when taking into account the temporal dimension by using the phenological LAI dynamics to better define the a-priori information in a refined LUT based inversion method. Other studies also explored the spatial aspects [START_REF] Atzberger | Object-based retrieval of biophysical canopy variables using artificial neural nets and radiative transfer models[END_REF] and both temporal and spatial dimension [START_REF] Lauvernet | Improved estimates of vegetation biophysical variables from MERIS TOA images by using spatial and temporal constraints[END_REF]."

Comments of Reviewer #2:

-Answer to reviewer 1 comment about the a and b parameters (LIDF): the author provide more clarity on a and b range but they give no idea of the model that is used!! Is there any reference? If not, please, provide the equations.

Answer:

Thank you for this remark. The reference, [START_REF] Verhoef | Improved modelling of multiple scattering in leaf canopies: the model SAIL++[END_REF], is cited in the paper, in page 13.

We have slightly modified the first sentence in page 13, to make more explicit that the parameterization is described in the cited paper, as follows:

"Inputs to the SAIL model were structural parameters that include LAI, a, and b, two parameters that describe the Leaf Angle Distribution (LAD) as explained in [START_REF] Verhoef | Improved modelling of multiple scattering in leaf canopies: the model SAIL++[END_REF], the Hot Spot parameter, h, the background soil spectrum and the geometry of observation." [START_REF] Verhoef | Improved modelling of multiple scattering in leaf canopies: the model SAIL++[END_REF], Improved modelling of multiple scattering in leaf canopies: the model

SAIL++, Proceedings of the 1st International Symposium on Recent Advances in Quantitative

Remote Sensing, 16-20 September 2002, Torrent/Spain, pp. 11-20.

Comments of Reviewer #2:

-Answer to reviewer 1 concerning the N value taken for each crop: I do not agree with what is answered by the authors. It is stated in the original paper describing PROSPECT that N varies between 1 and 2.5 (and not 1.5 and 2.5). Moreover, in the same paper [START_REF] Jacquemoud | PROSPECT : A model of leaf optical properties spectra[END_REF] cited in the paper), it is clearly stated that N varies from 1 and 1.5 for monocotyledons and 1.5 to 2.5 for dicotyledons. However, in table 5, the authors provide a value of 1.6 for maize which should be closer to 1 or 1.1. For Alfalfa, for example, a value of N=1.8 (the author proposed 1.7) is proposed in the literature, one of the paper deals also with the Barrax area.

Moreover, concerning the sensitivity analysis with the N parameters, the authors state that the variation of the SAIL reflectance is small. I do not totally agree!! If you look in the red green-red domain, the reflectance is doubled when N varies between 1.5 and 2!!! http://earth.esa.int/workshops/chris_proba_04/papers/15_durso.pdf Walter-Shea, E.A., J.Privette, D.Cornell, Mesarch, M.A. and Hays, C.J., 1997. Relations between directional spectral vegetation indices and leaf area and absorbed radiation in alfalfa. Remote Sens. Environ.,.

Answer:

Our logic, for parameters like N, was to follow literature and to be parsimonious in building parameter sets (i.e. introducing differences between crops when it has been clearly and preferably unambiguously established). For the particular case of corn, we took a value of N=1.6 and we referenced the work of [START_REF] Koetz | Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics[END_REF]. In that work, LUTs for inversion of LAI of corn are constructed allowing N to vary between 1.4 and 1.8. Many other works have used similar values to the ones we are using for the N parameter of PROSPECT to simulate corn leaves and also with the purpose of LAI inversions: Haboudane et al., 2004 used N=1.41 and N=1.55;Bacour et al, 2002, used N=1.5;Verhoef and Bach, 2003, used N=1.48. For the alfalfa, we used N=1.7. d'Urso et al, 2004 used a value of N=1.8 (giving the reference of Walter-Shea et al., 1997) to perform a first validation of the PROSPECT+SAILH model. Afterwards, they used two inversion methods: a) LUTs in which N varies between 1.5 and 2.5, and b) the PEST-ASP software tool allowing N to vary between 1 and 2 for the alfalfa case.

It is true that in the original PROSPECT model the N parameter is said to vary between 1 and 2.5 for green leaves. The paper [START_REF] Jacquemoud | PROSPECT : A model of leaf optical properties spectra[END_REF] states:

"N relates to the cellular arrangement within the leaf. N ranging between 1 (albino maize leaf) and 1.5 corresponds to monocotyledons with compact mesophyll; Dicotyledons, characterized by a spongy parenchyma with air cavities on the abaxial face, have N values between 1.5 and 2.5. N values greater than 2.5 represent senescent leaves with a disorganized internal structure".

These differences in leaf structure can be observed with laboratory measurements of leaf reflectances, but at canopy level the sensitivity to parameter N is lower. In the answer to reviewer#1 we showed that N has little effect in canopy reflectance simulated values, and thus slightly changes in the N values chosen in our LUTs (1.5, 1.6 and 1.7) do not introduce big differences in the simulated reflectances. In the figure used to answer reviewer#1 the N parameters varies between 1 and 3 by steps of 0.2, and not only between 1.5 and 2.5. The spectra are 1nm wavelength resolution.

The same argument was already used in Jacquemoud, 1993 where it pointed out that the mesophyll structure parameter N had a low importance on canopy reflectance. This is explained because changes in the N parameter do not affect leaf absorption: reflectance changes are compensated by transmittance changes, as was shown in figure A2. in the answer to reviewer#1. The SAIL model needs both leaf reflectance and transmittance. In Jacquemoud, 1993 it is suggested to fix the N parameters for inversions, in fact it is stated: "The leaf structure parameter N, which only slightly influences canopy reflectance, can be fixed at the mean value 1.5."

Finally, we can find examples in the literature in which the PROSPECT model has been used with N values higher than 2.5. For instance in the work of Zarco et al., 2004, model inversion is done, varying N between 2 and 5, to estimate needle chlorophyll content. [START_REF] Haboudane | Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture[END_REF], Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sens. Environ. 90: 337-352. Bacour, C., Jacquemoud, S., Leroy, M., Hautecoeur, O., Weiss, M., Prévot, L., Brugier, N. & Chauki, H. (2002). Reliability of the estimation of vegetation characteristics by inversion of three canopy reflectance models on airborne POLDER data. Agronomie. 22: 555-565. Verhoef, W. & Bach, H. (2003).Simulation of hyperspectral and directional radiance images using coupled biophysical and atmospheric radiative transfer models. Remote Sens. Environ. 87: 23-41.

-Answer to reviewer 1 & 2 concerning the soil: thank you for all this analysis. It is convincing (if for MERIS, full resolution data were used).

Answer:

Thank you too, we are glad that you consider it is convincing.

Comments of Reviewer #2:

-Answer to reviewer 2 concerning the 'LUT calibration': the authors have tried to interchange the different LUT (for the different dates) and found negligible results. So, why using different look-up-table and not a single one for all the dates? Answer:

The logic was to see if adding constraints on auxiliaries parameters (chlorophyll) when they are known (= one date) deteriorates the inversion result obtained with the large-range LUT. It proved not to be the case. In the paper, it seems preferable to show the results of the largerange LUT for all dates but for the one when we have extra knowledge, where we use the small-range LUT.

In addition, we provide information on the LUT exchange test (last sentence of the validation using ground data section, page 15).

Comments of Reviewer #2:

-Answer to reviewer 2: atmospheric correction is OK.

Answer:

OK

Comments of Reviewer #2:

-Answer to reviewer 1 and 2 concerning the look-up table normalization by noise equivalent delta reflectance such as suggested by reviewer 1 and reviewer 2 (described in Combal et al., 2002) have not be taken into account by the authors. They state that the scope of their paper was not to implement the most recent inversion method. I understand this statement, however, one of the first paper dealing with regularization is Knyazikhin et al. (1998), cited in reviewer 2 comments...9 years ago. So, using normalization by noise equivalent delta reflectance such as suggested by reviewer 1 (which is the simplest way of regularisation) should have been done in my opinion.

Answer:

We have already discussed this issue answering reviewer#1 comments. We copy here the response:

Using weights for the different wavelength is attractive. To our knowledge, there is no consensus on how to define the weights, and in fact, few studies implement weights. It requires errors to be known, not only sensor noise but also errors during calibration (as we discuss in the source of errors section of the paper), atmospheric correction and even errors in the modelling and inversion process.

Recent studies (Hagolle, 2007) have shown that performance of LAI inversion using PROSPECT+SAIL is much more degraded because of unknown parameters (i.e. bad characterisation of background soil) that because of instrumental noise. This study concludes that a SNR (signal to noise ratio) level of 50 for all spectral bands (which includes all sensor error sources) is sufficient for biophysical parameter retrieval objectives. Landsat instrument performances fulfil this requirement except for very low radiance levels (Mika et al., 1997). Hagolle (personal communication) also states that the shorter wavelengths are more prone to errors due to approximations of atmospheric variables. In that respect, SWIR and NIR should be given more weight than red and green, as far as the atmospheric correction errors are concerned.

However, as we discuss in the paper calibration issues (temporal) may be a source of error. Furthermore, in our case, the inaccuracies that come from the model errors are comparable or even higher that those related to the observables. Using weights (and prescribing them) is therefore not easily accomplishable. All things considered, we believe it is difficult to prescribe weights to the different bands. Moreover, readers may be confused if bands are given unequal treatment without accurate derivation of these weights. Our logic in this paper is to keep the method as simple as possible to address the problem of dealing with different crops in a general way.

We have added the following paragraph to explain the merit function chosen:

Due to the lack of information to quantify the covariance matrix, it has been chosen to give the same weight to all bands. Moreover, in this sort of methodology, measured reflectances are compared with 'ideal" simulated reflectances, as it is assumed that the model has no errors. Errors in the model are indeed very difficult to quantify, also they may be comparable or even higher than measurements errors.

We have changed the paragraph of P12 to avoid referring to the modelling errors when using the observable space description, as has been said in the previous answer.

We have replaced out of the diagonal with the term off-diagonal along the manuscript. 

Comments of Reviewer #2:

-Answer to reviewer 2 concerning the MODIS algorithm: the authors should be aware of a version of this algorithm dedicated to the high spatial resolution. However, as the authors have changed the scope of the paper, and as was said above, they do not need to implement the most recent LUT technique...

Answer:

OK.

Comments of Reviewer #2:

-Answer to reviewer 2 concerning the land use map: a very detailed answer is provided and the modification in the paper is very satisfying. Maybe this classification work was provided in a publication, report, or something that could be cited in the text.

Answer:

We are glad you are pleased with the modification. The classification work is unpublished so we can not cite it in the text.

Comments of Reviewer #2:

-Answer to reviewer 2 concerning the LAI variation: citation for vineyards LAI is OK but why do the authors not answer a part of the comment and still do not use LAI=0 and begin at 0.1????

Answer:

Considering that the bare soils (all-year bare soil) were masked with the classification and given the accuracy of both data and inversion results, we thought it was unnecessary to redo the whole data processing and inversion calculations with a zero LAI class. We believe the major findings and conclusions are not dependant on the existence of such a class p10: first paragraph: citation [START_REF] Weiss | Evaluation of canopy biophysical variable retrieval performances from the accumulation of large swath satellite data[END_REF] correspond to the use of neural nets and not look-up-tables! Answer:

We apologize for the mistake. We have changed to the correct reference [START_REF] Weiss | Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data[END_REF] Weiss, M., [START_REF] Weiss | Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data[END_REF]. Investigation of a model inversion technique to estimate canopy biophysical variables from spectral and directional reflectance data. Agronomie, 20, 3-22.

Comments of Reviewer #2:

p11: the LAI is not an ill-posed problem. The ill-posed problem concerns the inversion of multi or hyper spectral data for LAI estimation.

Answer:

OK. We have changed that sentence in this way:

Original: Even in the case of simple radiative transfer models, the LAI inversion is an illposed problem, as the number of unknown parameters is higher than the spectral information.

Modified: Even in the case of simple radiative transfer models, the estimation of LAI through inversion of reflectance data is an ill-posed problem, as the number of unknown parameters is higher than the spectral information.

Comments of Reviewer #2:

p12: last paragraph about PROSPECT inputs should be put earlier in the paper, with the model description.

Answer:

OK. It has been done.

Comments of Reviewer #2:

p14: last sentence: I do not agree with the sentence....the use of medium or high resolution data depends on the objective of the study. MERIS or MODIS data can be use in applications such as regional or global carbon modelling, but for sure not for the temporal monitoring of crops.

  Inputs to the PROSPECT model are Leaf Chlorophyll Content (CC), Leaf Water Content (CW), Leaf Dry Matter Content (DM) and the Leaf Structural Parameter, N. Inputs to the SAIL model are structural parameters that include LAI, a, and b, two parameters that describe the Leaf Angle Distribution (LAD), as explained in Verhoef et al., 2002, the Hot Spot parameter, h, the background soil spectrum and the geometry of observation. Both, parameter a and parameter b can vary between -1 and 1, but the sum of their absolute values has to be always less than or equal to 1. Parameter a controls the average leaf inclination angle (ALA), which in the SAIL model can range from 8.52 degrees (a=1) to 81.48 degreess (a=-1). Parameter b characterises the bimodality of the LAD. High values of b correspond to a high frequency of both horizontal

  Figure 4 presents the comparison for the 13 fields of different crop types. LAI-retrieved error bars correspond to the standard deviation of the pixels in the field. Ground data error bars correspond to the standard deviation of the point measurements in each field (around 5).

  their development and phenological stages to assess the performance of the LAI estimations throughout the crop cycles. Figures 5 through 10 present examples of temporal LAI curves for fields of different crop types. When available, the phenology observations and LAI-2000 measurements for the same field are also displayed.

  Figure 7 presents the temporal LAI curves for two alfalfa fields. The curves clearly reveal at least two cuts (field A10) and 3 cuts (field A9) between March and September 2003, which are consistent with standard practices in the region.

Figure 8

 8 Figure 8 presents the temporal curves for two corn fields from June 29 (no Landsat data was available during the first part of the development stage which is from end of May to mid July).

  d) Model limitations. Both PROSPECT and SAIL models apply to "average" vegetation properties, some particularities of crop canopies not being taken into account. For instance a 1-D model like SAIL can not describe accurately structural differences in crops (foliage clumping, row effects). PROSPECT, on the other hand, considers cumulative spectral responses of different leaf pigments (absorbers), which are assumed to be invariable from one leaf to another. This may explain the differences in the results of different crop types. The work by Le Maire et al., 2004, discusses the necessity of recalibration of PROSPECT. It could be interesting to re-calibrate PROSPECT specifically for agricultural crop leaves or for each crop type in our study at the expense of generality of the method.

  Figure 11a shows the retrieved LAI as a function of NDVI for different fields and Figure 11b shows the curves fitted for a few crop types, together with the LAI-2000 measurements. Figure 12 shows the NDVI-in situ LAI relationships (all data). Figures 11 and 12 confirm that a) the NDVI-LAI relationships are dependent on crop type, because the relationships between reflectances and LAI are affected by the plant structure and leaf properties; b) for a given crop, the sensitivity of NDVI to LAI decreases significantly when LAI exceeds 2 or 3. Secondly, in the NIR band, the vegetation spectra are affected by other vegetation parameters such as leaf dry matter content, leaf angle distribution and other factors (i.e. soil background, angular configuration) causing large uncertainties to the retrieval. Using a model with sufficient spectral bands, we may preserve the sensitivity to LAI of NIR band to access to higher values of LAI compared to NDVI, and separate the effects of different parameters to reduce uncertainties in the retrieval.

  ESA technical assistance for SPARC 2003 (Ref. 18307/04/NL/FF) is acknowledged, as well as the help from all the participants of the SPARC campaign for the collection of the ground data during the year 2003. This work has been co-funded by the European Commission shared-cost project DEMETER (contract EVG1-2002-00078). Dr. Rubio's work is supported by the Spanish Ministry of Education and Science (MEC) through a "Ramón y Cajal" contract. We thank Dr. Verhoef and Dr. Jacquemoud for the availability of their models. The authors also wish to thank the Diputación de Albacete ITAP and especially to Amelia Montoro, for providing the phenological data.
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 12 Figure 1. Landsat false colour (15 July 2003) close-up of "Las Tiesas" experimental facilities site with the location of the monitored fields (highlighted in colours) and the points where individual samples were measured.
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 34 Figure 3. Landsat derived LAI map in July the 15 th , showing contrast between crops.

Figure 5 .

 5 Figure 5. Retrieved LAI for two potato fields (P2 and P3) with different calendar. Phenological observations are indicated on top. P2 has a longer cycle than P3: emergence is earlier and harvest is later than for P2. E stands for Emergence, VD for Vegetation Development, F for Flowering, PG for Potato Growing, R for Ripening an H for Harvest.

Figure 6 .

 6 Figure 6. Retrieved LAI for an onion field. Error bars correspond to the standard deviation for the pixels in the field. Phenological observations for this field are indicated on top: E stands for Emergence, 4-5L for 4-5 leaves, B for bulb growing, R for Ripening and H for Harvest.

Figure 7 .

 7 Figure 7. LAI curves for alfalfa field A9 and field A10. Ground measurements with LAI-2000 instrument are also displayed. Regular cuts of alfalfa are clear. Field A10 had one less cut than field A9 during year 2003.
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 8 Figure 8. Retrieved LAI for two corn fields (C2 and C7). The average phenology of corn in the region is indicated on top: D stands for Development, RE for Reproduction and R for Ripening.
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 9 Figure 9. Retrieved LAI for a papaver field. Phenology for papaver in the region is indicated on top: D stands for development, RE for reproduction and R for Ripening.

Figure 10 .

 10 Figure 10. Retrieved LAI for a garlic field. Phenological observations for this field are indicated on top: D stands for development, BG for bulb growing and R for Ripening.

Figure 11 .

 11 Figure 11. a) NDVI-LAI relationships for several crops. LAI is the Landsat derived LAI. b) Crop-specific NDVI-LAI relationships derived from model simulations for some crops and insitu LAI measurements.

Figure 12 .

 12 Figure 12. Relationship between NDVI and in-situ LAI. A stands for Alfalfa; C stands for Corn; G stands for Garlic; ON stands for Onion; P stands for Potato; PA stands for Papaver and SB stands for Sugar Beet.
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 1 Figure 1. Landsat false colour (15 July 2003) close-up of "Las Tiesas" experimental facilities site with the location of the monitored fields (highlighted in colours) and the points where individual samples were measured.

Figure 2 .

 2 Figure 2. Land use map of the study area. Classes 12 to 21 are local refinements of classes 2 to 7. The black rectangle corresponds to Figure 1.
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 3 Figure 3. Landsat derived LAI map in July the 15 th , showing contrast between crops.
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 4 Figure 4. Validation of Landsat derived LAI with LAI-2000 measurements. A stands for Alfalfa, C for Corn, G for Garlic, ON for Onion, P for Potato, PA for Papaver and SB for Sugar Beet.

Figure 5 .

 5 Figure 5. Retrieved LAI for two potato fields (P2 and P3) with different calendar. Phenological observations are indicated on top. P2 has a longer cycle than P3: emergence is earlier and harvest is later than for P2. E stands for Emergence, VD for Vegetation Development, F for Flowering, PG for Potato Growing, R for Ripening an H for Harvest.
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 6 Figure 6. Retrieved LAI for an onion field. Error bars correspond to the standard deviation for the pixels in the field. Phenological observations for this field are indicated on top: E stands for Emergence, 4-5L for 4-5 leaves, B for bulb growing, R for Ripening and H for Harvest.
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 78 Figure 7. LAI curves for alfalfa field A9 and field A10. Ground measurements with LAI-2000 instrument are also displayed. Regular cuts of alfalfa are clear. Field A10 had one less cut than field A9 during year 2003.
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 9 Figure 9. Retrieved LAI for a papaver field. Phenology for papaver in the region is indicated on top: D stands for development, RE for reproduction and R for Ripening.
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 10 Figure 10. Retrieved LAI for a garlic field. Phenological observations for this field are indicated on top: D stands for development, BG for bulb growing and R for Ripening.

Figure 11 .

 11 Figure 11. a) NDVI-LAI relationships for several crops. LAI is the Landsat derived LAI. b) Crop-specific NDVI-LAI relationships derived from model simulations for some crops and insitu LAI measurements.
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 12 Figure 12. Relationship between NDVI and in-situ LAI. A stands for Alfalfa; C stands for Corn; G stands for Garlic; ON stands for Onion; P stands for Potato; PA stands for Papaver and SB stands for Sugar Beet.
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  July the 15 th . a) Applied from March the 10 th to May the 29 th .b) Applied from June the 29 th to September the 17 th . Table 6. Average soil spectrum reflectance and standard deviation in the image of July the 15 th and the HyMAP soil spectrum used in the LUTs filtered to the LANDSAT bands Below we give detailed answers to the specific questions of the reviewer. *************************************************************************** Comments of Reviewer #1:

  : Jacquemoud ET AL., 1995 P23: Format of Berger et al. is wrong (initials after family name) P28: Hu et al. is not cited in the main text P30: Montaldo should be placed before Moreno (alphabetic order) Answer:

  Hagolle, O. (2007). Justification des besoins en termes de performances de la mission GMES continentale. CNES, Internal report.Mika M., A. (1997). Three decades of Landast instruments. Photogrammetric engineering &Remote Sensing, 63 (7), 839-852.Comments of Reviewer #1:P12, middle: Stating "we extended this version of the SAIL model to 2500 nm" is nonsense, since SAIL has no wavelength range. Probably you mean the coefficient input files of PROSPECT?

  Hagolle, O. (2007). Justification des besoins en termes de performances de la mission GMES continentale. CNES, Internal report.Mika M., A. (1997). Three decades of Landast instruments. Photogrammetric engineering & RemoteSensing, 63 (7), 839-852.

  

Table 1 ,

 1 additional information is contained in LAI, e.g LAI values range from 1.4 to 3.5 in

Table 2 .

 2 Phenology observations (e.g. on potato and onion)

	made by the Irrigation Advisory Service (IAS) of ITAP (Instituto Técnico Agronónomico
	Provincial) were also available.

Table minimizes

 minimizes 

the following expression:

Table 6 .

 6 Average soil spectrum reflectance and standard deviation in the image of July the 15 th

	LANDSAT BANDS LANDSAT	HyMAP filtered reflectance
	B1	0.12 ± 0.03	0.07
	B2	0.20 ± 0.04	0.17
	B3	0.27 ± 0.05	0.25
	B4	0.37 ± 0.06	0.31
	B5	0.48 ± 0.06	0.49
	B7	0.42 ± 0.07	0.38

Table 1 .

 1 Mean and standard deviation values of the Leaf Dry Matter (DM), Leaf Water Content (WC), Chlorophyll content (CC) and Fraction of Vegetation Cover (FVC) measured during the field campaigns for each crop. Data correspond to the SPARC-2003 campaign except for sunflower and vine that were measured in SPARC-2004 campaign. Chlorophyll content and FVC of alfalfa fields was assigned the same as it was measured only once.

Table 2 .

 2 Mean LAI-2000 measurements during the SPARC-2003 for each measured field.

Table 3 .

 3 List of Landsat-7 & Landsat-5 data acquisitions, solar zenith angle (degrees) at satellite pass time and solar zenith angle (degrees) used as input of SAIL for generating the LUTs. A total number of 7 Look Up Tables were generated (for each crop).

Table 4 .

 4 Range of values and number of values inside this range (i) that have been used in the Landsat Look Up Tablegenerationfor each crop on June the 29 th, , July the 8 th and July the 15 th .

Table 5 .

 5 Range of values and number of values inside this range (i) that have been used in the Landsat Look Up Tablegenerationfor each crop for dates others than June the 29 th, , July the 8 th

Zhang, Q., Xiao, X., Braswell, B., Linder, E.,Baret, F. and Moore III, B. (2005). Estimating light absorption by chlorophyll, leaf and canopy in a deciduous broadleaf forest using MODIS data and a radiative transfer model. Remote Sensing ofEnvironment, 99,[357][358][359][360][361][362][363][364][365][366][367][368][369][370][371] 

Crop

N CC (g cm

 4), ( 5), (12) i=5 5. Range of values and number of values inside this range (i) that have been used in the Landsat Look Up Table generation for each crop for dates others than June the 29 th, , July the 8 th and July the 15 th . a) Applied from March the 10 th to May the 29 th .b) Applied from June the 29 th to September the 17 th . (1) Viña et al. 2004 ; (2) Fang et al., 2003 ; (3) Fang and Liang, 2003 ; (4) , Qin et al., 2002 ; (5) , España et al., 1999 ; (6) Verhoef et al., 2003 ; (7) Andrieu et al., 1997 ; (8) Kneubühler, 2002 ; (9) Combal et al, 2002(a), (10) Confalonieri et al, 2004 ; (11) Koetz et al., 2005 ; (12) Combal et al, 2002(b), (13) Duke and Guérif, 1998, (14) Weiss et al., 1999, (15) [START_REF] Fourty | Estimation du contenu biochimique d'un couvert végétal à partir de données haute résolution spectrale acquises au niveau satellitaire[END_REF] Also, you mention a few "atmospheric parameters needed for this version of SAIL". This version of SAIL does not require all these parameters, only the fraction sky irradiance. You might state that MODTRAN was used to provide this.

Answer:

You are right saying that SAIL has no wavelength range. As the term extend may not be appropriate we have eliminated it from the text. However, the atmosphere file needed for this version of SAIL has to be prescribed for (400 to 2500 nm) and we used MODTRAN to calculate the required parameters. To improve the description of the direct / diffuse incident radiation, this SAIL versions uses a more elaborated parameter set, namely extraterrestrial solar irradiance, direct solar transmittance, spherical albedo and diffuse solar transmittance for each wavelength, Before: To simulate Landsat-like spectra, we extended this version of the SAIL model to 2500 nm.

Revised: To simulate Landsat-like spectra, the SAIL model was run in the range 400 to 2500 nm.

Comments of Reviewer #1:

P13: You state correctly that the a and b parameters describing the LAD should be constrained so that the sum of their absolute values remains less than one. However, looking at Table 5 and6, it can be seen that this condition is not fulfilled for sunflower and alfalfa. Does this mean that the results for these crops are invalid?

Answer:

We thank you for pointing this inconsistency, which originates in our past sensitivity studies.

We have re-done the LUTs with b=0 for alfalfa and sunflower. Results almost do not change, as the reflectance sensitivity to parameter b is lower than to parameter a. Nevertheless, we redrew all the figures with the nearly-equal but correct values. The results were not invalid

Comments of Reviewer #1:

I recommend that you take the above points into consideration in your revised version of the manuscript.

Answer:

Thank you for your interest in the paper and for your relevant questions and suggestions.

1

RESPONSE TO REVIEWER#2:

Below we give detailed answers to the specific questions of the reviewer. 

GENERAL COMMENTS

Comments of Reviewer #2:

The authors have worked on their article and taken into account part of the suggestions provided by reviewer 1 & 2. Reviewer 2 has rejected the paper and the main argument was that there was nothing new in what was proposed in the paper. Therefore, the paper is presented in another way showing new objectives: provide seasonal variations on LAI over agricultural fields using LANDSAT data. I agree that there are very few papers dealing with so many dates in a year and such a variety of crops. In that way, the paper shows interesting results.

However, it would have been more interesting in the sense of the new objectives if ground measurements have been acquired at least twice during the studied period since validation is performed only on a single date (but for various crops).

Answer:

Thank you for your positive comments. We agree that the use of more ground measurements would have been interesting and very convenient for our work. The ESA/SPARC and VALERI activities at Barrax during year 2003 took place only in July. Unfortunately no additional LAI measurements were collected. The ITAP (Instituto Técnico Agronómico Provincial, in charge of the field measurements) kindly provided us the phenology data we used in this work.

Comments of Reviewer #2:

-Concerning reviewer 1 remarks about effective LAI: the paragraph modified by the authors is confusing: if they focus on the Chen's definition, it means that they are considering a 'true LAI' (as the one that could be measured with a planimeter) and not an effective one.

Moreover, the question raised by reviewer 1 was going further since he(she) asked if the authors were considering PAI (plant area index) or LAI (leaf area index). And the authors did

Comments of Reviewer #2:

-Answer to reviewer 2 concerning the potential applications of the use of such a good temporal monitoring of LAI: maybe this aspect should be more developed explaining by citing papers what are the potential applications?

Answer:

The following two works deals with the importance of temporal frequency of satellite derived LAI for crop growth modelling applications, one focused on crop production and the other on AET (Actual EvapoTranspiration). We have added these references in the introduction section of the paper.

Hadria, R., [START_REF] Hadria | Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency[END_REF]. Monitoring of irrigated wheat in a semi-arid climate using crop modelling and remote sensing data: Impact of satellite revisit time frequency. International Journal of Remote Sensing, 27(5-6), 1093-1117[START_REF] Launay | Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications[END_REF]. Assimilating remote sensing data into a crop model to improve predictive performance for spatial applications. Remote Sensing of Environment,111,[321][322][323][324][325][326][327][328][329][330][331][332][333][334][335][336][337][338][339].

OTHER COMMENTS:

Comments of Reviewer #2:

The paper should be carefully read and the English should be corrected.

Answer:

We did read the paper carefully and believe that its style does not impair proper understanding. RSE copy editor may provide additional minor corrections if necessary during the final edition.

Comments of Reviewer #2:

p9: 'Physically based approaches'....please, provide some papers like: Kimes, D.S., Knyazikhin, Y., Privette, J.L., Abuelgasim, A.A. and Gao, F., 2000. Inversion methods for Physically-Based Models. Remote Sens. Rev.18: 381-439.

Answer:

OK. We have added the cited reference.

Answer:

We have slightly modified that sentence as follows:

Original: It can be foreseen that such a region is difficult to monitor with low resolution data (e.g. MODIS or MERIS), for which a pixel can contain several fields.

Modified: It can be foreseen that the temporal monitoring of crops in such a region is difficult to be done with low resolution data (e.g. MODIS or MERIS), for which a pixel can contain several fields.

Comments of Reviewer #2:

p15: 2nd paragraph...I do not think that 'reservation' is a correct English term.

Answer:

We have re-written the sentence as follows:

"The results do not show any saturation in the whole LAI range (0 to 6), although these results, obtained using only one field with LAI>4 (potato), do not prove that saturation does not exist in the range (4-6)."

Comments of Reviewer #2:

p19: discussion: please, as noted earlier, re-write the paragraph concerning effective LAI.

Answer:

OK. It has been done.

Comments of Reviewer #2:

There are a lot of figures and tables in the paper. I don't know if there are all useful. Here are some suggestions: Thank you for your suggestions. columns to table 4. We have re-plotted all the figures in the paper to make them more uniform and avoid any possible inconsistency. We think it is not possible to reduce the number of Figures without loosing useful information. Figure 2 shows the land use map in the region, and Figure 3 is the LAI inverted map. Figure 2 provides a good description of the study area, and Figure 3 is an example of our results. Figure 1 shows the ground measurement points and in our opinion it is necessary to understand how validation has been done and to provide detailed information for the intercomparison with other studies in the same area.

In respect to tables 1 and 2 we think it would be confusing to group them, because Table 1 refers to crop types and Table 2 to particular fields.