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Forest leaf area index determination: A multiyear satellite-

independent method based on within-stand normalized difference

vegetation index spatial variability

G. le Maire,1,2 C. François,1 K. Soudani,1 H. Davi,1,3 V. Le Dantec,4 B. Saugier,1

and E. Dufrêne1

[1] The Leaf Area Index (LAI) and its spatial distribution are key features to describe the
forest ecophysiological processes. A stable and reproducible relationship is obtained
between the LAI and the standard deviation sNDVI of the pixel-based satellite-derived
normalized difference vegetation indices (NDVI) of forest stands. In situ measurements of
LAI have been performed with the LAI-2000 Plant Canopy Analyser over 8 years in the
managed Fontainebleau forest (France) on about 31 stands each year, including oak,
beech, and mixed oak-beech stands. Simultaneous satellite images have been acquired,
atmospherically and geometrically corrected, and included into a geographic information
system to get the mean NDVI and the sNDVI for each stand. A total of six different
satellites with a 20- to 30-m spatial resolution have been considered over the eight studied
years: SPOT1, SPOT2, SPOT4, LANDSAT ETM+, IKONOS, and HYPERION. The
mean LAI of a stand is linked to the sNDVI with a unique relationship that appears to be
mostly year- and satellite-independent, because the sNDVI is nearly insensitive to
additive or proportional shifts on NDVI. The theoretical bases of the sNDVI-LAI
relationship are investigated. The results show the combined importance of the shape of
the within-stand LAI distribution (following a Weibull probability density function) and
the shape of the within-stand LAI-NDVI curves (showing a saturation). The root
mean square error of the predicted LAI over the 259 samples is 1.14 m2/m2 when all years
and satellites are considered, using the following equation: LAI = �2.45 ln(sNDVI) � 5.58
(r2 = 0.63).

Citation: le Maire, G., C. François, K. Soudani, H. Davi, V. Le Dantec, B. Saugier, and E. Dufrêne (2006), Forest leaf area index

determination: A multiyear satellite-independent method based on within-stand normalized difference vegetation index spatial

variability, J. Geophys. Res., 111, G02027, doi:10.1029/2005JG000122.

1. Introduction

[2] Leaf area index (LAI), defined as the surface of tree
leaves per ground surface area, is a key parameter implied in
a variety of forest ecosystem processes, including light and
rain interception, transpiration, photosynthesis, and soil
heterotrophic respiration (through litter fall). Its precise
estimation is crucial for ecosystem modeling at the land-
scape or regional scale with process-based models that
quantify carbon, water, and energy fluxes.
[3] Local estimations of LAI are often performed through

optical (LI-COR LAI-2000, hemispherical photographs),

direct and semidirect methods (litter collection and allometric
methods). Routine in situ measurements of LAI, however, are
time-consuming and even unfeasible for large-scale studies.
For that reason, numerous works attempt to characterize LAI
through remotely sensed data [Rouse et al., 1973; Curran,
1980; Justice et al., 1998;North, 2002]. The data acquired by
remote sensing over vegetation areas give the reflectance in
different spectral bands and with a given spatial resolution.
LAI is classically derived from a combination of well-chosen
spectral band reflectances [Goel and Qin, 1994; Turner et al.,
1999; Walthall et al., 2004].
[4] Particularly, empirical relationships between LAI and

Spectral Vegetation Indices (SVI) such as the Normalized
Difference Vegetation Indices (NDVI) are widely used in
the remote sensing community [Chen et al., 1997; Turner et
al., 1999]. However, these relationships between LAI and
remote-sensing vegetation indices, especially the NDVI,
have several recognized drawbacks [Qi et al., 2000]:
(1) saturation of NDVI for LAI greater than 3.5 m2/m2

[Lüdeke et al., 1991; Fassnacht et al., 1997; Birky, 2001;
Anderson et al., 2004; Wang et al., 2005], (2) the fact that a
relationship established between the LAI and the vegetation
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index for a particular satellite sensor is generally not
applicable to other sensors [Teillet et al., 1997; Wang et
al., 2005; Soudani et al., 2006], (3) the previous point is
also true for relationships between years for the same sensor
[Wang et al., 2005], and (4) the fact that this relationship
appears to be greatly species- and site-dependent [Qi et al.,
2000; Colombo et al., 2003].
[5] The methods for analyzing remotely sensed images

are usually pixel based; that is, the LAI is calculated for
each pixel independently of the surrounding ones and then
averaged over the stands if necessary. The use of satellite
data is particularly interesting in intensively managed eco-
systems, where stand polygons may be referenced in Geo-
graphic Information System (GIS) software for management
practical reasons. These polygons, generally obtained by
interpretation of aerial photographs, contain uniform attrib-
utes of interest to the manager. In a managed forest, the
attributes that differentiate one stand from another (i.e., the
criterion for the polygon mapping) may be species, age for
even-aged stands, and tree density. The polygon mapping
can be used to calculate a statistic for each polygon using
the within-polygon pixels of the remotely sensed image:
The statistic can be, for instance, the mean NDVI of the
stand. For a selected set of stands, these stand-scale statistics
can then be linked through empirical equations to stand
measured characteristics, as the stand mean LAI. These
empirical equations can finally be applied to other poly-
gons. This polygon approach is of great interest for mod-
eling purposes where such polygons may be used as
simulation units in regional studies with process-based
ecosystem models [le Maire et al., 2005]. The polygon-
based approach for analyzing remotely sensed data was also
shown to be more accurate than the pixel-based approach by
reducing local data noise and allowing the exclusion of
pixels on the boundaries of two contrasting stands [Wulder,
1998; Wicks et al., 2002].
[6] In the present study a stable and reproducible rela-

tionship is obtained between the LAI and the standard
deviation of the NDVI of that stand. Standard deviation or
variance measurements of reflectances are usually used to
characterize the texture of an image, generally through a
moving window [Lillesand and Kiefer, 2000]. The variation
in texture, characterizing the relationship between neigh-
boring pixels, has been related to spatial variation in
vegetation distribution and mostly used for forest stand
classification [St. Onge and Cavayas, 1995; Lark, 1996;
Ryherd and Woodcock, 1996; Coburn and Roberts, 2004].
[7] Relatively few studies have focused on the use of

texture properties to estimate the LAI. Wulder et al. [1996,
1998] show that the classical LAI-NDVI relationship on
deciduous forests is improved if the texture (based on Grey-
Level Co-occurrence Matrix, GLCM) is included as a
second independent variable, compared to NDVI alone.
Their interpretation is that the empirical relationship be-
tween LAI, NDVI, and texture is possible because of
complementary information content: the texture variables
are sensitive to stand structural characteristics while NDVI
is sensitive to the vegetation content.
[8] Instead of considering separately NDVI and texture,

Davi et al. [2006], using the variance of the NDVI as a
texture measurement, have shown with SPOT images the
existence of a linear relationship between LAI of forest

stands and the logarithm of the variance of the NDVI. As
noted by Coburn and Roberts [2004], the use of variance as
a measure of texture instead of GLCM has not been
extensively used yet in the remote sensing community.
The relationship obtained by Davi et al. [2006] gave an
RMSE of 1.13 m2/m2 on the estimated LAI. The present
study shows the existence of a single largely applicable
relationship between the mean LAI of a stand (LAI, m2/m2)
and the standard deviation of the within-stand NDVI pixels
(sNDVI), with different satellites and years. The experimen-
tal data set consists of 8 years (between 1994 and 2004) of
measurements on deciduous stands and six different satellites
(SPOT1, SPOT2, SPOT4, LANDSAT ETM+, IKONOS,
and HYPERION), which allow us to assess the generality
of the relationship between LAI and sNDVI.
[9] The objectives of this article are (1) to investigate the

theoretical bases of the LAI – sNDVI relationship using
Weibull modeled LAI distribution fitted on real LAI dis-
tributions coupled with LAI – NDVI within-stand relation-
ships; (2) to compare the strength and accuracy of the
classical LAI versus mean stand NDVI (NDVI) approach
to the new LAI-sNDVI approach on 8 years of data with six
satellites (259 stands); (3) to test the sensitivity of the stand-
scale LAI-NDVI and LAI-sNDVI relationships to variation
of the pixel-based NDVI over the image (which may come
from year to year atmospheric variations, changes in soil
surface properties, and satellite sensor variations such as
drifts or inappropriate calibrations); (4) to test the sensitivity
of the LAI-sNDVI relationship to variations in the satellite
image spatial resolution; and (5) to show on a given year
and for all deciduous stands of a managed forest that the
sNDVI is more reliable, i.e., constant, than the NDVI
between different satellite images.

2. Material and Methods

2.1. Study Site

[10] The Fontainebleau forest, located in the southeast of
Paris (48�250N, 2�400E, mean altitude 120 m) is a large
forest extending over 17,000 ha in a region characterized by
a temperate climate, with a mean annual temperature of
10.6�C and mean precipitation of 750 mm fairly well
distributed throughout the year. This forest is actively
managed by the French National Forest Office (‘‘Office
National des Forêts’’, ONF), and divided into 2992 man-
agement units localized on a GIS database (with the
software ArcGIS 8.1, Environmental Systems Research
Institute Inc., Redlands, California). These management
units, called ‘‘stands’’ in this study, are even-aged and
homogeneous in species, stand structure, and tree density.
The Fontainebleau forest is representative of an even-aged
high forest, with the successive stage development describ-
ing the stand structure including: seedlings, thickets, sapling
stands, pole stands, mature forest, and seed tree stands.
These successive development stages are the result of
regular forestry practices that strongly modify the stand
structure and species composition of the forest.
[11] Thirty-one experimental stands were selected in flat

areas. They include the two main deciduous species of
the Fontainebleau forest: oak (Quercus robur L./Quercus
petraea (Matt.) Liebl., 14 stands) and beech (Fagus
sylvatica L., 13 stands), and mixed oak-beech (dominated
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by oak, 4 stands). These stands are representative of the
different stage developments and stand structure of deciduous
stands found in the Fontainebleau forest. A detailed descrip-
tion of the Fontainebleau experimental stands in terms of
stand structure, maximum height, diameter at breast height,
density, age, and basal area is given byLeDantec et al. [2000].
[12] In this paper, these stands are defined as ‘‘homoge-

neous’’ since they are even-aged, with a given species
composition, and without localized broads gaps or tree
clumps. These stands, however, are not homogeneous
regarding the LAI, which is spatially variable within the
stands.

2.2. Ground-Based LAI Data Collection

[13] The Plant Canopy Analyser (PCA) LAI-2000
(LI-COR Inc., Nebraska) was used for ground LAI measure-
ments. A detailed description of this instrument is given by
Cutini et al. [1998]. Calculations were carried out using
three rings, which give an approximate value for the inte-
gration surface covered by the LAI-2000 of 300 m2, depend-
ing on tree height. A detailed description and analysis of the
LAI measurement method is given by Dufrêne and Bréda
[1995], Le Dantec et al. [2000] and Soudani et al. [2006].
LAI measurements were performed on the 31 experimental
stands each year from year 1994 to year 2004 in summer
when LAI has reached a maximum (Table 1). Note that LAI
is not measured every year for all stands; over the 8 years, a
total of 197 forest-stand samples were available. For each
stand, and according to its size, 40 to 150 LAI-2000
measurements were taken each year of measurements at
intervals of 8 ± 2 m on several transects. The sampling
covers between 5% and 68% of the stand area, depending on
stand area and on tree height. LAI is calculated for each local
measurement with the equations given by Miller [1967] and
its distribution inside the stand is obtained. The sampling
density allows us to get the mean LAI of the stand (LAI) as
well as the LAI distribution inside the stand and its standard
deviation sLAI.

2.3. Satellite Images Acquisition and Processing

[14] Eleven images were acquired with six different
sensors between 1994 and 2004 during the period of
maximum LAI. Spatial resolution in multispectral mode
and bandwidth of these sensors are given in Table 2, with
the date and acquisition geometry. In order to compute
surface reflectance, images were geometrically and atmo-

spherically corrected. Images were first rectified and geo-
referenced using ground control points and integrated in the
GIS database of Fontainebleau forest. Digital counts (gray
tone) were converted to at-satellite (top of atmosphere)
radiance using the gains and the offsets contained in the
image headers and then calibrated to scaled surface reflec-
tance after atmospheric corrections using a Dark Object
Subtraction (DOS) approach [Song et al., 2001]. The
methodology is fully described by Soudani et al. [2006]
where the same year 2000 images (IKONOS, ETM+, and
SPOT) were corrected. The same methodology is used for
the other SPOT and ETM+ images. The IKONOS image has
a 4-m spatial resolution that has been resampled to get the
same resolution as other sensors (20 m). HYPERION is a
hyperspectral sensor that acquires data in about 200 narrow
bands between 400 and 2500 nm. We averaged the HYPER-
ION spectral bands in the red and in the NIR domain to get
broad bands similar to the ETM+ sensor. This step is
followed by the DOS atmospheric correction method. The
normalized difference vegetation index (NDVI) is then
calculated for each pixel of each image with the reflectance
in the near infrared (RNIR) and in the red band (RRED):
NDVI = (RNIR � RRED)/(RNIR + RRED).

2.4. Data Extraction and GIS Computations

[15] The 31 experimental stands are localized with aerial
photographs and their polygons are drawn on the GIS
database. The 11 satellite NDVI images are included in this
GIS database. For each experimental stand, the pixel-based
NDVI values were extracted, discarding the pixels on the
edge of the stand: A buffer of 60 m was used, which
corresponds to a width of at least 2 pixels. This wide buffer
excludes the pixels that are on the boundaries of two stands,
and limits small residual errors on images due to geometric
rectification and georeferencing. The choice of the buffer
width is discussed further. The number of pixels extracted
per stand varies from 45 to 125, depending on stand size
and on satellite resolution, with an average of 75 pixels.
From these values, mean NDVI (NDVI) and standard
deviation of the NDVI (sNDVI) were calculated for each
stand and for each satellite image. A total of 259 samples
were extracted over the eight different years and six
satellites (11 images).
[16] The same methodology of NDVI extraction is ap-

plied on year 2000 to the entire Fontainebleau forest

Table 1. Details of the in Situ Measurements: Number of Stands for Each Species and Period of LAI

Measurementa

Satellite Acquisition Date

Nb of Measured Stands

LAI Measurement DateTotal Oak Beech Oak-Beech

SPOT2 - HRV2 10 July 1994 22 11 9 2 27–29 June 1994
SPOT2 - HRV2 10 July 1995 30 14 12 4 26–30 June 1995
SPOT2 - HRV1 17 July 1996 31 14 13 4 27 June to 17 July 1996
SPOT1 - HRV1 13 Aug 1997 29 13 12 4 8–22 July 1997
SPOT1 - HRV1 06 Aug 1998 29 12 13 4 23 June to 06 August 1998
SPOT4 - HRVIR 21 July 2000 23 7 12 4 21 July to 10 August 2000
Landsat - ETM+ 24 Aug 2000 21 6 11 4 21 July to 10 August 2000
IKONOS 16 Aug 2000 16 6 7 3 21 July to 10 August 2000
SPOT2 - HRV1 20 July 2002 25 11 10 4 24–26 June 2002
Landsat - ETM+ 29 July 2002 25 11 10 4 24–26 June 2002
EO1-HYPERION 04 Sep 2004 8 5 1 2 6–10 Sept 2004

aThe dates of the corresponding satellite images are also given.
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(SPOT4, LANDSAT ETM+, and IKONOS images), using
the GIS database created by the French National Forest
Office (ONF) that contains the polygon delineation of the
2992 management units. The NDVI and sNDVI are calcu-
lated for every stand, respecting a buffer of 60 m as
explained for the experimental stands. Only the oak and beech
stands greater than 2ha after buffer elimination are kept for the
analysis. The 2-ha threshold corresponds to 22 pixels of 30�
30 m and is considered statistically sufficient for a standard
deviation calculation. Stands with clouds were visually
eliminated. The NDVI and sNDVI were finally calculated on
the three satellite images of the year 2000 on 293 stands.
Because the IKONOS image does not cover the whole forest,
only 144 stands are used with this image.

3. Theoretical Basis of the LAI-SNDVI Relationship

[17] The theoretical basis of the observed LAI-sNDVI
relationship [Davi et al., 2006] is studied here using a
within-stand LAI distribution modeled with a Weibull Prob-
ability Density Function (PDF), previously calibrated on the
experimental stands of the Fontainebleau forest (see Appen-
dix A). This modeled LAI distribution is then transformed
into a NDVI distribution using a within-stand LAI-NDVI
relationship (see Appendix A). Then the LAI-sNDVI relation-
ship is established and analyzed. This modeling approach
allows us to study various factors that may affect the shape of
the LAI-sNDVI relationship: (1) the shape of the within-stand
LAI-NDVI relationship and (2) the shape of the distribution
of the LAI within the stand. The aim of this chapter is to study
the effect of these factors, and their relative importance on the
final result.
[18] To study the first factor, four different arbitrarily

chosen within-stand LAI-NDVI relationships were created;
they go from a highly saturated one to a linear one
(Figure 1). To study the second factor, the Weibull distri-
bution of the LAI was changed into a Gaussian one with the
mean equal to LAI and the standard deviation parameter
fixed to a constant value (s = 1.2 m2/m2, computed as the
square root of the average LAI variances over the 197
forest-stand samples). In the case of the Gaussian distribu-
tion, the shape of the distribution is therefore identical
whatever the LAI contrary to the case of the Weibull
distribution where the shape depends on LAI (Appendix A).
[19] The two LAI distributions (Weibull and Gaussian)

were tested together with the four LAI-NDVI relationships,

leading to eight different cases. Figure 2 represents sNDVI
versus LAI for these eight cases (note that case 2, medium
saturation and Weibull distribution, is close to the real case).

3.1. Test of the First Factor: Shape of the Within-Stand
LAI-NDVI Curve

[20] In the case of the Weibull LAI distribution model,
when the LAI-NDVI relationship shows more saturation,
the range of variation of the sNDVI increases. The maximum
of the LAI-sNDVI curves shifts leftward, so that for the
medium and high saturation cases the sNDVI monotonically
decreases for LAI greater than 0.5 m2/m2. For the most
saturated LAI-NDVI relationship, however, (Figure 2a,
case 1) the standard deviation becomes nearly constant
for LAI greater than 3 or 4 m2/m2 (this zone corresponds
to the saturation plateau of the LAI-NDVI curve). For the
medium saturation case, both the amplitude and the
position of the maximum sNDVI allow the prediction of
the LAI between approximately 0.5 and 6 m2/m2. These
results show that, considering a within-stand LAI Weibull
distribution, a part of the link between the LAI and the
sNDVI comes from the saturation of the LAI-NDVI curve,
but that a too high saturation erases this signal for LAI
greater than 5 or 6 m2/m2.

Table 2. Characteristics of the Satellite Images Used in the Paper: Date and Time of Acquisition, Pixel Size, View and Sun Geometry (q
is the Zenithal Angle), and Spectral Bands

Satellite - Instrument Acquisition Date Spatial Resolution Time, UT qsun, deg qview, deg Red Band, nm NIR Band, nm

SPOT2 - HRV2 10 July 1994 20 m 1100 27.4 4.0 610–680 790–890
SPOT2 - HRV2 10 July 1995 20 m 1041 29.7 21.7 610–680 790–890
SPOT2 - HRV1 17 July 1996 20 m 1107 28.7 14.8 610–680 790–890
SPOT1- HRV1 13 Aug 1997 20 m 1053 35.5 3.9 610–680 790–890
SPOT1 - HRV1 06 Aug 1998 20 m 1116 32.3 23.7 610–680 790–890
SPOT4 - HRVIR 21 July 2000 20 m 1109 29.4 12.0 610–680 780–890
Landsat - ETM+ 24 Aug 2000 30 m 1031 41.4 0.0 630–690 760–900
IKONOS 16 Aug 2000 4 m ! 20 ma 1052 36.9 23.6 632–698 757–853
SPOT2 - HRV1 20 Jul 2002 20 m 1117 28.5 23.7 610–680 790–890
Landsat - ETM+ 29 Jul 2002 30 m 1029 34.8 0.0 630–690 760–900
EO1 - HYPERION 04 Sept 2004 30 m 1030 46.4 4.0 630–690b 760–900b

aThe original 4-m IKONOS pixel size has been resampled to 20 m to get the same resolution as the other satellites.
bSeveral hyperspectral bands have been averaged to obtain the indicated bandwidth.

Figure 1. Four LAI-NDVI relationships created to test the
theoretical basis of the LAI-sNDVI relationship using
modeling. They go from a highly saturated one to a linear
one.
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3.2. Test of the Second Factor: Shape of the
Within-Stand LAI Distribution

[21] The distribution of the within-stand LAI is modeled
by a Weibull function whose parameters (shape and scale)
depend on LAI (Appendix A). The nonsaturating (linear)
LAI-NDVI curve shows the direct effect of the LAI distri-
bution on the LAI-sNDVI relationship: The sNDVI increases
for a LAI going from 0 to 4 m2/m2 and then, as observed
above, decreases (Figure 2a, case 4). On the contrary, for a
Gaussian distribution and for the same linear LAI-NDVI
relationship, the signal disappears: The sNDVI remains
constant (Figure 2b, case 8). This shows that a part of the
link between the sNDVI and the LAI comes from
the distribution of the LAI within the stand. Note that the
observed insensitivity of the sNDVI in the case of the
Gaussian distribution does not occur for low LAI since
the distributions are left truncated to prevent negative LAIs.
For medium saturation LAI-NDVI curve (Figure 2, cases 2
and 6), the effect of the LAI distribution is more reduced,
but still important since the Weibull LAI distribution
reduces the flattening of the LAI-sNDVI for high LAIs.
[22] The combination of a saturating LAI-NDVI curve

and a Weibull distribution (that takes into account the real
distribution of LAI) leads to a decreasing standard deviation
of the NDVI for LAI greater than approximately 0.5 m2/m2

(Figure 2a, case 2). The logarithmic transformation of this
signal leads to a linear r-square (coefficient of determina-
tion) greater than 0.9, suggesting that the standard deviation
of the NDVI follows an exponential decay with LAI. These
results show the combined importance of the LAI distribu-
tion and the shape of the LAI-NDVI curves on the observed
LAI-sNDVI relationship, with a greater effect of the LAI-
NDVI relationship shape.

4. Experimental Results

4.1. LAI Within-Stand Variability

[23] Since the within-stand LAI distribution partly
explains the LAI-sNDVI relationship, measured sLAI varia-

tions with LAI (Fontainebleau forest data) are given in
Figure 3 to illustrate distinctive characteristics of real LAI
distribution in managed forests: sLAI is small for low and
high LAI, and is higher for intermediate values. This
pattern shows the specific stand structure variations with
LAI that are generated by the sylvicultural practices. In
open and closed canopies, most measurements are per-
formed in places with similar LAI values (low LAIs or
high LAIs); this leads to low LAI standard deviation. In
canopies with intermediate LAI, measurements are
performed in more contrasting places mainly because of
the discontinuous spatial distribution of trees; this leads to
higher LAI standard deviation. This observed pattern is
also obtained with the Weibull modeling (solid line on
Figure 3), and, as developed above, mostly explains the
LAI-sNDVI relationship.

4.2. Comparison of the Methods for Predicting
LAI Based on NDVI or SNDVI

[24] Figures 4a and 4b represent the average stand LAI
(LAI) versus NDVI (Figure 4a) and versus sNDVI

(Figure 4b). To fit these data, several regression models
have been tested. The simple regression models that best fit
the data are

LAI ¼ a

ln NDVI
� �þ b ð1Þ

LAI ¼ a� ln �NDVIð Þ þ b; ð2Þ

where ln is the Napierian logarithm and a and b are
regression parameters. The (�1/ln(x)) and (�ln(x)) equa-
tions were applied to NDVI and sNDVI to get linear plots
that are more explanatory (Figures 4c and 4d); a and b
parameters are obtained with linear regressions on these
transformed data, and these regression lines are reported on
the scatterplot. The r-square and root mean square errors
(RMSE) of these regressions are given in Table 3. Finally, a
global regression was calculated on all-year and all-

Figure 2. Model results to explain the theoretical basis of the LAI-sNDVI relationship. Two stand LAI
distribution models are used: (a) the Weibull model described in Appendix A, function of the mean LAI
of the stand, and (b) the Gaussian model described in the text, independent of the mean LAI of the stand.
For these two distributions, four different LAI-NDVI curves are tested (Figure 1). The eight cases are
numbered from 1 to 8; case 2 is close to the real case.
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satellites data (Figures 4e and 4f), and the results are
reported in Table 3.
[25] For a given image, results show that the two models

gave nearly equal r-squares (0.68 for NDVI and 0.71 for
sNDVI in average) and RMSE (0.99 m2/m2 for NDVI and
0.96 m2/m2 for sNDVI in average). This means that when a
single year and sensor is considered, both models are a
priori equivalent. Considering the LAI-NDVI relationship,
the regression lines are very different from a satellite image
to another in terms of slope and intercept. Soudani et al.
[2006] have shown that the great difference between
IKONOS NDVI and other satellites NDVI comes from
the radiance spectral responses of the sensor on the red
band that goes until 698 nm for IKONOS, whereas other
sensors generally stop before 690 nm (see Table 2) which
leads to higher RRED values. Other possible differences
between satellite images that causes the large NDVI scatter
seen on Figures 4c and 4e may come from temporal
variations in view and illumination conditions, in atmo-
spheric effects and in biophysical and biochemical char-
acteristics of the leaves of the forest canopy. These results
show that the global LAI-NDVI relationship is poor
(Figure 4e, r2 = 0.35 and RMSE = 1.52 m2/m2), and that
such a relationship should be calibrated for each sensor
and for each year, as reported by Wang et al. [2005].
[26] This is not the case for the LAI-sNDVI relationships,

whose regressions stay within a close range, whatever the
sensor and the date (Figure 4d). The multiyear multisatellite
regression for the prediction of the mean LAI of a stand as a
function of the standard deviation of the within-stand pixels
NDVI is given by (see Figure 4f)

LAI ¼ �2:45� ln sNDVIð Þ � 5:58 259 points; r2 ¼ 0:63
� �

:

ð3Þ

The root mean square error (RMSE) of this relationship is
1.14 m2/m2 for all 259 forest-stand samples (24% of the
mean). The use of such a general relationship gives fairly
precise results, and above all it can be used for different
satellites and different years without systematically having
to calibrate it with ground measurements. Nevertheless, a
calibration will provide better results as may be seen in
Figure 4d and Table 3. Note that all the relationships
described in this section are applicable for both beech and
oak stands.

4.3. Sensitivity to Shifts of the NDVI

[27] The stability of the LAI-NDVI and LAI-sNDVI

relationship to shifts on the remotely sensed NDVI images
have been tested. Shifts on the NDVI may come from
incorrect atmospheric correction, leaf biochemical or bio-
physical change during the leafy season on the same stand,
or other shifts from measurement instruments (sensor drift).
To test the effect of such shifts, we have modified the NDVI
pixels of the entire year 1995 SPOT2 image, either adding a
systematical constant (NDVI modified = NDVI � a) or
applying a proportional bias (NDVI modified = NDVI *
(1 � a)). The same process of NDVI extraction of the
images and calculations of the mean NDVI and sNDVI as
before has been used. Both LAI-NDVI and LAI-sNDVI
relationships have therefore been changed and their respec-
tive stability with respect to such biases have been com-
pared. We used a value of a = 0.1 for the calculations.
[28] Results are given in Figure 5. The LAI-sNDVI is

insensitive to a constant bias whereas the LAI-NDVI
appears to greatly change, experiencing a direct translation.
This result is rather trivial for the constant bias, the standard
deviation remaining unchanged after the addition of a
constant to the variable. For a proportional bias, once again
the LAI-sNDVI relationship is significantly more stable than
the LAI-NDVI relationship. The proportional bias, indeed,
is conserved both through the average calculation and
through the standard deviation calculation: mean(bX) =
bmean(X) and std(bX) = bstd(X). The variation coefficient
is of great importance in this case: The same proportional
transformation on the output of a relationship (here NDVI
and sNDVI) will have very different consequences on the
final relationship appearance, depending on the variation
coefficient of that output. Here the sNDVI signal shows high
amplitude (variation coefficient of 77%) compared to the
low amplitude of the NDVI signal (variation coefficient of
5%). Therefore the 0.9 factor has low consequences on the
LAI-sNDVI and greater consequences on the LAI-NDVI
relationship (see Figure 5). The conclusions would be the
same for linear transformations of the NDVI pixels.
[29] In conclusion, the LAI-sNDVI relationship is relatively

insensitive to proportional or additive shifts on the image
NDVI, which can partly explain its conservation between
years and sensors.

4.4. Sensitivity to the Image Spatial Resolution

[30] The effect of the pixel size on the LAI-sNDVI
relationship is tested by aggregating the IKONOS image
(with an initial resolution of 4 m). The pixel size is
increased from 4 m up to 40 m, with a 10-m step. For each
new resolution, the sNDVI of each experimental stand is
calculated. Only 16 stands are used because the IKONOS

Figure 3. Standard deviation of the LAI (sLAI, m
2/m2) as

a function of the mean stand LAI (LAI, m2/m2). Stand LAIs
are obtained from ground measurements (40 to 150 PCA
LAI-2000 samples per stand). Plots are presented by
species. All 197 forest-stand samples between 1994 and
2004 are presented in this graph. Solid line represents the
results given by the Weibull model (see Appendix A).
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image does not cover the entire forest. For the 40-m
resolution, two stands with fewer than 20 pixels are
excluded. The r-square between LAI and the �ln(sNDVI)
transformation is calculated for each resolution.
[31] A first result is that the LAI-sNDVI relationship

changes because sNDVI decreases with increasing pixel size
(Figure 6). This decrease is similar to the one simulated by
Gastellu-Etchegorry et al. [1999]. This is not the case for
the LAI-NDVI that is insensitive to the pixel resolution.
[32] The other result (not shown) is that we cannot

conclude that there are significant differences between the
r-square calculated at the different resolutions, from 4 to
40 m (comparison of correlation coefficient test, a = 0.01).
This means that the accuracy of the recalibrated LAI-sNDVI
relationships does not change with the resolution. This
result is partly due to the small number of points of the

relationship. All r-square are between 0.56 and 0.69, with an
average value of 0.60 and RMSE are between 0.81 and
0.94 m2/m2 with an average of 0.89 m2/m2.

4.5. Test of the Method Principle: Intersensor
Stability of the SNDVI Over the Whole Forest

[33] The generality of the stability of the sNDVI between
different sensors has been tested. Since we do not need LAI
measurements for the inter-sensor comparison of NDVI and
sNDVI only, we have used a larger number of deciduous
stands in the image, instead of the previous 31 stands
(provided that the images are acquired the same year during
the LAI plateau (July and August), so that the LAI does not
vary between the images). For that purpose, we have
extracted the NDVI and the sNDVI of 293 deciduous stands
of the Fontainebleau forest for a given year (2000) and for

Figure 4. Comparison of (a) LAI-NDVI and (b) LAI-sNDVI for 11 satellites. LAI as a function of
(c) �1/ln(NDVI) and (d) �ln(NDVI) (see equations (1) and (2) in text). Gray lines are linear
regressions (r2 are given in Table 3). (e, f) Same as Figures 4c and 4d but with all 259 points together.
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three sensors: IKONOS (with a 20-m spatial resolution),
ETM+ and SPOT4. These stands were selected among the
deciduous stands of the Fontainebleau forest through a
visual cloud check and a surface area threshold (for stands
smaller than 2 ha without the edge buffer, NDVI and sNDVI
estimation are degraded due to the smaller number of
pixels). NDVI and sNDVI have then been compared stand
by stand between the three satellites (Figure 7). Two
statistics have been calculated: the r-square, which is a
measurement of the level of correlation between the sensors,
and the Fisher F-value for paired measures, which is a
measure of the sensitivity of NDVI or sNDVI to the change
of sensor (the higher the F-value, the more sensitive is the
variable). The F-value calculated on NDVI measured by
two different sensors can be compared with the sNDVI one.
The r-square and F values are given in Figure 7.
[34] The r-squares obtained between IKONOS NDVI and

the other two sensors are poor (r2 = 0.65 with ETM+ and
r2 = 0.64 with SPOT) because of small cirrus clouds present
on the western part of the forest on the IKONOS image that
increase the scattering. Without these clouds the r-square

would be higher, as it is for ETM+ NDVI versus SPOT
NDVI (r2 = 0.92). The between-sensors r-squares obtained
for sNDVI are high, even when there are thin clouds (r2 =
0.80 between IKONOS and ETM+ sNDVI and r2 = 0.88
between IKONOS and SPOT sNDVI). In the absence of
clouds, between-sensors r-squares are similar for NDVI and
for sNDVI (respectively r2 = 0.92 and r2 = 0.91 between
ETM+ and SPOT images).
[35] The F-values are higher for intersensor NDVI than

intersensor sNDVI, showing that NDVI is much more
sensitive to a change of sensor than sNDVI.
[36] These results demonstrate the stability of the sNDVI

between three sensors and for the same year on a large
number of stands.

5. Discussion

[37] The present study deals with ‘‘homogeneous’’ stands:
they are defined as even-aged, spatially (horizontally)
homogeneous in species, stand structure and tree density.
Raffy et al. [2003] gave a similar definition of the stand
homogeneity. In an operational manner a ‘‘homogeneous’’

Table 3. R-Square Coefficient and Root Mean Square Error of Linearized LAI-NDVI and LAI-sNDVI
Relationships Plotted in Figures 4c and 4d With the Regression Model Described by Equations (1) and (2)a

Number of Stands

r2 RMSE, m2/m2

LAI-NDVI LAI-sNDVI LAI-NDVI LAI-sNDVI
SPOT2 1994 22 0.84 0.87 0.86 0.79
SPOT2 1995 30 0.64 0.80 1.19 0.89
SPOT2 1996 31 0.81 0.69 0.95 1.19
SPOT1 1997 29 0.26 0.66 1.29 0.87
SPOT1 1998 29 0.79 0.68 0.87 1.07
SPOT4 2000 23 0.88 0.74 0.60 0.86
ETM+ 2000 21 0.83 0.84 0.72 0.71
IKONOS 2000 16 0.72 0.63 0.96 1.10
SPOT2 2002 25 0.60 0.52 1.09 1.20
ETM+ 2002 25 0.57 0.63 1.13 1.05
HYPERION 2004 8 0.56 0.78 1.19 0.84
Average 0.68 0.71 0.99 0.96
All sensors together 259 0.35 0.63 1.52 1.14

aThe number of samples used in the regressions is given. The ‘‘all sensors together’’ line corresponds to a unique regression
obtained on all the data set (Figures 4e and 4f).

Figure 5. Test of (left) LAI-NDVI and (right) LAI-sNDVI relationships sensitivity to shifts of the image
pixels NDVI with a constant bias (NDVI-0.1) or a proportional bias (NDVI * 0.9). Note that original
NDVI and NDVI-0.1 plots are superimposed on the sNDVI graph. Data are from SPOT2 image for the
year 1995.
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stand is defined here as a stand whose LAI distribution
follows the Weibull model whose parameters are given by
equations (A3) and (A4) in Appendix A (see also Figure A1
in Appendix A for the acceptable range around the nominal
relationships).
[38] The results have shown that both the local LAI-

NDVI curve and the LAI distribution can explain the
relationship between the mean LAI and the standard devi-
ation of the NDVI of the stand. However, other unsuspected
explanations may exist. The obtained relationship is mod-
eled with strong conditions on the LAI distribution, fitted on
measurements on managed forest stands that have a partic-
ular structure. For example, in this type of ecosystem, it is
not possible to have high LAI and high standard deviation
(i.e., high heterogeneity) of the LAI in a stand (Figure 3).
This fact is mainly true in managed forest. For instance a
maximum variation at medium values of LAI has also been
observed in Norway spruce (Picea abies (L.) Karst.) man-
aged forest [Schlerf et al., 2005]. This should be qualified,
however, for other natural ecosystems.

Figure 6. Change of LAI-sNDVI relationship with increas-
ing spatial resolution (from 4 to 40 m). Calculations are
performed on the IKONOS image (initial resolution: 4 m).

Figure 7. Between sensors stand by stand comparison of NDVI and sNDVI in year 2000. 144 stands are
plotted for the IKONOS images (top four graphs), and 293 stands (bottom two graphs). Here r2 is the
coefficient of determination. F is the Fisher statistic for paired measures: Low F-values indicate low
sensitivity of the variable (NDVI or sNDVI) to the sensor.
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[39] The results obtained on the experimental stands and
in the whole forest show that LAI-sNDVI relationship is
reliable: It is very stable between satellite images in com-
parison with the LAI-NDVI relationship. However, depend-
ing on the spatial resolution and on the stand area, the
method may show some limitations related to the number of
NDVI pixels in the stand: It is obvious that the number
of pixels should be sufficient to get a good estimation of
sNDVI. Moreover, on small stands, sNDVI is more sensitive
to image rectification and georeferencing errors than NDVI,
especially when neighbor stands are contrasted. A large
buffer width partly solves this problem. In this study, a
buffer of 60 m (i.e., 2 pixels) was used to exclude over-
lapping pixels. The buffer can be reduced to one pixel
width, depending on the spatial accuracy between polygons
and image, and between different images if several images
are used. In any case, sNDVI of stands with surface smaller
than 2 ha (i.e. 22 pixels of 30 m) are less stable between
sensors than NDVI.
[40] Another critical consideration is the size of the NDVI

pixels, i.e., integration scale of NDVI. It is obvious that the
larger the pixels are, the smaller the sNDVI is, because
averaging the NDVIs reduces extreme values. A conse-
quence is that LAI-sNDVI relationship changes with the
resolution. Despite this fact, we do not find any significant
improvement or deterioration of these relationships in term
of r-square and RMSE for resolutions ranging from 4 m to
40 m. This means that LAI can be obtained from sNDVI in
the 4- to 40-m range, but that a specific relationship has to
be used for each resolution, or resolution range (satellites
with resolutions between 20 m and 30 m may be considered
a single group; see Figures 4 and 6). However, the question
remains open because of the limited number of stands used
for these calculations (16 stands).
[41] The LAI-sNDVI relationship given in this study

(equation (3)) corresponds to sensors of 20- or 30-m pixel
resolutions, and should only be used for satellites with these
resolutions and on stands of at least 2 ha.

6. Conclusion

[42] As a conclusion, we list the advantages and draw-
backs of the LAI-sNDVI relationship compared to the
classical LAI-NDVI relationship. The advantages are as
follows. (1) There is a unique multiyear multisatellite
relationship that gives fairly good accuracy on predicted
mean stand LAI (RMSE of 1.14 m2/m2). (2) there is near-
insensitivity to proportional and additive shifts on the NDVI
that may occur (satellite drifts, view and illumination
conditions, atmospheric corrections, variable sensor spectral
responses, leaf biochemical or biophysical change during
the leafy season, etc.). (3) The relationship is apparently
fairly robust (multispecies (oak and beech), multisatellite)
which allows its use in various situations. The drawbacks
are as follows. (1) There is a necessity to have accurate
delimitations of homogeneous forest stands included into a
GIS. (2) Large enough stands are necessary to have valid
sNDVI estimation. In this study, a minimum threshold of 2 ha
(approximately 20 pixels) is used. Because of the 60-m
buffer width, the original stand surface corresponding to
that threshold is around 6 ha. However, the buffer width can
be reduced as discussed before, or be specific to each image.

(3) The LAI-sNDVI relationship must be recalibrated before
using it on images of different resolutions. However, as far
as our study goes, the accuracy of recalibrated relationships
does not change much with spatial resolution: Resolutions
between 4 to 40 m have been tested on 16 stands resulting
in RMSE comprised between 0.81 and 0.94 m2/m2. The
relationship stays nearly unchanged for resolutions between
20 and 30 m.
[43] It must be stressed that this study was made on a

particular forest and on two deciduous species (oak and
beech). Preliminary results have shown that the LAI-sNDVI
relationship also applies to managed coniferous stands on
the Fontainebleau forest (Pinus sylvestris L.). Further work
on other managed forest or other ecosystems and species is
needed to test the generality of these results.
[44] The LAI-sNDVI relationship obtained in this study

can be useful in biophysical models because it can be
applied on remotely sensed images from different sensors
and years, and therefore allows getting multiyear LAI data.
Moreover, this relationship can be used without preliminary
calibration, i.e., without LAI ground measurements. Finally,
this method is fast and also quite simple to implement. It
offers promising perspectives in applications requiring for-
est LAI series, especially in the climate change field and
related continental biosphere studies.

Appendix A: Representation of Stand LAI
Distributions With Weibull Functions

[45] Our objective is to model the distribution of the LAI
within a stand as a function of the mean LAI of the stand.
The suitability of the Normal, Lognormal, Logistic or two-
parameter Weibull Probability Density Function (PDF) to
model the LAI distribution inside a stand is investigated. We
use the Anderson-Darling test, which is an improved
goodness-of-fit Kolmogorov-Smirnov test [Press et al.,
1996]. For a given stand it tests whether there is a difference
between observed and predicted distributions, with a level
a = 0.05 considered to be significant. The test is performed
on each experimental stand and for each year when mea-
surements are available (197 tests in total). Note that it is
possible that two different distribution models (e.g., Logis-
tic and Weibull) may represent well the same stand LAI
distribution. The root mean square error (RMSE) of the fit
of the models to the measured distribution is calculated, and
an average value is given for each model.
[46] The results are given in Table A1. Results are

expressed in percent of success over all stands (same
method asNanang [1998]). There are 197 tests corresponding
to 31 stands that are measured at different years. We can
see that the Weibull function represents the best the
distribution of LAI within a stand, with about 62% of
success for the Anderson-Darling test. The mean RMSE,
representing the accuracy of the fit, is also lower for the
Weibull than the other PDF. The two-parameter Weibull
function is therefore clearly the best model for the within-
stand LAI distribution.
[47] The Weibull function is widely used for fitting life

data in biology and industry [Abernethy, 2000]. In for-
estry field, other distributions of parameters are modeled
by this function. For example, the most commonly used
probability density function for modeling diameter distri-
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butions is the Weibull function [Bailey and Dell, 1973;
Nanang, 1998; Lehtonen et al., 2004]. This distribution is
also used to assess the probability of strong winds in
forest [Quine, 2000].
[48] The two-parameter Weibull distribution has the fol-

lowing PDF:

f tð Þ ¼ b
h

t

h

� �b�1

e�
t
hð Þ

b

; ðA1Þ

where b is the shape parameter of the distribution and h is
the scale parameter (b and h are positive). The Cumulative
Distribution Function (CDF) of the Weibull distribution is

F tð Þ ¼ 1� e�
t
hð Þ

b

: ðA2Þ

The calculations of b and h for each stand were realized
with Matlab (MathWorks Inc.) using the simplex search
method algorithm, minimizing the square difference
between the Weibull CDF and the measured LAI CDF of
the stand.
[49] To get a theoretical model for the LAI distribution

inside a ‘‘homogeneous’’ stand having only the mean LAI
of the stand as driving parameter, parameters b and h have
been plotted against the mean measured LAI of the stand.
The scale parameter h appears to be linearly correlated to
the mean LAI of the stand (Figure A1). This comes from the

fact that the scale parameter is close to the mean of the
Weibull function,

h ¼ 1:07� LAI r2 ¼ 0:99; 123 points
� �

: ðA3Þ

The shape parameter b is exponentially correlated with the
mean LAI (Figure A1),

b ¼ 1:13� e0:27LAI r2 ¼ 0:77; 123 points
� �

: ðA4Þ

[50] In Figure A1, all stands parameters are represented,
even the ones that give a negative result in the Anderson-
Darling test. However, only the stands with positive results
are used for the regressions (123 points over 197). It is
noteworthy that when the rejected stands are included in the
graph, their Weibull parameters follow the same trend that
the other stands even at low mean LAI. The only difference
is that the relationship is more scattered. This result suggest
that even if the Weibull model was rejected with the
Anderson-Darling test, equations (A3) and (A4), further
included in equation (A1), are suitable for modeling the LAI
distribution.
[51] A graphical representation of the modeled LAI PDF

is given in Figure A2: Equation (A1) is used with the
equations of h and b (equations (A3) and (A4)). Eight
different distributions are represented: They are calculated
for mean LAI going from 1 to 8 m2/m2. One may note that
the distribution is positively skewed for low mean LAI and
negatively skewed for high mean LAI.
[52] The switch from LAI distribution to NDVI distribu-

tion is achieved using a given within-stand LAI-NDVI
relationship (we used here, for the graphic representation,
the relationship given in Figure 2a, medium saturation
case). The resulting NDVI distributions are represented in
Figure A2b, according to the LAI distributions described
above (mean LAI going from 1 to 8 m2/m2, Figure A2a).
Note that the PDF are normalized to get integrals normal-
ized to 1, which leads to high ordinates for the narrow

Table A1. Results of the No-Difference Test Between Observed

and Predicted Within-Stand LAI Distributionsa

Distribution A-D Test% of Success CDF Fit Mean RMSE (�10�3)

Normal 47.2 32.0
Lognormal 37.6 38.0
Logistic 49.7 32.1
Weibull 62.4 30.1

aTest is the Anderson-Darling test, 197 samples, a = 0.05. The fit mean
RMSE is given as a goodness-of-fit criterion.

Figure A1. Representation of the scale and shape parameters (h and b) of the Weibull model
(equations (A1) and (A2)) as a function of the mean LAI of the stand. These parameters are
calculated for each stand as explained in the text. The regression equations are given in the text
(equations (A3) and (A4)). Anderson-Darling (AD) tests are carried out on each stand, and the results
of the tests are reported in the plots.
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NDVI distributions. One may observe the decrease in width
of the NDVI distribution when the LAI increases. This is
this feature that is studied in the present paper.
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