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Abstract

In the Sahel, land surface processes are significantly interacting with climate dynamics. In this paper, we present an original method to

control a simple Sahelian land surface model coupled to a radiative transfer model (RTM) on the basis of ERS wind scatterometer (WSC)

observations. In a first step, a sensitivity study is implemented to identify those parameters of the land surface model that can be estimated

through the assimilation of WSC data. The assimilation scheme relies on evolution strategies (ES) algorithm that aims at solving the

parameter evaluation problem. These algorithms are particularly well suited for complex (nonlinear) inverse problems. The assimilation

scheme is applied to several study sites located in the Sahelian mesoscale site of the African Monsoon Multidisciplinary Analysis Project

(Gourma region, Mali). The results are compared with ground observations of herbaceous mass. After the WSC data assimilation, the

simulated herbaceous mass curves compare well with observations [187 kilogram of dry matter per hectare (kg DM/ha) of average error]. The

simulated water fluxes exhibit a behaviour in agreement with ground measurements performed over similar ecosystems during the Hapex

Sahel experiment. The accuracy of estimated herbaceous mass and water fluxes resulting from uncertainties on climatic forcing variable is

evaluated using a stochastic approach. The average error on the herbaceous mass values mainly depends on the rainfall estimate accuracy and

ranges from 139 to 268 kg DM/ha that compares well with a previous study based on the sole inversion of the radiative transfer model.

Finally, this study underlines the need for a multispectral assimilation approach to get a better constraint on water fluxes estimation.

D 2004 Elsevier Inc. All rights reserved.

Keywords: Wind scatterometer; Sahel; Data assimilation; Radiative transfer modelling; Vegetation functioning model; Parameter identification; Evolution

strategies
1. Introduction

The land surface component of the hydrological cycle has

a major role on the climate of the earth through the exchanges

of water and energy at the soil–vegetation–atmosphere

interface (Shukla & Mintz, 1982). Over the Sahel, charac-

terized by a high water recycling rate (Brubaker et al., 1993),

the water fluxes in particular are of prime importance to the

understanding and forecasting of the climate (Nicholson,
doi:10.1016/j.rse.2004.10.005
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2000). Vegetation cover modifies the partition of latent fluxes

at the surface between soil evaporation and plant transpiration

and thus alters the water content of the atmospheric boundary

layer available for the development of the convective rainfall

events (Mahrt, 2000). Within this context, Taylor and Lebel

(1998) have found observational evidence of the direct

impact of this partition on the local persistence of convective

events in the boundary layer associated to rainfall in this

region. In particular, vegetation transpiration, by delaying the

return of water to the atmosphere, favours the upkeeping of

convective movements between two rainfall events.

Regarding the role of land surface processes on climate,

increasing realistic land surface models have been incorpo-
ent 94 (2005) 269–285
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rated into general circulation models (GCM) by climate

modelling communities since Manabe’s pioneering work in

1969. A land surface model forced by meteorological data

and surface-specific characteristics (vegetation types and

soil properties) simulates processes of the surface function-

ing such as vegetation dynamics, water, energy and carbon

exchanges, soil water dynamics, etc. (e.g., Dickinson, 1995;

Polcher et al., 1995). The ability of such models to simulate

realistic variations of surface properties as well as

exchanges at the soil–vegetation–atmosphere interface faces

several limitations: (a) forcing variables such as rainfall or

available energy exhibits strong spatiotemporal variability;

(b) no suitable representation is available for the key land

surfaces processes at large scale; (c) for those processes

adequately parameterized, there is no efficient and generic

methods to aggregate the available information at a large

scale (Kabat, Hutjes et al., 1997; Sellers et al., 1997). As a

consequence, available land surface models have consid-

erable difficulties to correctly simulate surface water and

energy partitioning and related processes, which limits

climate prediction. This has motivated several recent studies

that aim at correcting certain state variables of the land

surface models via the assimilation of remote sensing data

(Boulet et al., 2002; Cayrol et al., 2000; Crow & Wood,

2003; Reichle et al., 2001, 2002).

Today, limited to the optical domain, coarse resolution

remote sensing sensors enable surface characteristics such

as vegetation cover or leaf area index (LAI) to be monitored

over large areas or even globally with a high temporal

repetitivity. In addition, radar data acquired by ERS wind

scatterometer (WSC) instruments on board ERS-1 and

ERS-2 satellites have shown strong potentials for monitor-

ing the Sahelian environment, mainly vegetation living

mass and soil moisture (Frison & Mougin, 1996a; Frison et

al., 1998; Jarlan, Mougin et al., 2002; Magagi & Kerr,

1997; Wagner & Scipal, 2000; Woodhouse & Hoekman,

2000). The sensitivity of scatterometers originates from the

drastic change of dielectric properties of the surface

associated with vegetation development and soil moistening

that strikes the Sahelian belt between dry and wet season.

However, this dataset has never been used within an

assimilation procedure.

This study demonstrates the potentialities of coarse radar

observations to simultaneously control the simulated vege-

tation dynamics and water budget of a simple land surface

model restricted to Sahelian grasslands. The paper is

organised as follows. The second section provides a brief

description of the data and models used. The assimilation

methodology is detailed in the third section. The fourth

section deals with assimilation effects on ecosystem

functioning simulations (vegetation production and water

fluxes). Comparison with available ground measurements

performed over many growing seasons and error bar

estimates is also presented. Finally, conclusions and

perspectives are drawn. This work is part of the African

Monsoon Multidisciplinary Analysis project dedicated to a
better understanding of the interannual and seasonal

dynamics of the African Monsoon (AMMA, 2001).
2. Data and models

2.1. The wind scatterometer data set

The ERS wind scatterometer (WSC) instrument provides

backscattering coefficient r0 measurements at 5.3 GHz and

VV polarisation. Data were collected from August 1991 to

January 1995 onboard ERS-1 and from 1995 to December

2000 onboard ERS-2. The spatial resolution is about 50 km,

with incidence angles comprising between 188 and 598.
Data are provided with a 0.258�0.258 pixel size. A more

detailed description of the instrument capabilities can be

found in Frison and Mougin (1996b). In the present study, to

avoid data discrepancy, only observations acquired between

408 and 558 are kept. They are linearly normalized at a 458
incidence angle. The average number of available data is

about 1.8 data/decade. The standard deviation (S.D.) of data

error is estimated to be 0.55 dB over the Sahel at a 458
incidence angle (Jarlan, Mazzega et al., 2002). For lack of

precise information, data are assumed to be contaminated by

a white noise.

2.2. The land surface model

The Sahelian Transpiration Evaporation and Production

(STEP) model is a simple land surface model for Sahelian

regions that was originally designed for use with remote

sensing data (Lo Seen et al., 1995; Mougin et al., 1995). The

STEP model describes the main relevant processes asso-

ciated with herbage functioning and soil water dynamics in

a Sahelian environment. Processes of the soil–plant–

atmosphere system, such as water fluxes, photosynthesis,

respiration, plant growth and senescence are simulated with

a daily time step. The model is driven by standard daily

meteorological variables (rainfall, incident global radiation,

wind speed, minimum and maximum air temperature and

mean relative air humidity), among which the most

important are rainfall and global radiation. STEP includes

two submodels dealing with plant growth and water fluxes.

The present growth submodel simulates processes of plant

emergence, photosynthesis, carbon allocation using two

compartments (aerial vegetation and roots), plant growth

and senescence. Plant transpiration and soil evaporation are

simulated by the water dynamics submodel using the

Penman–Monteith equations (Monteith, 1965). Water inter-

ception by vegetation canopy is neglected regarding the low

vegetation cover fraction (Vcf) in this region. The soil water

dynamics is described using a simple four-layer water

bucket model (Manabé, 1969). STEP simulates on a daily

basis the structural variables of the vegetation canopy

[canopy height hc, total herbaceous mass Bm, leaf area

index (LAI) and vegetation cover fraction (Vcf)], the
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vegetation water content Hp, the soil water content Hv and

water fluxes. The main equations of the STEP model are

given in Appendix A, and a further description can be found

in Mougin et al. (1995).

2.3. The radiative transfer model

The STEP model has already been coupled with a

radiative transfer model (RTM) in the radar domain (Frison

et al., 1998; Jarlan, Mougin et al., 2002). This model

simulates the interaction between the electromagnetic wave

emitted by the scatterometer and the surface components,

namely, soil and vegetation. The herbage canopy is

modelled as a collection of discrete randomly oriented

scatterers above a rough surface. For the calculations, the

herb components are modelled as elliptic discs. Tree cover is

neglected (Jarlan, Mougin et al., 2002). The RTM links the

backscattering coefficient to:

– the water content of the upper soil profile Hv through the

soil dielectric constant,

– the vegetation water content Hp through the vegetation

dielectric constant,

– the standing herbaceous mass Bm and canopy height hc
through the scatterer density n0,

– the scatterer geometrical parameters (dimension and

orientation).

– the surface roughness.

The scatterer density n0 is derived from the vegetation

volume fraction fv and the volume of an elementary scatterer

Vscat as (Frison et al., 1998):

n0 ¼
fv

Vscat

ð1Þ

with fv ¼ 0:0001 Bm

½w þ Hp 1� wð Þ�
hcqeð1� HpÞ

ð2Þ

where w is the ratio between the water density qe and the

dry matter density. Table 1 lists the RTM input parameters

(the main equations of the RTM model can be found in

Frison et al., 1998).

For lack of a dense ground station network to describe

rainfall spatial variability, the simulated soil water content of

the upper soil profile from the STEP model is averaged over
Table 1

List of the input variables of the radiative backscattering model

Symbol Definition Units Value

x, y, z Scatterer dimension cm

a, b, c Scatterer orientation radian [0;2p]
n0 Scatterer density m�3 –

ev Dielectric constant of scatterers – –

es Dielectric constant of soil – –

s Soil roughness cm [0.001;0.05]
a 15-day period to get a representative value at the 50-km

scale following Frison et al. (1998). Previous studies show

that the combined RTM–STEP models enable interannual

ERS measurements to be well simulated. Details about the

coupled models can be found in Frison et al. (1998) and

Jarlan, Mougin et al. (2002).

2.4. Study region and ground observations

The study region is located in the Gourma region in Mali.

The Malian Gourma belongs to the Sahelian zone and

extends to the south of the Niger River between Timbuktu

and Gao down to the border with Burkina-Faso (148N/178N
and 28W/18W). This is mainly a pastoral region bracketed

by the 500 and 150 mm/year isohyets. Rainfall distribution

is strictly monomodal starting in June and ending in

September, with a maximum in August. Over the year,

mean daily global radiation is about 18 MJ m�2 d�1. The

mean annual temperature is about 29 8C, with maximum

and minimum monthly values of 41 and 15 8C occurring in

April and January, respectively.

Crops are almost absent from the Gourma region apart

from the southern border. Natural vegetation is composed of a

herbage layer and a sparse tree layer. The herbage layer is

dominated by annual plants among which C4 graminoids

prevail. For the considered sites, soils are largely sandy (85–

95%), poor in organic matter content (0.1–0.2%) and acidic

(pH 5–6). The development of herbage plants starts after the

first rains in June or July, and, unless the plants wilt before

maturity by lack of rain, the senescence follows the

fructification which matches with the end of the rainy season.

Herbaceous mass measurements are collected between

one and three times over the growing season over four 25*25

km2 sites and are expressed in kilogram of dry matter per

hectare (kg DM/ha). These sites, located along a north–south

transect, cover the whole bioclimatic gradient of the Sahelian

zone, as defined by Le Houérou (1989). Over the study

period, the herbaceous mass was measured during the 1992,

1993, 1999 and 2000 seasons (21 points). The uncertainty of

herbaceous mass measurement at that scale is estimated about

30% (Jarlan et al., 2003). Location of the study sites and

herbaceous mass measurements are given in Table 2. Further

description of the study sites and field measurements is

available in Hiernaux and Justice (1986) and Tracol et al.

(submitted for publication).
Source

Measurements on typical C4 grass (Frison et al., 1998)

Measurements on typical C4 grass (Frison et al., 1998)

Function of herbaceous mass, canopy height and vegetation water content

Function of vegetation water content (Ulaby & El-Rayes, 1987)

Function of soil water content (Hallikainen et al., 1985)

Fitted using backscattering coefficient acquired during dry season

(Frison et al., 1998)



Table 2

Location of the study sites and herbaceous mass measurements (the measurement date is given as day of the year -DOY-)

Location Season 1992 Season 1993 Season 1999 Season 2000

Latitude Longitude Date

(DOY)

Bm

(kg DM/ha)

Date

(DOY)

Bm

(kg DM/ha)

Date

(DOY)

Bm

(kg DM/ha)

Date

(DOY)

Bm

(kg DM/ha)

Rharous 16.58N 1.58W 267 375 254 505 270 1550 246 650

219 60

Gossi 16.08N 1.48W 267 329 253 250 261 1630 244 200

215 163 213 99

Hombori 15.38N 1.58W 234 543 251 744 213 190

263 1061 264 1380 250 990

Seno 14.68N 2.98W 264 1434 249 2135 271 1634 289 1240
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Rainfall data are recorded by four meteorological stations

located near each study site: Gourma Rharous (16.98N,
1.98W), Gossi (15.88N, 1.38W), Hombori (15.38N, 1.78W)

and Diankabou (14.68N, 3.18W). The other forcing climatic

variables for the STEP model, namely, global radiation,

temperature, air humidity and wind speed, are extracted from

the climatological atlas of Morel (1992).
3. Assimilation methodology

Regarding the numerous parameters of the coupled

RTM–STEP models, a sensitivity study is first conducted

to identify those parameters that can be constrained via the

WSC data assimilation. The assimilation methodology is

then described.

3.1. Sensitivity study

The coupled RTM–STEP models have numerous param-

eters describing the surface functioning and the physical

properties of the observed surface. From previous studies,

parameters of the RTM (see Table 1) are set to values

defined in Frison et al. (1998) and Jarlan, Mougin et al.

(2002). Scatterer dimension and orientation parameters have

values of typical Sahelian annual herbage species. Soil

roughness is a site-specific parameter. It is fitted from ERS

observations acquired during the dry season with the Oh et

al. (1992) model and kept constant during the wet season

(Frison et al., 1998).

Because of the land surface heterogeneity, the spatial

resolution of the WSC data to assimilate (~50 km)

precludes from setting a priori local measurement values

to the STEP model parameters. However, the WSC

observations cannot be used to control every parameters

of the land surface model. In particular, certain are

bnonobservableQ by the instrument. Here, a simple Monte

Carlo uncertainty analysis is carried out to identify the

sensitivity of the simulated backscattering coefficient as a

function of realistic variations of the STEP model

parameters. Sixteen key parameters of the STEP model

are a-priori-selected for the sensitivity analysis. The

implemented sensitivity method used here is a simplifica-

tion of the Bastidas et al. (1999) method.
A simulated time series of the backscattering coefficient

using the coupled RTM–STEP models is computed from a-

priori-chosen parameter values with a temporal repetitivity

that mimics the WSC instrument. This simulation is taken as

our reference simulation r̂ reference
0 (t). A set of M parameter

vectors pm (16-dimensional) is then generated stochastically

using a uniform distribution between two extreme values

either taken from ground measurements or found in the

bibliography. The corresponding M simulations r̂ m
0 (t, pm)

(m=1..M) of the RTM–STEP model runs are computed. The

performance of the mth simulation r̂m
0 (t, pm) with regards to

the reference time series r̂ reference
0 (t), is evaluated by the

quadratic cost function Jm:

Jm½pm� ¼
�
1

n
	
Xn
i¼1

ðr̂r0
m½ti; pm� � r̂r0

referenceðtiÞÞ
2

�1
2

ð3Þ

The whole set of simulations is then divided between

acceptable solutions and nonacceptable ones. Assuming

that the ERS WSC observations are contaminated by a

white noise, every solution with a cost lower than twice

the observation noise level is kept as acceptable (Jarlan,

Mazzega et al., 2002). Cumulative parameter distributions

are computed from the subset of N bacceptableQ solutions
and compared to cumulative distributions from the M-N

bnonacceptableQ ones (a priori nearly uniform apart from

numerical sampling errors). If these two distributions

significantly differ from each other, the parameter is

assumed to have a nonnegligible influence on the back-

scattering coefficient.

The stochastic feature of the method precludes from a

systematic exploration of the whole parameter space.

However, a preliminary study shows that, apart from very

local nonlinear phenomenon, 100,000 samples are suffi-

cient to identify the general behaviour of the coupled

RTM–STEP models. The number of acceptable solutions is

N=4543 from the 100,000 potential solutions tested within

this study (thus, 4.5% of total number of function

evaluation). Results show that the backscattering coeffi-

cient is sensitive to 10 parameters listed in Table 3 in

decreasing order in terms of sensitivity. The sensitivity

analysis is repeated with a different reference simulation

and leads to similar results.



Fig. 1. Schematic description of the assimilation scheme based on the

evolution strategies algorithm.

Table 3

Selected STEP model parameters used in WSC assimilation

Symbol Definition Units Range

Bg0 Initial above ground

green biomass

g. m�2 [0.1;3]

C3 C3 herb contribution % [0;100]

emax Maximum conversion

efficiency

g DM mJ�1 [4;8]

SLA0 Specific plant area at

emergence

cm2 g�1 [180;280]

SLAslope Slope of the relation

SLA=SLA0*exp

(�SLAslope*t)

– [0.007;0.06]

Hemergence Vegetation water content

at emergence

% [0.7;0.9]

Hpeak Vegetation water content

at herbaceous mass peak

% [0.35;0.45]

K(0) Infiltration time constant

for superficial layer (layer 0)

cm day�1 [100;1200]

a Parameters of the soil water – [3000;6000]

b Resistance equation [200;1200]
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3.2. The assimilation scheme

The assimilation scheme consists of calibrating the

retrievable uncertain parameter vector p (10-dimensional)

of the STEP model using WSC data (1) to improve the

simulations of the state variables of the model (mainly,

herbaceous mass and water content of the upper soil profile)

and (2) to study the impact of the WSC data assimilation on

simulated water fluxes. This kind of assimilation problem is

called parameter identification (Delécolle et al., 1992;

Evensen et al., 1998; Maas, 1988). It is usually solved by

an optimization process searching for the RTM–STEP

parameters that minimize the distance between ERS obser-

vations and the RTM–STEP-simulated backscattering coef-

ficient. The distance between the n observations at time ti,

r0(ti) and the corresponding model prediction r̂scene
0 [ti, p] is

computed using the following cost function J:

J p½ � ¼
"
1

n
	
Xn
i¼1

ðr̂r0
scene½ti; p� � r0ðtiÞÞ2

CðtiÞ

#1
2

ð4Þ

where C(ti) is a nonstationary covariance function that

boverweighsQ the high backscattering observations that

mainly control the simulated herbaceous mass peak. Weights

are set to 1/0.1 for the backscattering peak and to 1/1 for the

lower backscattering observations, with a linear variation

between these two extreme values. The better the solution,

the lower the cost value is. Following Jarlan et al. (2003), only

those data acquired during the period of vegetation growth

are kept to identify the 10 parameters.

The cost function minimization is carried out using an

evolutionary algorithm (EA). EAs are stochastic optimiza-

tion methods crudely mimicking Darwinian evolution: the

adaptation to a given environment is the result of natural

selection (survival of the fittest) and blind variations. The

most well-known branches of Evolutionary Computation
(EC) are evolution strategies (ES), evolutionary program-

ming, genetic algorithms and genetic programming (Schoe-

nauer &Michalewicz, 1997). EAs exhibit great potentialities

to solve complex real-world problems. From the point of

view of optimization, EC are very powerful zeroth-order

methods (that is, they only require value of the function to

optimize) that can find the optimum of quite rough

functions. These algorithms work on a population of

individuals, each representing a search point in the space

of potential solutions. The population is arbitrarily initial-

ized and evolves towards better and better regions of the

search space through the application of processes of

selection, mutation, and recombination (Michalewicz,

1996; Rechenberg, 1973; Schwefel, 1981). These kind of

stochastic algorithms have been already used with success

within the frame of various environmental inverse problems

(Fang et al., 2003; Jarlan et al., 2003; Wang, 1997).

Here, we use an evolution strategies (ES) algorithm

developed by Schoenauer et al. (1995). In this particular

design, the individuals of the generation at time step t+1 are

the best individuals among the parents plus offspring of

generation at time t (the so-called ES+strategy). The number

of parents and the number of offspring are set to 50. The total

number of generations is set to 50. The autoadaptative

mutation probability and the crossover probability are set to

0.6 and 0.4, respectively. In the data assimilation process, we

shall not consider only the optimal parameter set popt (i.e.,

that minimizes the cost function) but also the whole set of

acceptable solutions. The acceptability criterion for a given

trial parameter set corresponds to an associated cost function

lower than twice the data noise level (Jarlan et al., 2003).

Accordingly, thanks to the stochastic feature of the ES

algorithm, several parameter vectors are tested, and those that

fulfil the acceptability criterion are kept.

The schematic description of the assimilation procedure

is given in Fig. 1. Daily outputs from the Land Surface
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Model STEP—namely, the herbaceous mass and cover

fraction, the vegetation and soil water contents—are used

as inputs of the radiative transfer model to simulate a

temporal series of the backscattering coefficient. These

simulations are compared to WSC observations through the

cost function J (Eq. (4)). If J is higher than twice the data

noise level, the parameter vector is updated by the evolution

strategies algorithm. If J is lower, this parameter vector is

used to compute an acceptable simulation of daily herba-

ceous mass, soil water content and water fluxes. The

algorithm is stopped when the maximum number of

generations is reached.

The assimilation scheme is firstly evaluated using twin

experiments. A set of backscattering observations is built

using the RTM–STEP models with a known parameter

vector pa. The assimilation scheme is then applied to this

artificial data set. Results show that the simulated back-

scattering coefficient time series is recovered with a cost

lower than 0.01 dB, and the optimized parameter vector is

equal to pa (apart from the error due to the numerical

sampling of the evolution strategies algorithm).

3.3. Running the assimilation scheme

The assimilation scheme aiming at the 10-parameter

vector identification is run for the four Gourma sites during

the four years: 1992, 1993, 1999 and 2000 (16 cases).

Compared to the above sensitivity study performed using a

Monte Carlo approach, ES use a more dcleverT sampling

strategy of the parameter space. As a result, the number of

function evaluations necessary to obtain acceptable solu-

tions is much lower. For the 50 generation computed (about

1900 different cost evaluations), 400, on average, are kept as

acceptable (21% versus 4.5% for the Monte Carlo method).

The distributions of acceptable solutions are summarised by

whisker plots (minimum and maximum values, first and

third quartiles and median value). Simulations and ground

measurements are compared by using the average absolute

error (AAE).

Simulations of the RTM–STEP models after WSC data

assimilation are called STEP-WSC. The STEP model is

used to compute two other groups of simulations to which

STEP-WSC are compared. The free runs of the model, with

a set of average parameters, are called STEP-free. On the

whole, these free runs without any calibration provide

erroneous herbaceous mass evolution. When compared to

the 21 ground measurements, the associated AAE is equal to

615 kg DM/ha. Over the reference sites where ground

observations and measured soil characteristics are available,

herbaceous mass measurements are used to calibrate two

fitting parameters of the STEP model (eCmax and Bg0) using

a look up Table approach (Mougin et al., 1995). Once the

STEP model has been calibrated, it allows for a realistic

simulation of herbaceous mass development with an AAE

about 139 kg DM/ha. This last set of simulations, calibrated

with ground measurements, are called STEP-GM.
4. Results and discussion

The time evolution of the STEP-WSC simulated state

variables (herbaceous mass and soil moisture of the upper

layer and water fluxes) is first analyzed. STEP-WSC

simulations of herbaceous mass are compared to ground

measurements. The associated simulated daily water fluxes

are analyzed over the AMMA super site bHomboriQ (15.3
8N, 1.58W) during the 1992, 1993, 1999 and 2000 seasons.

Because of the lack of direct water fluxes observations, the

temporal variability of the water fluxes after data assim-

ilation is evaluated by a comparison with previous field

campaigns measurements acquired on the same kind of

ecosystems. Error bars on these simulated variables are then

calculated using a stochastic approach.

4.1. Simulation of herbaceous mass

Fig. 2 illustrates the interannual variability of back-

scattering coefficient (a–d), herbaceous mass (e–h) and 15-

day averaged soil volumetric humidity (i–l) over the

AMMA project super site (named dHomboriT). With regards

to climate, the long-term average of rainfall amount of the

Hombori site is about 321 mm/year (over 1984–2002). With

an annual report of 521 mm, year 1999 is an excellent one.

Years 1993 and 2000 are close to the average, and year 1992

is quite dry (Table 4).

Time series of the simulated backscattering coefficient

after assimilation and the corresponding WSC observations

are drawn in Fig. 2(a–d). The fitting is only performed during

the vegetation growth period as simulated by STEP-WSC.

The duration and time shift of this period show a year-to-year

variability (in relation with rainfall amount and distribution):

fromDOY 210 toDOY 275 for year 1999 and from day of the

year (DOY) 190 to DOY 250 for year 1993. The agreement

between observations and simulation is acceptable for the

four cases. As a result of the nonstationary covariance

function (see Eq. (4)), the high values of the WSC

observations are better fitted than the lower ones.

The STEP-WSC herbaceous mass time series and

corresponding STEP-free and STEP-GM simulations are

drawn in Fig. 2(e and h) together with ground measurement

data. As expected, the best fit to ground data is obtained

with the STEP model calibrated with ground measurements

(STEP-GM), no other constraints being added. However,

the constraints brought by the WSC observations signifi-

cantly improve the herbaceous mass time series when

compared to the free run simulations (STEP-free). The

mean parameters used to compute STEP-free simulations do

not allow any vegetation development during the year 1992.

For year 1999, the free run underestimates the herbaceous

mass, particularly at the peak, whereas, for year 2000, the

herbaceous mass is overestimated by the STEP-free

simulations. By calibrating the 10 uncertain parameters,

the assimilation scheme corrects for this erroneous behav-

iour of the model, and both the median and optimal STEP-



Fig. 2. Interannual variability: temporal evolution of the acceptable solutions for the Hombori site during years 1992, 1993, 1999 and 2000. Error bars represent

whisker plot of the distribution. (a–d) Backscattering coefficient. (e–h) Herbaceous mass. (i–l) Soil water content of the upper soil profile. Optimal solution (–),

STEP simulations of herbaceous mass without calibration (STEP-free) and calibrated with ground measurements (STEP-GM) are added for comparison.
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WSC solutions are close to the ground measurements. Near

the herbaceous mass peak, the absolute difference between

STEP-WSC optimal solutions and ground measurements is

54, 61, 32 and 88 kg DM/ha for years 1992, 1993, 1999 and

2000, respectively. Incidentally, it should be noted that the

exact date of the mass peak is not accurately known. On one

hand, the temporal repetitivity of the radar sampling (1.8

data/10 days) precludes from a precise emerging and peak

dates recovery. On the other hand, most in situ sites are far

from any road and surveyed just when the occurrence of the

mass peak is expected regionally.

At the beginning of the growing season, the simulated

vegetation development starts with an average 14-day delay

(16 cases considered) with STEP-WSC with regard to the

STEP-GM simulations. As a consequence, ground measure-

ments acquired at the beginning of the growing season such

as that of year 2000 are strongly underestimated (Fig. 2(h)).

As well, the absolute time shift of herbaceous mass peak

between STEP-WSC and STEP-GM is about 9 days on

average, which corresponds roughly to the WSC temporal

repetitivity. Besides, from the middle stages of development

to the mass peak, both herbaceous mass time series are in

good agreement.

Fig. 2(i and l) show the 15-day period averaged water

content of the upper soil profile. The STEP-GM and STEP-

free simulations have been added for comparison. Because

of the high global radiation and of the small field capacity of

sandy soils, the high rate of evaporation from bare soil after

a rainfall event produces a strong day-to-day variability of

water content in the upper soil profile. Indeed, the surface

layer completely dries out within less than 5 days

(unpublished data). This rapid drying of the soil has also

been observed by Wallace et al. (1993) for sandy soil under

millet in a Sahelian environment.

The parameters of the water budget model (time

infiltration constant and resistance to soil–atmosphere

transfer) control the simulated soil moisture by modifying

the bdrying rateQ after a rainfall event. For years 1992, 1993
and 2000, STEP-WSC 15-day averaged soil water content

simulations are lower than the STEP-GM ones during the

whole growing season. For year 1999, the correction applied

to soil water content simulations is less important, and

STEP-WSC and STEP-GM simulations are in better agree-

ment except at the beginning of the growing season (from

DOY 190 to 220). This can be mainly explained by the

vegetation cover fraction difference. When the vegetation

cover fraction is low (e.g., Hombori-2000), the time

variations of soil water content is strongly dependent on

soil evaporation which is controlled by the assimilation

scheme through the soil resistance to water transfer

(parameters a and b in Table 3). When the vegetation cover

fraction is high (e.g., year 1999), the soil is partly masked

by the vegetation, and the influence of the soil evaporation

on the soil water content is less important. STEP-free and

STEP-GM correspond to identical values of soil resistance

to water transfer and time infiltration constant (only emax
and Bg0 differs), the slight observed differences are

attributed to change in vegetation cover fraction.

In Fig. 3, the spatial variability of backscattering

coefficient (a–d), herbaceous mass (e–h) and 15-day

averaged soil volumetric humidity (i–l) is displayed along

the north–south bioclimatic gradient of the Gourma region

during year 1993 (an average year in terms of rainfall

amount). From north to south, it is worth noting the regular

increase of the average level of backscattering (Frison &

Mougin, 1996a). The fit between simulated and observed

backscattering coefficient is satisfying from the northern site

(dRharousT) to the southern one (dSenoT). Concerning

herbage production, STEP-WSC is in better agreement with

ground measurements than STEP-free one for dRharousT and
dHomboriT sites, STEP-free being better for dGossiT and

dSeno.T The simulated soil water content after WSC data

assimilation for the northern (and drier) site is higher than

before (STEP-free and STEP-GM). This contrasts with Fig.

2 showing a lower soil water content after WSC assimilation

during dry years. This different behaviour is attributed to the

longer dry season encountered in this region bordering

Sahara desert and to the preceding season (1992) that was

particularly dry. Soils may have been affected by a strong

crusting, thus increasing the soil resistance to evaporation.

When moving southward, water availability is less and less

a limiting factor, allowing for a higher evaporation rate and

lower soil water content than with average parameters (e.g.,

dHomboriT and dSenoT sites).
The STEP-WSC herbaceous mass simulations are then

compared to all the herbaceous mass measurements (21 data

distributed over four sites and four years) that are the sole

available ground data at this spatial scale. Note that the

STEP-WSC simulations are independent from the ground

data, the optimality criterion being defined with regard to

the radar data only (see Eq. (4)). On average, the optimal

solutions from the set of acceptable STEP-WSC simulations

are nearest to ground measurements than the median ones.

In Fig. 4(a), the optimal STEP-WSC mass estimates are

plotted as a function of the ground data at the date of the

measurement. In Fig. 4(b), the simulated STEP-WSC mass

peak estimates are plotted as a function of the corresponding

simulated STEP-GM estimates. The free runs of the model

(STEP-free) are not shown here as they provide poor

simulations of the herbaceous mass evolution (615 kg DM/

ha of AAE with regards to ground measurements date to

date).

The results are satisfying on both scatter-plots with 187 kg

DM/ha and 226 kg DM/ha of absolute error, respectively.

This represents a noticeable improvement with regards to

STEP-free. Measurements acquired at the beginning of the

vegetation growth are underestimated by the assimilation

results (STEP-WSC) as can be noticed in Fig. 4(a). This can

be attributed to the time shift at the start of the vegetation

growth between ground calibrated STEP simulations, STEP-

GM and STEP-WSC. The strongest difference is associated

with the southern site during the year 1993 on both plots. For



Fig. 3. Spatial variability: temporal evolution of the acceptable solutions for the year 1993 along the north–south bioclimatic gradient (dRharous,T dGossi,T
dHomboriT and dSenoT sites). Error bars represent whisker plot of the distribution. (a–d) Backscattering coefficient. (e–h) Herbaceous mass. (i–l) Soil water

content of the upper soil profile. Optimal solution (–), STEP simulations of herbaceous mass without calibration (STEP-free) and calibrated with ground

measurements (STEP-GM) are added for comparison.
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Fig. 4. Comparison of STEP simulation after WSC data assimilation with (a) ground measurements date to date and (b) simulated peak herbaceous mass by

STEP calibrated on ground measurements (STEP-GM). All sites during the years 1992, 1993, 1999 and 2000 are considered. Average absolute error and

correlation coefficient r2 are 187 kg DM/ha, 0.72 and 226 kg DM/ha, 0.67 for Fig. 2(a and b), respectively.
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this site, the ground measurement and the STEP-GM herba-

ceous mass peak are equal to 2135 and 2227 kg DM/ha,

respectively, whereas the STEP-WSC simulations are 929

and 1140 kg DM/ha. The maximum of herbaceous mass

appears to be pretty well estimated with a 226 kg DM/ha

average absolute error. These results show that the assim-

ilation of ERS WSC data into the STEP model strongly

improves its simulations of herbaceous mass with regards to

the free run of themodel. Furthermore, STEP-WSC compares

well with STEP simulations calibrated on ground measure-

ments, in particular, around the herbaceous mass peak.

4.2. Simulations of water fluxes

We now aim at evaluating the way the assimilation of

WSC data into the land surface model affects the simulated

water fluxes that are critical variables for the Sahelian

climate through the convection processes in the boundary

layer (Nicholson, 2000). By constraining the parameters of

the water and carbon submodels, the data assimilation

modifies the water partition between evaporation and

transpiration. This process is illustrated in Fig. 5 which

shows the daily evaporation and transpiration (a) and the

daily evapotranspiration (b) before and after the data

assimilation (optimal solutions only) for the dHomboriT site
during years 1992, 1993, 1999 and 2000. Corresponding

simulated herbaceous mass and soil water content are

displayed in Fig. 2. The yearly rainfall and yearly statistics

on daily water fluxes are given in Table 4.

Fig. 5(a) shows the time variation of soil evaporation and

plant transpiration as compared to potential evapotranspira-

tion (PET) values taken from Morel’s atlas (Morel, 1992).

The primary factor governing evaporation variability over

Sahel is the rainfall pattern (Sivakumar, 1990). The control of

the soil resistance to water transfer by the WSC data
assimilation particularly affects the STEP model simulations

at the beginning of the growing season when the distribution

of rainfall events is highly irregular (e.g., years 1992, 1993

and 2000), and the near soil surface evaporation dominates

evapotranspiration (Lloyd et al., 1997). On the day following

a rainfall event, evaporation simulated by the STEP model

after assimilation follows PET very closely during the years

1992 and 2000. On the second day, the simulated values

depart significantly from PET. They are well below PET on

the third day, reaching values as low as 0.3 mm/day. This

simulated behaviour of soil evaporation after data assimila-

tion is in good agreement with measurements performed

during the Hapex Sahel Experiment (Kabat, Dolman et al.,

1997; Wallace & Holwill, 1997). Actual evaporation may

even be higher than PET as already observed by Gash et al.

(1991) over a fallow savannah and by Culf et al. (1993) over a

patterned woodland. On average, the data assimilation leads

to higher evaporation rates than those simulated before

assimilation. This higher evaporation leads to lower values

(as already noticed in Fig. 2(e and f)) and stronger day-to-day

variability of the soil water content, particularly, during the

1992 and 2000 rainy seasons. Afterwards, in themiddle of the

growing season, when vegetation cover fraction increases

and rainfall distribution becomes more regular, the evapo-

ration time variation is smoother. On year 1999, the Hombori

site received particularly abundant and regular rainfalls,

allowing for a high vegetation development (the simulated

vegetation cover fraction at herbaceous mass peak after

assimilation reaches 0.85). As a consequence, the soil was

strongly masked by vegetation, and the simulated evapo-

ration is smooth along the whole growing season.

The percentage of soil evaporation to total rainfall

amount exhibits a strong interannual variability and ranges

from 21% to 73% (Table 4). On average, over the four

studied years, 57% of the infiltrated water is lost by soil



Fig. 5. Effects of WSC data assimilation on simulated daily water fluxes over the Hombori site during years 1992, 1993, 1999 and 2000. (a) Evaporation (E),

transpiration (Tr) and potential evapotranspiration (PET, Morel, 1992). (b) Total evapotranspiration (ETR), potential evapotranspiration (Morel, 1992) and daily

rainfall. For each figure, both simulations before (: : : : : :) and after (P) data assimilation are plotted.
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evaporation. This percentage tends to increase in dry years

(e.g., 73% loss during year 1992). This has also been

observed by Wallace and Holwill (1997).

Differences between transpiration fluxes before and after

assimilation are mainly associated to differences in simulated

herbage production and thus in leaf area index (Wallace et al.,
Table 4

Yearly rainfall and statistics on water fluxes over the dHomboriT site (15.38N, 1.58W
data assimilation)

Rainfall (mm) Evaporation (mm) (% rainfall) Tran

Before After Bef

1992 276.5 199.0 (72) 201.6 (73) 0

1993 306.1 203.4 (66) 190.8 (62) 46

1999 521.0 145.5 (28) 109.3 (21) 82

2000 306.0 140.3 (46) 219.0 (72) 105
1990, 1993). The assimilation of WSC data leads to more

realistic simulations of transpiration fluxes, with higher

values encountered during year of high vegetation growth.

In particular, year 1999 exhibits the highest yearly transpira-

tion rate with 115.5 mm/year (cf. Table 4) and herbage

production (1400 kg DM/ha). The lowest values are obtained
) during the 1992, 1993, 1999 and 2000 growing seasons (before and after

spiration (mm) (% rainfall) Average evapotranspiration (mm/day)

ore After Before After

.3 (0.1) 61.0 (22) 1.41 1.86

.3 (15) 70.3 (23) 1.82 1.90

.1 (16) 115.5 (22) 2.39 2.36

.9 (34) 75.0 (24) 2.53 3.01
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for year 1992 (61 mm/year with 750 kg DM/ha). As well, the

highest daily value is simulated at peak herbaceous mass for

the year 1999 (3.2 mm/day at DOY 266).

Finally, WSC data assimilation allows the time variation

of both evaporation and transpiration to be corrected. Higher

day-to-day simulated variability of soil evaporation after

assimilation is in good agreement with previous measure-

ments available over similar ecosystems. High values close to

PET at the beginning of the growing season are also in better

agreement with what has been measured until now. The

correction of simulated herbage production affects vegetation

transpiration fluxes which exhibit, after assimilation, a more

realistic behaviour with values better correlated with ground

observations of herbaceous dry matter production.

4.3. Uncertainty calculation

The comparison of the STEP-WSC simulations with

ground measurements allows to check the overall consis-

tency of the model physical behaviour. The parameter space

semistochastic sampling done by the evolution strategies

algorithm allows the error bar on every state variables of the

STEP model to be estimated from the set of acceptable

solutions (materialized by the whisker plots; Fig. 2(a–f)).

The expected uncertainties to be associated with the

herbaceous mass or water fluxes simulations depend on

the WSC noise level as well as on the accuracies of the

coupled RTM–STEP models and meteorological forcing

variables. Error bars on the STEP simulations induced by

uncertainties on the meteorological forcing variables have to

be quantified. Rainfall and global radiation are the most

important forcing factors as they govern both the carbon

budget (through photosynthesis and water availability for

the plant growth) and water budget of the model. Thus,

noise is artificially added only to rainfall and to global

radiation.

Rainfall in the Sahel is mostly generated by squall lines,

which typically arrive at 3-day intervals throughout the

rainy season. However, storms within these squall lines are

convective, and the spatial distribution of rainfall is thus

highly variable, in particular, at the scale of the WSC

resolution cell. Obviously, this spatial variability cannot be

taken into account with the rainfall data obtained from one

ground station available per site. Consequently, the rainfall

data used in the assimilation procedure are probably not

representative of the resolution cell. As the water content of

the first soil centimetres is only slightly influenced by the

rainfall amount because of a low field capacity, only the

rainfall time distribution is perturbed. To this end, the

number of rainfall events and the amount of each event per

decade are stochastically modified in such a way that this

new distribution follows the average statistics obtained from

our rainfall database (Jarlan et al., 2003). Moreover, the

global radiation from the Morel (1992) atlas is contaminated

by a 30% white noise (uniform distribution around atlas

value), which is the typical noise level that can be expected
for estimates derived from a remote sensing instrument such

as METEOSAT (Ba et al., 2001). The assimilation scheme

is run 500 times using different noisy forcing variables, and

optimal herbaceous mass and water flux time series are kept.

The uncertainty calculations are only illustrated for the

Hombori-2000 and Seno-1999 cases because of computing

time constraints and because of their different behaviour. Fig.

6(a–f) show the distributions of the herbaceous mass peak

values for Seno-1999 and Hombori-2000 resulting from

noise contamination of rainfall, global radiation and rainfall

plus global radiation, respectively. The resulting distributions

are likely to be quasinormal (only a much larger set of

simulations would allow to test this assumption). Because of

a stronger sensitivity to rainfall than to global radiation, the

herbaceous mass distributions are narrower when noise is

only added to the global radiation than to the rainfall (Seno-

1999: 139 kg DM/ha versus 268 kg DM/ha standard

deviations (S.D.), respectively; Hombori-2000: 124 kg DM/

ha versus 236 kg DM/ha S.D., respectively). With regards to

ground measurements, adding noise to rainfall recenters the

herbage distribution on the Seno-1999 ground data and leads

to a less important underestimation for Hombori-2000.

Contaminating both forcing variables does not significantly

change the mass distribution S.D. over the sole rainfall

contamination case. This confirms the dominant sensitivity of

the STEP model simulations to the rainfall distribution which

is the main climatic factor governing the surface functioning

over the Sahel. With both rainfall and global radiation noise

contaminations, the variation coefficients (S.D. divided by

the mean) of the resulting herbaceous mass distributions (Fig.

5(c and f)) are about 15.1% for Seno-1999 and 15.9% for

Hombori-2000.

These uncertainty estimates on the herbaceous mass after

assimilation compare well with those from Jarlan et al.

(2003) based on the inversion of the radiative transfer model.

For this later case, the herbaceous mass S.D. resulting from

forcing uncertainties was between 230 and 271 kg DM/ha

over the whole Gourma region. Relying on the land surface

model, the assimilation approach appears to bring better

constraints to the herbaceous mass estimation. Indeed, the

standard deviations of the distribution exhibit more varia-

bility (Hombori-2000: 139 DM/ha; Seno-1999: 268 kg DM/

ha) but still have values lower than those estimated with the

inversion process.

Yearly, water flux distributions (evaporation, transpiration

and evapotranspiration) are shown in Fig. 7(a–f) for the Seno-

1999 and Hombori-2000 cases. These distributions result

from the same noise contamination process of rainfall and

global radiation data (see above). Mean values of yearly

evaporation (Seno-1999: 223 mm/y; Hombori-2000: 220

mm/y) are higher than yearly transpiration ones (Seno-1999:

71mm/y; Hombori-2000: 108 mm/y). As a result, the relative

accuracies on yearly evaporation are lower than those of

yearly transpiration: 8.1% and 28.1% for Seno-1999; 11.8%

and 24.1% for Hombori-2000. The standard deviation of

evapotranspiration (about 15 mm/y for both Seno-1999 and



Fig. 7. Rainfall and global radiation uncertainties propagated on simulated yearly water fluxes. Panels (a–c) and (d–f) shows Seno-1999 and Hombori-2000

distributions of evaporation, transpiration and evapotranspiration, respectively. Mean, standard deviation (in mm/year) and variation coefficient (standard

deviation/mean) are equal to 220, 26, 11.8%; 108, 26, 24.1%; 328, 15, 4.6%; 223, 18, 8.1%; 71, 20, 28.1% and 294, 15, 5.1% for panels (a–f), respectively.

Fig. 6. Meteorological forcing variable uncertainties propagated on simulated herbaceous mass after assimilation. Panels (a–c) and (d–f) show the Seno-1999

and the Hombori-2000 cases after noising rainfall, global radiation and rainfall+global radiation, respectively. Herbaceous mass measurements are also plotted

(–). Mean, standard deviation (in kg DM/ha) and variation coefficient (standard deviation/mean) are equal to 1723, 268, 15.5%; 1901, 236, 12.4%; 1691, 257,

15.2%; 844, 139, 16.5%; 716, 124, 17.3% and 831, 132, 15.9% for panels (a–f), respectively.
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Hombori-2000) is lower than both those of evaporation and

transpiration. An interesting feature is that the monomodal

herbaceous mass distributions (Fig. 6(c)) leads to a bimodal

yearly transpiration distribution (Fig. 7(b)) for Seno-1999.

This bimodality highlights the non linear behaviour of the

STEP model. After analysis, the left mode of yearly

transpiration distribution (low transpiration rates) appears to

be associated with low herbaceous mass development and

high evaporation rate. In fact, the assimilation algorithm

chooses higher yearly evaporation rate to compensate for low

yearly transpiration so that the total evaporation remains

more or less constant. This in turn modifies the partition

between the simulated soil evaporation and plant transpira-

tion (via the land surface model) and can change the

atmospheric dynamics when coupled to a mesoscale atmos-

pheric dynamical model. This underdetermination illustrates

the danger of using only one data set during the assimilation

process for controlling a model characterized by nonlinear

equations such as the STEP model.
5. Conclusion and perspectives

The objective of this study is to correct the simulated

herbaceous mass, soil moisture and water fluxes derived from

a simple land surface model through the assimilation of

coarse remote sensing radar data over Sahel. Thanks to a

stochastic sensitivity study, the parameters of the land surface

model that can be determined with remote sensing observa-

tions are identified. The assimilation scheme relies on an

evolution strategies algorithm (a semistochastic parameter

identification method). This kind of approach is particularly

well suited for this complex (nonlinear) inverse problem. The

resulting time variation of the herbaceous mass is analyzed

and compared to ground measurements performed on four

Sahelian sites over four years. The time variations of the

simulated standing herbaceous mass after remote sensing

data assimilation exhibit a 187 kg DM/ha error which

compares well with a previous study of Jarlan et al. (2003)

based on the inversion of the radiative transfer model.

In contrast, with a repetitivity of 1.8 data/decade, the

assimilation of wind scatterometer data does not significantly

affect the short time scale dynamics of the upper soil

moisture. The effects of data assimilation on water fluxes

are analyzed and compared with available measurements

made by various authors on the same kind of ecosystem.

Because of a lack of direct observations of water fluxes on the

considered study sites, only the time behaviour and absolute

value consistency are checked. After the data assimilation,

the simulated water fluxes time variations exhibit a higher

day-to-day variability and higher values close to the potential

evapotranspiration. This behaviour after WSC assimilation is

in better agreement with those previous ground campaigns.

Finally, uncertainties on the herbaceous mass and water

fluxes resulting from uncertainties on climatic forcing

variables (rainfall and global radiation) are estimated using
a stochastic approach. The uncertainty ranges between 139

and 268 kg DM/ha for the herbaceous mass. This work shows

that the accuracy of the rainfall data strongly conditions the

uncertainty level associated with the simulated herbaceous

mass after WSC data assimilation. Nevertheless, the assim-

ilation of WSC data appears to be well suited to control the

carbon budget of our land surface model. Concerning the

water fluxes uncertainties, the estimates are less robust (in

particular, on yearly transpiration) and must be improved in a

next study by using additional information from satellite

remote sensing at different wavelengths. Furthermore, water

fluxes measurements by eddy correlation techniques are

already planned within the frame of the AMMA project

during the 2004 growing season and will allow for a further

validation of the approach.
Appendix A. Main equations of the STEP model

The STEP model is composed of two submodels: carbon

budget submodel (vegetation growth) that simulates the main

processes of the vegetation development (photosynthesis,

allocation, respiration and senescence) and the water budget

submodel that simulates the soil water dynamic (runoff,

percolation and drainage) and the exchanges of water with the

atmosphere (water lost by soil evaporation and by plant

transpiration). Modifications from the previous version

(Mougin et al., 1995) are detailed below.

A.1. Carbon budget

The dynamics of the green above-ground mass Bg and

green mass root Br are described using a set of two

differential equations:

dBg

dt
¼ a1 	 a 	 PSn þ a2 	 Bg ðA1Þ

dBr

dt
¼ a3 	 1� að Þ 	 PSn þ a4 	 Br ðA2Þ

PSn ¼ Pg � Rt ðA3Þ

where PSn is the net photosynthesis calculated as the

difference between gross photosynthesis Pg and respiration

losses Rt, ai are empirical parameters, a1d Bg and a4d Br

represent losses of above ground and root mass, respec-

tively, due to vegetation senescence, and a, the fraction of

allocated above-ground part, is calculated such that:

Br

Bg

¼ 1:2

2þ 0:01 	 Bg

ðA4Þ

The growth photosynthesis is expressed as

Pg ¼ PAR 	 ei 	 eCmax 	 f Clð Þ 	 f Tlð Þ ðA5Þ
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Photosynthesis depends on the intercepted photosyn-

thetic active radiation PARi, a maximum energy-conversion

efficiency, emax, one function of leaf water potential

expressing the effect of water limitation f(Cl), and one

function expressing the effect of temperature limitation

f(Tl). PARd ei=PARi is the photosynthetically active radia-

tion (part of the incoming global radiation between 400 and

700 Am). that is intercepted by plants. ei is linked to

herbaceous mass leaf area index (area of leaf by m2 of soil).

ei and eCmax vary between 0 and 1.

The green LAIg is computed from the green herbaceous

mass Bg through the specific leaf area SLAg which depends

on the value at plant emergence SLA0 and on the slope of

the relation SLAg versus time SLAgslope:

LAIg ¼ SLAg 	 Bg

SLAg ¼ SLAg 0 	 e�SLAgSlope4t ðA6Þ

Typical values of SLA0 and SLAgSlope are calculated

from ground measurements (Tracol, unpublished data).

Growth starts at plant emergence the date of which is

calculated from the soil moisture content of the first five

centimetres. If the soil moisture content of the upper layer

stay above the wilting point (calculated from empirical

relationship with the soil characteristics), seeds emerge, and

vegetation growth begins. The initial value of the above

ground mass is set to Bg0. Typical values comprised between

0.1 and 3 kg MS/ha.

The present vegetation is a mixture of two kinds of

herbs determined by their photosynthesis type (C4 and

C3). The percentage of the C3 grasses must be known.

This percentage is highly variable from one year to

another.

The total vegetation cover fraction Vcft is computed from

the leaf area index LAI and the canopy extinction coefficient

kc as

Vcft ¼ 1� e�kc	LAIt ðA7Þ

The model also calculates the time evolution of

vegetation gravimetric moisture content needed for the

radar radiative transfer model. Two fitting parameters are

needed to calculate this evolution: the gravimetric water

content at emergence Hemergence and the gravimetric water

content at herbaceous mass peak Hpeak. Typical values

are given in Guerin et al. (1991). Hp is maximum at

emergence at around 80% and is around 40% at herbage

peak.

A.2. Water budget

The distribution on the soil profile is simulated

according to a btipping-bucketQ scheme: water that

penetrates the soil is assumed to fill the consecutive soil

layers up to field capacity FCi. The soil is composed of
four layers. The soil water content of layer i, Hv(i), is

simulated following this set of differential equations:

dHvð1Þ
dt

¼ P � R� E1 � D1 ðA8Þ

dHvðiÞ
dt

¼ Di�1 � Ei � Tri � Di ðA9Þ

and if WiNFCiDi ¼ Di�1 � FCiÞ=Kið

else Di ¼ 0 ðA10Þ

where P, R, Ei, Di and Tri denote precipitation, run-off,

evaporation of layer i, drainage of layer i and contribution to

transpiration of layer i, respectively. Ki represents the

infiltration time constant of layer i.

Plant transpiration Tr and soil evaporation E are computed

following the Penman–Monteith equation (Monteith, 1965).

For this, the soil and canopy resistance to water vapour

transfer must be known. The soil resistance rss is calculated

following Camillo and Gurney (1986) from the water content

of the upper soil layer W1:

rss ¼ a 	 Wsat �W1Þ � bð ðA11Þ

with Wsat as the soil water content at saturation and a and b,

two empirical coefficients. The canopy resistance is esti-

mated as in Mougin et al. (1995).
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