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Abstract

A new physically-based disaggregation method is developed to improve the spatial resolution

of the surface soil moisture extracted from the Soil Moisture and Ocean Salinity (SMOS) data. The

approach combines the 40 km resolution SMOS multi-angular brightness temperatures and 1 km

resolution auxiliary data composed of visible, near-infrared and thermal infrared remote sensing

data and all the surface variables involved in the modeling of land surface-atmosphere interaction

available at this scale (soil texture, atmospheric forcing, etc.). The method successively estimates

a relative spatial distribution of soil moisture with fine scale auxiliary data, and normalizes this

distribution at SMOS resolution with SMOS data. The main assumption relies on the relationship

between the radiometric soil temperature inverted from the thermal infrared and the microwave

soil moisture. Based on synthetic data generated with a land surface model, it is shown that the

radiometric soil temperature can be used as a tracer of the spatial variability of the 0–5 cm soil

moisture. A sensitivity analysis shows that the algorithm remains stable for big uncertainities in

auxiliary data and that the uncertainity in SMOS observation seems to be the limiting factor. Finally,

a simple application to the SGP97/AVHRR data illustrates the usefullness of the approach.
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A Combined Modeling and

Multi-Spectral/Multi-Resolution Remote

Sensing Approach for Disaggregation of

Surface Soil Moisture: Application to SMOS

Configuration

I. INTRODUCTION

Soil moisture is a key hydrological variable that plays an important role in land surface-

atmosphere interactions. By controlling the partition of rainfall into runoff and infiltration and

available energy at the surface into sensible and latent heat flux, soil moisture plays a crucial

role in boundary layer development and therefore in climate modeling at both regional and

global scale.

Microwave satellite sensors have proven to be effective for soil moisture sensing because of

the large contrast between the dielectric properties of liquid water (80) and those of dry soil

(4). This results in a wide range of values for the soil-water mixture (4-40) which impact the

natural microwave emission from the soil. In particular, sensors operating at low frequencies

(L-Band) such as PBMR, ESTAR have been found to be very effective in inferring surface

soil moisture at different space-time scales [1]–[4].

The Soil Moisture and Ocean Salinity (SMOS) mission [5] has been recently selected

by the European Space Agency (ESA) and it is scheduled for launch in 2007. This L-band

radiometer is based on an innovative two-dimensional aperture synthesis concept. This sensor

has new and significant capabilities in terms of multi-angular viewing configurations. This

allows for simultaneously retrieving the 0–5 cm soil moisture and vegetation biomass [6]

with a sampling cycle ranging from 1 to 3 days and a mean ground resolution (pixel size)

of about 40 km. This instrument will then provide the much needed global data set of soil

moisture and other surface variables to be implemented in general circulation and climate

models.

At regional scale, recent efforts have been dedicated towards the improvement of the
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modeling of land surface-atmosphere interaction through a three-dimensional representation

of hydrological processes by incorporating more realistic land-surface schemes and spatial

information such as surface soil moisture from remote sensing [7]. The use of SMOS data

with its 40 km resolution in such hydrological models is not straightforward. The scale at

which most hydrological processes (runoff, infiltration, evapotranspiration, etc.) should be

captured for improving the understanding and subsequently the representation of surface

processes in regional models is of about 1 to 10 km [8]–[11].

To overcome this difficulty, different approaches have been recently adopted to distribute

fine scale soil moisture within passive microwave pixels. For example, Pellenq et al. (2003)

[12] coupled a Soil Vegetation Atmosphere Transfer (SVAT) model to distributed hydrological

formalism. Lumped values of soil moisture were then disaggregated using simple relationships

between mean values, local topography and soil depth information. A different approach was

proposed by Kim and Barros (2002) [13] who showed that the space-time structure of soil

moisture fields can be statistically explained by the scaling behavior of auxiliary data such

as topography, soil texture, vegetation water content and rainfall. Based on these findings,

they [14] developed time-varying linear combinations of the spatial distributions of relevant

auxiliary data to interpolate coarse resolution soil moisture. The so-called 4-D variational

data assimilation scheme was used by Reichle et al. (2001) [15] to estimate soil moisture

values at the scale of one fourth the resolution of microwave data. Bindlish and Barros

(2002) [16] combined active-passive microwave remote sensing to interpolate the coarse

resolution brightness temperature. The downscaled brightness temperatures were then used

to retrieve soil moisture estimates at the scale of active microwave data. Similarly, Chauhan

et al. (2003) [17] used linear regressions between a vegetation index, surface temperature and

soil moisture. By aggregating the vegetation index and surface temperature, a linkage model

was developed at the scale of the microwave observation, and then applied at fine scale to

disaggregate microwave soil moisture into high-resolution soil moisture.

The objective of the paper is to develop a new physically-based disaggregation method

to improve the spatial resolution of the surface soil moisture extracted from SMOS. The

approach is based on an original combination of the 40 km resolution SMOS multi-angular

brightness temperatures and 1 km resolution auxiliary data composed of visible, near-infrared

and thermal infrared remote sensing data and all the surface variables involved in the modeling

of land surface-atmosphere interaction available at this scale (soil texture, atmospheric forcing,

etc.). The approach for disaggregating SMOS soil moisture involves two steps. First, the
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disaggregated soil moisture is expressed as function of the radiometric soil temperature

derived from fine scale auxiliary data, and two parameters defined at SMOS scale. The

two parameters are the SMOS scale soil moisture and a parameter fixing the range covered

by disaggregated values. The second step consists of inverting both parameters from SMOS

data.

We begin in section II by presenting the models used and describing the main steps of the

method. In section III, we list the assumptions implicitely made in the development of the

method. These assumptions are first checked in section IV with a synthetic scene representing

a heterogeneous SMOS pixel. In section V, the robustness of the disaggregation method is

tested by generating a specified noise to be added to the synthetic input dataset. In section

VI, the disaggregation method is applied to the data collected during the 1997 Southern Great

Plains Hydrology Experiment and the data of AVHRR channels 1, 2, 4 and 5. In the final

section, we summarize the different results of the paper and we discuss about the applicability

of such a disaggregation scheme on an operational basis.

The results presented in this paper are mostly based on synthetic data generated with

physically-based models to evaluate the approach. We underline the fact that using synthetic

data does not allow us to address a number a complications that will be encountered in

operational settings.

II. METHOD

A disaggregation method of the 40 km resolution SMOS soil moisture is developed in this

section. The three models used are first presented before we describe the main steps of the

method.

A. Models

The disaggregation method uses three models: an L-band radiative transfer model, a thermal

infrared radiative transfer model and a land surface model. In this section, the three models are

described and the consistency between the different surface variables involved is discussed.

1) L-band radiative transfer model: a radiative transfer model at L-band (RT model) is

used to simulate the angular and bi-polarized SMOS brightness temperatures. A complete

description is given in [6]. Using the tau-omega formalism [18]–[20] and neglecting atmo-

spheric effects, the L-band brightness temperature TB(θ, p) at the incidence angle θ and at
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RT model

PSfrag replacements

W, X = (Ts, T2, Tc, Wc, b, ω, hs, Qs, Sand, Clay)
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Fig. 1. Schematic diagram showing the input/output data of the L-band radiative transfer (RT) model. The input are:

the 0–5 cm soil moisture W , the soil surface temperature Ts, the deep soil temperature T2, the canopy temperature Tc,

the vegetation water content Wc, the so-called b parameter of vegetation, the single-scattering albedo of the canopy ω, the

roughness parameter hs, the polarization-mixing parameter Qs and the soil texture composed of sand and clay fractions. The

ouput is a vector noted TB of bi-polarized and multi-angular brightness temperatures. It is composed of 2n independent

brightness temperatures.

polarization p (H or V) can be expressed as:

TB(θ, p) = Teep(θ, p)exp(−τ/cosθ)+Tc(1−ω)[1−exp(−τ/cosθ)][1+rp(θ, p)exp(−τ/cosθ)]

(1)

with Te the effective soil temperature, Tc the canopy temperature, ep the soil emissivity, rp

the soil reflectivity (related to the soil emissivity by rp = 1−ep), τ the nadir optical depth of

the canopy and ω the single-scattering albedo of the canopy. The parameterization of [21] is

used to compute the effective soil temperature Te as function of the deep soil temperature T2

(approximately at 50 cm) and the soil surface temperature Ts (approximately corresponding

to a depth interval of 0–5 cm). The soil microwave emissivity ep for polarization p is

calculated from the soil dielectric permittivity parameterized with soil texture [22] and from

the incidence angle θ using the Fresnel equations. The soil roughness is accounted for using

the simple approach of [23] based on the roughness parameter hs and the polarization-mixing

parameter Qs. At L-band, the single-scattering albedo of the canopy is small (we took 0.05

for both polarizations). The nadir optical depth τ is related to the vegetation water content

Wc by τ = bWc [24]. The input data of RT model are listed in the schematic diagram of Fig.

1 where W is the 0–5 cm soil moisture and Sand and Clay are the sand and clay fraction

of soil. The output of RT model is a vector TB of bi-polarized and multi-angular brightness

temperatures.

2) Thermal infrared radiative transfer model: a radiative transfer model in the thermal

infrared (RT-TIR model) is used to invert the radiometric soil temperature from bi-directional
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radiometric surface temperature [25]–[31]. Assuming surface emissivity is close to 1, the

radiometric surface temperature Trad(θ) at angle θ is simply computed as:

Trad(θ) =
[

1 − fc(θ)
]

Ts + fc(θ)Tc (2)

with Ts the radiometric effective soil (the mixture of sunlit and shadowed soil) temperature,

Tc the radiometric effective canopy (the mixture of sunlit and shadowed canopy) temperature

and fc(θ) the angular fractional vegetation cover. The inversion of component temperatures

(i.e. the radiometric soil temperature and the radiometric canopy temperature) requires the

radiometric surface temperature at two distinct angles Trad(θ1) and Trad(θ2) and the viewing

angle-dependent vegetation fraction which can be estimated using visible and near infrared

data at the same resolution. Following [32], the fractional vegetation cover fc(θ) at angle θ

can be obtained with the semi-empirical model:

fc(θ) = 1 −

(

NDV Imax(θ) − NDV I(θ)

NDV Imax(θ) − NDV Imin(θ)

)p

(3)

where NDV Imin(θ) is the bare soil NDVI, NDV Imax(θ) the NDVI at 100%, and p the ratio

of a leaf angle distribution term to a canopy extinction term. The input/ouput data of RT-TIR

model in the inverse mode are shown in Fig. 2.

Note that the second Along-Track Scanning Radiometer (ATSR-2) on board the European

Remote Sensing satellite is a possible source of bi-angular thermal infrared data. This instru-

ment is currently able to provide quasi-simultaneous multispectral (from visible to thermal

infrared) measurements at two view angles (approximately 0 and 53 at surface).

3) Land surface model: a land surface (LS) model is used to simulate the radiometric

soil temperature under differerent surface conditions within the SMOS pixel. A complete

description is provided in [33]. Briefly, the soil is divided into a top soil layer on which soil

evaporation depends and a deep layer which mainly controls vegetation transpiration. The

top soil layer is characterized by a resistance to evaporation which depends on surface soil

moisture W . Similarly, the deep soil layer is characterized by its soil water content W2 used in

the parameterization of stomatal control on transpiration. The surface is described according

to the two-layer formalism of [34]. LS model solves two different energy balance equations

from which soil and vegetation temperatures are derived through an iterative scheme. The

atmospheric variables are solar radiation S, air temperature Ta, air relative humidity qa and

wind velocity ua at a reference height. The vegetation characteristics used as inputs are the

leaf area index LAI and the canopy height hc. Soil textural properties are derived from sand
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and clay fractions as in [35], [36]. The input data of LS model are listed in the schematic

diagram of Fig. 2. The output of interest as it is shown in the development of the method is

the radiometric soil temperature Ts.

4) Consistency between models: the three models presented above were chosen so that

the different surface variables involved be consistent between them. In particular, the 0–5 cm

microwave soil moisture involved in RT model is consistent with the 0–5 cm surface soil

moisture of the top layer of LS model. Similarly, the radiometric soil temperature inverted

with RT-TIR model has precisely the same definition as the top soil temperature simulated

by LS model. In LS model, the temperature of the top soil layer is indeed used to compute

the net radiation of soil. Note that the soil surface temperature involved in RT model, which

corresponds approximately to a depth interval of 0–5 cm is not perfectly consistent with the 1

mm radiometric soil temperature involved in models RT-TIR and LS. However, as RT model

ponders the soil surface temperature with the deep soil temperature to compute the microwave

effective soil temperature, the authors consider that the radiometric soil temperature Ts is a

good approximation of the integrated 0–5 cm soil temperature as input of RT model.

B. Disaggregation Method

The disaggregation of the soil moisture extracted from SMOS data involves two successive

steps. In a first step, auxiliary data at 1 km resolution are used to describe the spatial variability

of surface soil moisture within the 40 km resolution SMOS pixel. In a second step, the relative

distribution of surface soil moisture obtained in step 1 is normalized at SMOS scale with

SMOS observation.

In step 1, it is assumed that the radiometric soil temperature inverted from dual-angle

measurement in the thermal infrared [25], [31] can provide some information about the spatial

variability of surface soil moisture [29], [30]. By linking at first order the disaggregated soil

moisture to the inverted radiometric soil temperature, a relative soil moisture distribution

depending on two SMOS scale parameters is expressed. In step 2, the normalization of

the relative distribution consists of calibrating both parameters by linking the soil moisture

distribution to SMOS observation via RT model.

Both steps are conceptually equivalent to the method developed by Sivapalan [37] to

disaggregate water storage within a landscape. In that study, the spatial variability of local

water storage was expressed as a function of a local topographic index. Local water storage

was then a function of two parameters defined at the scale of the hillslope: a parameter f0
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Fig. 2. Schematic diagram showing the input/output data of the radiative transfer model in the thermal infrared (RT-TIR

model) and the input/output data of the land surface (LS) model. RT-TIR model is used in the inverse mode to invert

the radiometric soil temperature Ts from the radiometric surface temperature at two distinct angles Trad(θ1) and Trad(θ2).

The inversion of Ts requires the directional fractional vegetation cover obtained with optical data at both angles fc(θ1)

and fc(θ2). LS model is used to simulate the radiometric soil temperature Ts under different surface conditions within the

SMOS pixel. The input are: LAI, the canopy height hc, the soil texture composed of sand and clay fractions, the deep soil

moisture W2, the solar radiation S, the air temperature Ta, the relative humidity of air qa and the wind velocity ua.

controlling the mean level of water storage and a parameter f1, called the contrast parameter,

fixing the range covered by local values within the landscape. In a second step, one parameter

(f0) of the water storage distribution was calibrated comparing the average of distributed

values to the value measured at the scale of the hillslope.

However, an essential difference between the disaggregation of SMOS data and the study

case of Sivapalan [37] is that the available information at regional scale is multiple in our

case. As it shown in the development of the method, the fact that each SMOS observation

is composed of multi-angular/multi-independent brightness temperatures allows to calibrate

simultaneously both parameters f0 and f1.

The two main steps of the disaggregation method (i.e. estimate a relative distribution, and

normalize the relative distribution) are described below and shown in Fig. 3.

1) Estimate a relative soil moisture distribution: the typical resolution of 1 km that is

currently obtained in the thermal infrared and the correlation between the radiometric surface

temperature and the soil water content makes the radiometric surface temperature useful
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for disaggregation purposes [17]. The point is that the link between the remotely sensed

radiometric surface temperature Trad and the microwave near-surface soil moisture W is

relativelly indirect and is function of the surface conditions that are likely to vary in space. In

particular, the spatial variability of vegetation cover (and soil texture, atmospheric conditions,

etc.) at the scale of 1 km may induce a systematic noise on the relationship between Trad

and W . To account for both difficulties, the disaggregation method successively inverts the

radiometric soil temperature Ts which is more directly related to W than Trad and extracts

specifically the information on W that is contained in Ts using LS model and the available

information on the surface conditions within the SMOS pixel.

a) Invert the radiometric soil temperature Ts: the correlation between the radiometric

surface temperature and near-surface soil moisture can be explained by the surface thermal

inertia concept. The surface thermal inertia is affected by soil water content with two distinct

bio-physical processes: the evaporation at soil level of the near-surface soil moisture and the

transpiration at plant level of the root-zone soil moisture. Both phenomena tends to counter

synergistically the increase of component temperatures, and therefore the radiometric surface

temperature. However, the near-surface soil temperature over a vegetated surface is more

related to the near-surface soil moisture and the vegetation temperature is more related to

the root-zone soil moisture [29], [30]. It follows that the near-surface soil temperature is

more valuable than the radiometric surface temperature for disaggregation purposes of the

0–5 cm microwave soil moisture. As a matter of fact, the disaggregation method uses the

soil temperature rather than the radiometric surface temperature. Given that the 0–5 cm soil

temperature is not observed in the thermal infrared, the 1 mm radiometric soil temperature

is assumed to be inverted from bi-angular thermal infrared data as shown before in Section

II.A.2..

Note that the inversion of the radiometric soil temperature is a necessary step of the

disaggregation method. We underline the fact that the disaggregation method cannot be used

in the regions where the robustness of the inversion process of the radiometric soil temperature

Ts is poor (e.g. areas with relatively high vegetation cover).

b) Extract the information contained in Ts: the disaggregation strategy is based on the

spatial correlation between surface soil moisture and the remotely sensed radiometric soil

temperature. One difficulty to link surface soil moisture to the radiometric soil temperature

is the dependence of the radiometric soil temperature to the variables contained in the vector

Y of Fig. 2 (e.g. LAI, soil texture, atmospheric forcing). To overcome this difficulty, the
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method simulates the variability of the radiometric soil temperature that is specifically due

to the variables contained in Y . In practice, two radiometric soil temperatures are simulated

with LS model. First, LS model is used to simulate the radiometric soil temperature noted

Tsl (index l refers to local scale) associated with the measured local surface conditions Y m
l

(exponent m refers to a measured or known variable):

Tsl = LS(Wl, Y
m
l ) (4)

Second, LS model is used to simulate the radiometric soil temperature noted Tsl associated

with the surface conditions aggregated at the scale of the SMOS pixel YG (index G refers to

SMOS resolution or global scale):

Tsl = LS(Wl, YG) (5)

where YG is computed averaging the local surface conditions Y m
l over the SMOS pixel:

YG(i) =
1

N

N
∑

l=1

Y m
l (i) (6)

with N the number of sub-pixels contained in the SMOS pixel (40 × 40 = 1600 in our

case). The difference (Tsl − Tsl) represents the predicted contribution of the radiometric

soil temperature that is due to the varibility of Yl within the SMOS pixel. By substracting

(Tsl −Tsl) to the measured radiometric soil temperature Ts
m
l , we obtain a theoretical variable

called Projected soil temperature Ts
m
l and formally defined by:

Ts
m
l = Ts

m
l − (Tsl − Tsl) (7)

By definition, the spatial variability of Projected soil temperature is attributed uniquely to

the spatial variability of near-surface soil moisture. The disaggregation method can therefore

use Ts
m
l to explain the spatial variability of Wl.

c) Estimate a relative spatial distribution: a relative spatial distribution of soil moisture

is expressed by linking the disaggregated soil moisture Wl to Projected soil temperature Ts
m
l

at first order:

Wl = f0 + f1Ts
m
l (8)

with f0 and f1 two parameters defined at SMOS scale.
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Step 1 Estimate a relative distribution

Step 2 Normalize the distribution

Fig. 3. The two successive steps of the method are presented. In step 1, a relative spatial distribution of soil moisture is

estimated from the radiometric soil temperature Ts
m

l inverted with RT-TIR model and from LS model predictions giving

the contribution of the radiometric soil temperature due to surface conditions’ heterogeneity (Tsl −Tsl). The disaggregated

soil moisture is then a function of two SMOS scale parameters f0 and f1. In step 2, the local relationship derived in step

1 is rewritten at global scale to make the SMOS scale soil moisture WG appear in the expression. Both parameters WG

and f1 are then inverted from SMOS data to normalize the distribution.
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2) Normalize the relative distribution: in the second step of the disaggregation method,

the relative soil moisture distribution of (8) is normalized at the scale of the SMOS pixel. The

normalization consists of using the multi-angular SMOS observation to calibrate parameters

f0 and f1.

From a theoretical point of view, the calibration of f0 and f1 can be compared to the inver-

sion process used by the SMOS mission. As explained in [6] the approach of SMOS is based

on the use of the multi-angular/multi-independent SMOS observation to infer simultaneously

soil moisture and vegetation water content. Although f0 and f1 are abstract parameters, our

approach is similar to [6] because f0 and f1 are both defined at the scale of the SMOS pixel

as well as SMOS soil moisture and SMOS vegetation water content. In fact, the key to the

calibration of the couple (f0, f1) is double: (i) the L-band angular signature of a SMOS pixel

depends on both f0 and f1 and (ii) the SMOS observation is composed of multi-angular (at

least two independent) brightness temperatures.

In practice, the normalization of the relative distribution of (8) is performed by looking

for a particular solution of the couple (f0, f1) such that the SMOS scale soil moisture WG

appears in the expression of Wl. Both parameters WG and f1 are then inverted by matching

the SMOS observation simulated from the disaggregated soil moisture and the measured

SMOS observation.

a) Find a particular solution: we look for a particular solution of the couple (f0, f1) to

make the SMOS scale soil moisture WG appear in the expression of the disaggregated soil

moisture. Let f0 such as:

f0 = WG − f1 < Ts
m
l > (9)

where < Ts
m
l > is the Projected soil temperature aggregated (linearly) over the SMOS pixel.

b) Express the disaggregated soil moisture: replacing f0 in (8) by the expression of (9),

we obtain a new expression of the disaggregated soil moisture, which is now a function of

the couple (WG, f1):

Wl(WG, f1) = WG + f1(Ts
m
l − < Ts

m
l >) (10)

In this expression, we clearly see the function of each parameter: WG parameter determines

the effective level of the distribution at SMOS scale whereas the contrast parameter of the

distribution f1 fixes the range covered by disaggregated values.

c) Build a cost function: a cost function is built in order to evaluate the distance

between the SMOS observation simulated from the disaggregated soil moisture of (10) and
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the measured SMOS observation. The cost function F is defined as:

F (WG, f1) =

∥

∥

∥

∥

∥

1

N

N
∑

l=1

RT
(

Wl, X
m
l

)

− TBm
G

∥

∥

∥

∥

∥

2

(11)

with Wl the fine scale soil moisture expressed in (10) and TBm
G the measured SMOS

observation. The cost function F is then minimized to invert the couple (WG, f1). Note that

the problem of retrieving the couple (WG, f1) from SMOS data is theoretically well defined

because the number of independent SMOS observations contained in TBm
G is superior to the

number of unkonwns, which is two. This statement is a priori true whatever the nature of

RT model.

d) Invert WG: the SMOS scale soil moisture WG is inverted by setting f1 = 0:

W inv
G = ArgminWG

F (WG, 0) (12)

with W inv
G the inverted SMOS scale soil moisture.

e) Invert f1: the contrast parameter f1 is inverted by fixing WG = W inv
G :

f inv
1

= Argminf1
F (W inv

G , f1) (13)

with f inv
1

the inverted contrast parameter of the output distribution. At this point, the soil

moisture distribution is entirely determined and is characterized by the couple (W inv
G , f inv

1
).

Note that the description given above is the first reading of the method. For an understanding

in depth of the different steps of the method, readers are encouraged to refer to Appendix A

where the three loops involved in the algorithm are presented.

III. ASSUMPTIONS

In this section, the assumptions implicitely made during the development of the method

are listed.

A. Correlation between the radiometric soil temperature and the microwave soil moisture

The correlation between the 1 mm radiometric soil temperature inverted from dual-angle

measurement in the thermal infrared and the 0–5 cm L-band soil moisture is the main

assumption of the method. In particular, it is assumed that the spatial variations of the 1

mm radiometric soil temperature are linearly correlated with the spatial variations of the

integrated 0–5 cm soil temperature. This assumption is required to make the radiometric

soil temperature consistent with the 0–5 cm microwave soil moisture [17]. Note that a bias
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between the radiometric soil temperature and the 0–5 cm soil temperature is expected to have

no effect on the disaggregation method because the radiometric soil temperature is only used

to provide a relative spatial distribution of the 0–5 cm soil temperature (and therefore of

the 0–5 cm microwave soil moisture). In the next, “soil temperature” and “radiometric soil

temperature” are alternatively used to refer to the same variable inverted from the thermal

infrared. Similarly, “soil moisture” has to be understood in the next sections as the 0–5 cm

L-band soil moisture.

B. General assumptions

In the disaggregation method, the general assumptions are:

1) remote sensing data in the visible, near-infrared and thermal infrared are representative

of the surface state at the time of SMOS observation. This is particularly important given

that SMOS data will be collected at about sunrise and that the optimal conditions for

the application of the method occur at about noon when the contrast in soil temperature

is generally maximum (high evaporative demand conditions). The synergistic use of

SMOS and optical data require therefore that the relative spatial variability of soil

moisture within the SMOS pixel does not change much between both observation

times. Note that the assumption relies on the relative variability only (not the absolute

values of soil moisture) because optical data provide a variability of soil moisture that

is relative to the SMOS scale soil moisture.

2) all local auxiliary data have the same spatial characteristics, in particular the same

resolution (about 1 km).

3) the same area is monitored by the different view angles of SMOS.

4) disaggregated brightness temperatures correspond approximately to the same set of

incidence angles as the set of incidence angles at which the SMOS pixel is observed.

C. Deep soil moisture and temperature

The deep soil moisture W2 is used by the disaggregation method via LS model to project

the soil temperature in (7). As deep soil moisture is generally not known at the scale of 1

km, it is assumed that a rough value can be obtained either with an interpolation technique

of in situ measurements or with a SVAT type model. One should note that the accuracy on

deep soil moisture is likely to have a negligible effect on the disaggregated soil moisture
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as the radiometric soil temperature is practically uncorrelated with deep soil moisture [29],

[30].

The same assumption is made for the deep soil temperature T2, which is used by RT model

to simulate the local microwave emission in (11).

IV. APPLICATION TO A SYNTHETIC SCENE

In this section, the method is tested with a synthetic scene. We describe first the setup

to generate a heterogeneous SMOS pixel. We discuss next about the value of the increment

of the contrast parameter δf1, which is an important task on the algorithmic level. Finally,

the results of the application are presented and the validity of the assumption about the

correlation soil temperature/soil moisture is first checked.

A. Generate a synthetic scene

Our 40 km size synthetic scene is composed of the ensemble of surface variables and

parameters defined at the local scale of 1 km and of the 40 km resolution SMOS observation.

The procedure followed to generate a heterogeneous SMOS pixel consists of the following: (1)

all independent surface variables and parameters (i.e. all variables except surface component

temperatures) are generated within a given range, delimited by a minimal and maximal value;

(2) the ensemble of generated surface variables are injected into LS model to compute the

value of soil temperature for each sub-pixel; (3) local microwave emissions are simulated with

RT model on each sub-pixel; (4) SMOS observation is generated averaging the contribution

of each sub-pixel over the SMOS pixel.

Soil moisture is generated with three different ranges: 5–20 %, 10–25 % and 15–30 %.

An arbitrary spatial structure is used so that the output distribution can be visually compared

to the generated distribution. The spatial structure is the same for the three soil moisture

ranges.

LAI and soil texture are generated heterogeneously within the SMOS pixel with an arbitrary

spatial structure, independent from each other. We consider that the vegetation cover and the

soil texture are the surface variables most important to first check the method as vegetation

is involved in both LS and RT model and soil texture parameterizes the relationship soil

temperature/soil moisture by conditioning the evaporation rate at the surface soil. Canopy

height and vegetation water content are arbitrarily set to 1/6 and 1/2 of LAI respectively as

in [38]. The minimum and maximum values of LAI are respectively 0.5 and 3.0. Within the
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Fig. 4. Radiometric soil temperature generated by LS model as a function of the generated surface soil moisture for three

ranges of surface soil moisture: 5–20 %, 10–25 % and 15–30 %. The relationship between radiometric soil temperature

and surface soil moisture is made noisy by the spatial variability of LAI. This is a function of soil texture (sand and clay

fractions).

synthetic scene, two types of soil texture represented by sand and clay fractions are generated.

A sandy soil with 67 % sand and 9 % clay is generated over the left-hand side of the scene

and a sandy clay loam soil with 11 % sand and 27 % is generated over the right-hand side.

Both types of soil are homogeneous over half a SMOS pixel so that the respective effects of

LAI and soil texture on the disaggregated soil moisture can be visually separated.

The heterogeneity of any surface variable other than vegetation and soil texture is expected

to have in principle the same effect on the method as the heterogeneity of vegetation: the

heterogeneity of any input variable to the LS model will systematically increase the noise

in the correlation soil temperature/soil moisture. For the visibility of the results, the surface

variables other than LAI and soil texture are therefore set to homogeneous values. The values

of air temperature, relative humidity of air, solar radiation, wind speed, deep soil temperature

and deep soil moisture are set respectively to 25 C, 20 %, 800 Wm−2, 2 ms−1, 20 C and 20

%.

The variations of the generated soil temperature as function of the generated soil moisture

are presented in Fig. 4. One observes that the relationship between soil temperature and soil

moisture is made noisy by the heterogeneity of vegetation cover. This is a function of soil

texture.

Synthetic SMOS observations are generated by considering two different configurations. In

the case of configuration “3 independent TBm
G ”, SMOS observation is composed of the nadir

brightness temperature and the horizontal and vertical polarized brightness temperatures with

an incidence angle of 40 degrees. In the case of configuration “11 independent TBm
G ” SMOS

observation is composed of the nadir brightness temperature and the horizontal and vertical
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polarized brightness temperatures with an incidence angle of 10, 20, 30, 40 and 50 degrees.

Both observation configurations are used to assess the potential of the angular capabilities of

SMOS sensor to retrieve (W inv
G , f inv

1
).

B. Sign of the contrast parameter f1

The disaggregation algorithm increases the contrast parameter f1 from 0 to an extremal

value (see Appendix A for detail) to minimize the cost function F (W inv
G , f1). If the absolute

value of the increment δf1 is directly related to the accuracy on the output soil moisture

distribution, its sign is imposed by the surface conditions at the time of SMOS observation.

In (10) we clearly see that the sign of the contrast parameter depends on the variation of

Projected soil temperature with respect to soil moisture. In fact, the slope of the correlation

between Projected soil temperature and soil moisture depends on atmospheric conditions. For

example, when atmospheric forcing behaves as a thermal energy source towards the surface

(high solar radiation in particular), soil temperature is a decreasing function of soil moisture

by thermal inertia. Conversely, when atmospheric forcing behaves as a sink of thermal energy

towards the surface (usually during the night), soil temperature tends to increase with soil

moisture. In the present case where the evaporative demand is high (S = 800 Wm−2),

Projected soil temperature is a decreasing function of soil moisture. The contrast parameter

is therefore negative. In the simulations, the value of the increment δf1 is set to −0.1.

C. Results

The disaggregation method is applied to three synthetic scenes corresponding to the three

ranges of the generated soil moisture. The set of SMOS brightness temperatures used for the

present application corresponds to configuration “3 independent TBm
G ”. Note that identical

results are obtained with configuration “11 independent TBm
G ” since no noise is added on

SMOS observation. In Fig. 5 are presented the images of the disaggregated soil moisture to be

compared with the images of the generated soil moisture. For the three soil moisture ranges,

the spatial structure of the generated soil moisture is well restored by the disaggregation

method and the impact of the heterogeneity of vegetation cover is not detectable on the

disaggregated soil moisture. Concerning the heterogeneity of soil texture, the junction between

both soil types is slightly apparent on the vertical line at the middle of the images. These

qualitative results are also visible in Fig. 6 showing the scatter plots of the disaggregated soil

moisture versus the generated soil moisture for the three soil moisture ranges.
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Fig. 5. Images of the main surface variables. Line 1: generated LAI (m2/m2); line 2: generated soil temperature (K); line

3: generated soil moisture (%); line 4: soil moisture disaggregated by the method (%). The three columns correspond to

three generated soil moisture ranges. Column 1: the generated soil moisture ranges from 5 to 20 %; column 2: from 10 to

25 %; column 3: from 15 to 30 %.
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Fig. 6. Soil moisture disaggregated by the method as a function of the generated soil moisture. Three ranges of soil

moisture are considered: 5–20 %, 10–25 % and 15–30 %.
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TABLE I

RESULTS OF THE OUTPUT DISTRIBUTION IN TERMS OF THE INVERTED SMOS SCALE SOIL MOISTURE W INV
G (%), THE

INVERTED CONTRAST PARAMETER f INV
1 (%/K) AND THE ERROR SD (%) ON THE DISAGGREGATED SOIL MOISTURE

DISTRIBUTION, CORRESPONDING TO 3 DIFFERENT RANGES OF SOIL MOISTURE.

Range Inverted SMOS scale Inverted contrast parameter Error

of soil moisture soil moisture on the output distribution

W inv
G (%) f inv

1 (%/K) SD (%)

5–20 % 14.5 −1.1 0.61

10–25 % 19.5 −1.0 0.56

15–30 % 24.5 −1.6 1.30

The quantitative results in terms of the inverted SMOS scale soil moisture W inv
G (%),

the inverted contrast parameter f inv
1

(%/K), and the error SD (%) on the ouput distribution

computed as the standard deviation between disaggregated and generated values are presented

in Table I. We observe that f inv
1

has different values for the three ranges of the generated

soil moisture. To interpret this result, the variations of Projected soil temperature versus the

generated soil moisture are shown in Fig. 7. As observed on the graphs, the slope of the

relationship between Projected soil temperature and soil moisture varies with the range of

soil moisture and decreases significantly for high values. As a matter of fact, to account for

lower sensitivity of Projected soil temperature to soil moisture in the soil moisture range

15–30 %, the algorithm estimates an optimal contrast parameter higher in absolute value

(−1.6 %/K) than the one (−1.0 %/K) inverted for the soil moisture range 10–25 %. The

same phenomenon is also observed for low soil moisture values. The differences in terms of

f inv
1

between the different soil moisture ranges are explained by a loss of sensitivity of soil

temperature for extreme soil moisture values.

The saturation of Projected soil temperature for low and high soil moisture values represents

a limitation of the disaggregation method. As the main assumption relies on the linearity of

the variations of Projected soil temperature, the non-linearity of these variations cannot be

taken into account by the method. In fact, saturation phenomena imply systematic errors on

the disaggregated soil moisture distribution. For example, the error SD is estimated to be

0.6 % for the soil moisture range 10–25 % whereas this quantity is evaluated to be 1.3 % for

the soil moisture range 15–30 %, where the assumption of linearity is not as well verified as
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Fig. 7. Projected soil temperature Ts
m

l as a function of the generated soil moisture. Three ranges of soil moisture are

considered: 5–20 %, 10–25 % and 15–30 %.

for the case 10–25 %. Nevertheless, one should note that the error on the disaggregated soil

moisture, which is less than 1.3 % in the conditions of the simulations, is still satisfying.

V. SENSITIVITY

To test the disaggregation method in conditions closer to the operational application,

specific uncertainities are generated on the synthetic input dataset. The sensitivity analysis is

conducted by adding an increasing gaussian noise separately on fine scale auxiliary data and

on SMOS observation. As it is shown in Fig. 3, local auxiliary data provide the information

on the spatial variability of soil moisture whereas SMOS observation defines the solvability

of the disaggregation problem by inverting the couple (W inv
G , f inv

1
). The synthetic scene used

for the sensitivity analysis corresponds to the soil moisture range 10–25 %.

A. Effect of a prescribed noise on local input data

In this subsection, the sensitivity analysis aims to quantify the error on the disaggregated

soil moisture that is specifically attributed to the uncertainty in local auxiliary information.

Two cases “2 K on Ts
m
l and 20% on LAIm

l ” and “4 K on Ts
m
l and 50% on LAIm

l ” are

considered. They correspond respectively to a gaussian noises of 2 K and 4 K for soil

temperature and a gaussian noise of 20 % and 50 % for LAI, evaluated as a percentage of the

generated value. The robustness of the disaggregation method is evaluated by computing three

parameters: the inverted SMOS scale soil moisture W inv
G (%), the inverted contrast parameter

f inv
1

(%/K) and the error SD (%) on the ouput distribution computed as the standard deviation

between the disaggregated and generated soil moisture. The statistical results computed from

200 independent datasets are presented in Table II in terms of mean and standard deviation
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TABLE II

RESULTS OF THE SENSITIVITY ANALYSIS FOR CONFIGURATIONS “3 INDEPENDENT TBm

G ” AND “11 INDEPENDENT

TBm

G ”. THE STATISTICAL RESULTS ARE GIVEN IN TERMS OF MEAN AND STANDARD DEVIATION OF THE INVERTED

SMOS SCALE SOIL MOISTURE W INV
G (%), THE INVERTED CONTRAST PARAMETER f INV

1 (%/K) AND THE ERROR SD (%)

ON THE DISAGGREGATED SOIL MOISTURE DISTRIBUTION.

Inverted SMOS scale Inverted contrast parameter Error

soil moisture on the output distribution

W inv
G (%) f inv

1 (%/K) SD (%)

Input Noise 3 TBm

G 11 TBm

G 3 TBm

G 11 TBm

G 3 TBm

G 11 TBm

G

Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

No noise 19.5 (0) 19.5 (0) −1.0 (0) −1.0 (0) 0.6 (0) 0.6 (0)

2K on Ts
m

l 20% on LAIm

l 19.5 (0.0) 19.5 (0.0) −1.0 (0.0) −1.0 (0.0) 1.6 (0.0) 1.6 (0.0)

4K on Ts
m

l 50% on LAIm

l 19.3 (0.1) 19.3 (0.1) −0.9 (0.2) −1.0 (0.2) 3.3 (0.3) 3.4 (0.3)

1K on TBm

G 19.6 (0.3) 19.5 (0.1) −0.9 (0.72) −0.9 (0.59) 2.9 (1.1) 2.2 (1.3)

2K on TBm

G 19.5 (0.5) 19.5 (0.3) −1.0 (0.73) −1.0 (0.68) 3.0 (1.0) 2.7 (1.1)

4K on TBm

G 19.5 (1.0) 19.5 (0.5) −1.0 (0.75) −1.0 (0.73) 3.2 (0.9) 2.9 (1.0)

of the three parameters. In the case of configuration “3 independent TBm
G ”, which is a priori

less favorable than configuration “11 independent TBm
G ”, and using the data set “4 K on

Ts
m
l and 50% on LAIm

l ”, which is more noisy than the dataset “2 K on Ts
m
l and 20% on

LAIm
l ”, the output disaggregated soil moisture is still satisfying in terms of W inv

G , f inv
1

and

SD. In particular, parameters W inv
G and f inv

1
vary not much around the values obtained with

non noisy data. The uncertainties in auxiliary data thus transmit a non biased noise to the

ouput disaggregated soil moisture and have no impact on the retrievability of both parameters

W inv
G and f inv

1
. Note that the results obtained for configurations “3 independent TBm

G ” and “11

independent TBm
G ” are statistically the same, which is consistent with the fact that this first

sensitivity study deals specifically with local auxiliary data and not with SMOS observation.

B. Effect of a prescribed noise on SMOS observation

The second part of the sensitivity analysis is conducted by adding a noise specifically on

SMOS observation. Three cases are considered: a noise of 1K, 2K and 4K is successively

generated and added on SMOS brightness temperatures for respectively case “1 K on TBm
G ”,
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“2 K on TBm
G and “4 K on TBm

G ”. Statistical results are given in terms of mean and standard

deviation of the three ouput parameters: the inverted SMOS scale soil moisture W inv
G (%),

the inverted contrast parameter f inv
1

(%/K) and the error SD (%) on the ouput distribution

computed as the standard deviation between the disaggregated and generated soil moisture.

The statistical results computed from 200 independent datasets are presented in Table II for

both configurations “3 independent TBm
G ” and “11 independent TBm

G ”. The inverted SMOS

scale soil moisture W inv
G is particularly stable whatever the observation configuration. On

the other hand, the inverted contrast parameter f inv
1

shows important variations around the

value obtained with non noisy data (−1.0 %/K). These variations are directly attributed to the

uncertainty in SMOS observation. The results corresponding to configuration “11 independent

TBm
G ” are better than those of configuration “3 independent TBm

G ” in terms of sensitivity.

However, the increase of the number of independent brightness temperatures does not improve

significantly the robustness of the inversion process of the contrast parameter. The sensitivity

analysis thus shows that the uncertainity in SMOS observation is, in the conditions of the

simulations performed, the limiting factor of the disaggregation method.

VI. A SIMPLE APPLICATION TO SGP97/AVHRR DATA

The disaggregation method is now tested with real data. The data collected during the

1997 Southern Great Plains Hydrology Experiment (SGP97) are used synergistically with

Advance Very High Resolution Radiometer (AVHRR) channels 1, 2, 4 and 5. In this section,

we successively describe the data chosen for the application, we present the two models used

to invert the soil temperature from AVHRR data, we describe the methodology followed to

extract the spatial variability of soil moisture from AVHRR data and finally we discuss about

the results of the disaggregation.

A. The data

Analysis is based on data collected during the 1997 Southern Great Plains Hydrology

Experiment (SGP97) run within central Oklahoma between June 18 and July 16, 1997.

During SGP97, L-band surface brightness temperature observations were acquired with the

Electronically Scanned Thinned Array Radiometer (ESTAR) flown aboard a P3B aircraft.

The 800 m brightness temperature imagery was obtained on June 18, 19, 20, 25, 26, 27,

29 and 30, and on July 1, 2, 3, 11, 12, 13, 14, and 16 at around 11:00 CST. The auxiliary

data involved in the radiative transfer at L-band –the L-band effective soil temperature, the
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so-called b parameter, vegetation water content, surface roughness, soil bulk density and soil

texture– were gridded [4] at the same resolution as ESTAR brightness temperature. The 0–5

cm soil moisture was then inverted and mapped by [4] at the resolution of 800 m over an

area of about 50×200 km2.

During the SGP97 campaign, NOAA-14/AVHRR overpassed the area almost every day

at approximately 14:30 CST. Day July 12 was chosen for the analysis because this day is

cloudless and shows the most important range of the soil moisture inverted from ESTAR

data over the area covered by both AVHRR and ESTAR observations.

To use AVHRR data synergistically with SGP97 data, the discrepancy between AVHRR and

ESTAR resolution is removed by resampling linearly AVHRR data from the actual resolution

of 1.1 km to 800 m. The area covered by both ESTAR and AVHRR observations on day

July 12 is composed of 3694 sub-pixels at 800 m resolution, which represents an area of

about 2400 km2. In the analysis, this area represents the coarse resolution “SMOS pixel”.

Within the SMOS pixel, the available L-band data is the nadir brightness temperature

derived from ESTAR data. The point is the disaggregation method presented in the paper

requires multiple (at least two) independent brightness temperatures of the same area to cali-

brate the disaggregated soil moisture (i.e. retrieve the couple (W inv
G , f inv

1
) of the soil moisture

distribution). The SMOS angular brightness temperatures used are therefore generated using

RT model as in the application with synthetic data: the SMOS angular brightness temperatures

are computed averaging the local angular brightness temperatures simulated over each sub-

pixel composing the SMOS pixel. The inputs of RT model are the 800 m resolution soil

moisture inverted from ESTAR data and the 800 m resolution auxiliary data involved in the

radiative transfer at L-band.

Both the radiometric surface temperature Trad and NDVI are derived from AVHRR data.

The radiometric surface temperature is estimated using the split-window technique. The

equation giving Trad as function of AVHRR channels 4 and 5 is:

Trad = TBAVHRR4 +
TBAVHRR4

− TBAVHRR5

β5

β4
− 1

+ 50
1 − ε

ε
(14)

where the first two terms are the radiometric surface temperature computed with the split-

window technique [39], and the third term is the correction for surface emissivity [40]. In the

analysis, the ratio β5/β4 is taken to be 1.33 as in [41] and the mean emissivity ε in AVHRR

channels 4 and 5 is taken to be 0.96. NDVI is derived from the reflectances of AVHRR
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channels 1 and 2:

NDV I =
RAVHRR2

− RAVHRR1

RAVHRR2 + RAVHRR1
(15)

The parameters involved in (3) to compute the fractional vegetation cover from NDVI were

set respectively to 0 and 0.60 for NDV Imin and NDV Imax and 0.625 for p as in [42]. The

images of the fractional vegetation cover and the surface temperature over the area covered

by both AVHRR and ESTAR observations on day July 12 are presented in Fig. 8.

B. The methodology

The methodology followed to disaggregate surface soil moisture within the 2400 km2

SMOS pixel consists of the following: (1) invert the soil temperature from AVHRR data (2)

use the AVHRR soil temperature as a tracer of the spatial variability of fine scale soil moisture

and (3) calibrate the disaggregated values of soil moisture using the SMOS observation

generated with RT model.

The soil temperature T m
s is inverted from AVHRR radiometric surface temperature T m

rad

given AVHRR fractional vegetation cover fm
c . Formally, the inverted soil temperature at fine

scale is computed as:

Ts
m
l =

Trad
m
l − fc

m
l Tc

m
l

1 − fc
m
l

(16)

with Tc
m
l the canopy temperature at the local scale of 800 m. As the canopy temperature is not

available with these data, it is roughly approximated to the air temperature. The assumption

that the canopy temperature is close to the air temperature is based on the fact that, except

for extreme soil water deficit, plants are able to maintain homeostasis by various means [43].

The value of air temperature used in the inversion of the soil temperature is the average of all

the in situ measurements available within the SMOS pixel at the time of AVHRR overpass.

Next, a relative soil moisture distribution is obtained by linking fine scale soil moisture to

the inverted soil temperature as:

Wl = WG + f1(Ts
m
l − < Ts

m
l >) (17)

with WG the SMOS scale soil moisture and f1 the contrast parameter fixing the range covered

by disaggregated values.

Finally, the relative soil moisture distribution of (17) is normalized at SMOS scale using

the generated SMOS observation. This implies the inversion of the SMOS scale soil moisture

W inv
G and the contrast parameter f inv

1
as described in the development of the disaggregation

method (Section II).
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Fig. 8. Images within the 2400 km2 SMOS pixel of (a) the fractional vegetation cover (m2/m2) derived from AVHRR

channels 1 and 2, (b) the surface temperature (C) derived from AVHRR channels 4 and 5, (c) the soil moisture (%)

disaggregated by the method and (d) the soil moisture (%) inverted from ESTAR data.
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Fig. 9. Surface temperature (C), the inverted soil temperature (C) and the disaggregated soil moisture (%) are ploted as

function of ESTAR soil moisture (%). The comparison between the two first plots shows that the soil temperature is a

better tracer of ESTAR soil moisture than the surface temperature. In the third plot, the standard deviation between the

disaggregated soil moisture and ESTAR soil moisture is found to be 4.0% for 90% of the sub-pixels contained in the SMOS

pixel.
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C. Results and discussion

The disaggregation method is applied to the 2400 km2 SMOS pixel generated with SGP97

data. The input data are composed of the surface temperature derived from AVHRR channels

4 and 5, the fractional vegetation cover derived from AVHRR channels 1 and 2 and the

SMOS observation generated with RT model from SGP97 data. The output soil moisture

distribution is then compared to the soil moisture inverted from ESTAR measurements.

In Fig. 8 are presented the images of the soil moisture disaggregated by the method and the

soil moisture inverted from ESTAR measurements. The overall spatial variability of ESTAR

soil moisture is well reproduced. The standard deviation between the disaggregated and

ESTAR soil moisture is found to be 5.4%, and is better than 4.0% for more than 90% of the

3694 sub-pixels contained in the SMOS pixel. This result is consistent with the uncertainity

on the soil moisture inverted from ESTAR data, which was estimated to be about 3% by [4].

The two parameters of the soil moisture distribution were found to be respectively 15.0 %

for the SMOS scale soil moisture W inv
G and −1.1 %/K for the contrast parameter f inv

1
. Note

that the value of the contrast parameter is close to the values that were found with synthetic

data in Section IV.

In Fig. 9 are plotted the variations of the disaggregated soil moisture as function of ESTAR

soil moisture. We observe that the variability of soil moisture is not as well predicted for

high soil moisture values (above 23 %) as for values below 23 %. Quantitatively, the standard

deviation between the disaggregated and ESTAR soil moisture is found to be 4.3 % for a

range of ESTAR soil moisture limited by a maximum value of 23 %, whereas this quantity

is evaluated to be 8.4% for a range of ESTAR soil moisture limited by a minimum value of

23 %. We suggest that the poor results found for soil moisture values above 23 % is due to

the non-linearity of the correlation between the soil temperature and the surface soil moisture

occuring for high soil moisture values. Indeed the results with synthetic data (Section IV)

showed that the saturation of the soil temperature is a limitation of the method.

Even though the spatial variability of fine scale soil moisture is globally well restituted

compared to the soil moisture inverted from ESTAR measurements, an important scatter

(9.5%) is observed for 10% of the sub-pixels contained in the SMOS pixel. Several additional

sources of error could explain this scatter:

1) the soil temperature inverted with RT-TIR model is an approximation of the soil

temperature that would be obtained with more complex radiative transfer models.
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2) vegetation type is generally not uniform at the scale of 800 m and the proportion of

each type is likely to vary within the 2400 km2 SMOS pixel. As a matter of fact, taking

a uniform value for parameter p in (3) may involve errors on the fractional vegetation

cover and therefore on the inverted soil temperature.

3) the assumption that the canopy temperature is equal to the air temperature implies

errors on the inverted soil temperature.

4) the AVHRR image was georeferenced with a precision estimated to be about 1 km,

which is not accurate compared to the resolution of ESTAR data (800 m).

5) AVHRR data were resampled linearly from 1.1 km to 800 m, which may involve

systematic errors on interpolated data.

6) other surface variables such as soil texture and atmospheric forcing may have a sig-

nificant effect on the correlation between the bare soil temperature and surface soil

moisture. To account for these effects, a solution could be to project the soil temperature

as it is shown in the development of the method in Section II. Two reasons justify that

the soil temperature was not projected in this simple application. First, the projection

of soil temperature requires a land surface model (LS model for example), which needs

to be calibrated in space. As the objective of the application with real data is to give a

simple illustration of the disaggregation method, the calibration of LS model over the

study area is out of the scope of the analysis. Second, the results of the analysis show

that for SGP97 data, the soil temperature is sufficiently well correlated to ESTAR soil

moisture to give relatively good estimates of the disaggregated soil moisture.

VII. SUMMARY AND CONCLUSION

In this paper, a new physically-based disaggregation method was developed to improve the

spatial resolution of the surface soil moisture extracted from SMOS. The approach is based on

an original combination of the 40 km resolution SMOS multi-angular brightness temperatures

and 1 km resolution auxiliary data composed of visible, near-infrared and thermal infrared

remote sensing data and all the surface variables involved in the modeling of land surface-

atmosphere interaction available at this scale (soil texture, atmospheric forcing, etc.). The

approach for disaggregating SMOS soil moisture involves two steps. First, the disaggregated

soil moisture is expressed as function of the radiometric soil temperature derived from fine

scale auxiliary data, and two parameters defined at SMOS scale. The two parameters are

the SMOS scale soil moisture WG and a parameter f1, called the contrast parameter of the
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distribution, fixing the range covered by disaggregated values. The second step consists of

inverting the couple (W inv
G , f inv

1
) from SMOS data.

The basis of the disaggregation strategy is the correlation between the radiometric soil

temperature inverted from the thermal infrared and the microwave soil moisture. To first check

the usefullness of this correlation, the method was applied to a synthetic scene representing

a heterogeneous SMOS pixel. The results in terms of the disaggregated soil moisture showed

that the radiometric soil temperature can be used as a tracer of the spatial variability of soil

moisture for a wide range of soil moisture. However, it was also found that the saturation of

the soil temperature for extreme soil moisture values is a limitation of the method.

To test the disaggregation method in conditions closer to the operational application,

specific uncertainities were generated on the synthetic input dataset. The sensitivity analysis

was conducted generating a gaussian noise separately on fine scale auxiliary data and on

SMOS observation. The results showed that the disaggregation method remains stable for

big uncertainities in auxiliary data (up to 4 K on soil temperature and 50% on LAI). They

also showed that the uncertainities in SMOS observation is the limiting factor of the method

in the conditions considered. The gaussian noise generated on SMOS observation induced

important deviations on the inverted contrast parameter f inv
1

. Nevertheless, the comparison of

two different observation configurations associated with different view angles showed that

an increasing number of independent brightness temperatures improves the retrievability of

f inv
1

.

The disaggregation method was finally applied on SGP97/AVHRR data. A relative soil

moisture distribution was expressed by linking at first order fine scale soil moisture to the soil

temperature inverted from AVHRR data. The relative distribution was then normalized with a

synthetic SMOS observation. The standard deviation between the soil moisture disaggregated

by the method and the soil moisture inverted from ESTAR measurements was found to be

less than 4.0 % for 90 % of the sub-pixels contained in the SMOS pixel and 5.4 % for all

of the sub-pixels.

Most of the results in this paper were based on synthetic data. To fully assess the applica-

bility of the approach, additional data are needed. In particular, the real database of angular

L-band brightness temperatures currently in preparation in the scope of the pre-launch study

of SMOS, has to be used to fully assess the robustness of the disaggregation strategy.

In regard to the applicability of the method to single-angle HYDROS [44] observations,

two results can be anticipated. Single-angle HYDROS observations are in theory sufficient
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to invert the couple (W inv
G , f inv

1
) because 2 independent brightness temperatures are obtained

with polarizations H and V. In practice however, only 2 independent brightness temperatures

may be not sufficient for sensitivity reasons. Indeed, the results of the sensitivity analysis of

Section V showed that the number of independent brightness temperatures is an important

issue when inverting the contrast parameter f inv
1

. To overcome this difficulty, the synergy

active/passive microwave HYDROS mission has to be used. A possible approach would be

to constrain more the contrast parameter with another disaggregation method based on the

synergy active/passive microwave as in [16].

APPENDIX A

ALGORITHM

To distribute fine scale soil moisture within a SMOS pixel, the algorithm runs three loops.

The contrast parameter f1 is incremented with loop 1 to find the minimum of the cost function

F (W inv
G , f1). Loop 2 is run to insure the convergence of the discrete values of F . Loop 3 is

run to maintain the aggregated soil moisture value at the level of the inverted SMOS scale

soil moisture W inv
G . In this appendix, the three loops are described independently. For a good

understanding of the algorithm, one may refer to the diagram of Fig. 10.

A. Loop 1: increment f1 to minimize F (W inv
G , f1)

The algorithm looks for the value of the contrast parameter f1 that minimizes the cost

function F (W inv
G , f1) defined in (11). In practice, the algorithm increases f1 from 0 to an

extremal value and computes the associated values of F . The extremal value of f1 is defined

as the value from which one soil moisture value becomes negative. The output soil moisture

distribution is then such as f1 is optimal with respect to the associated simulated SMOS

observation. An illustration of the inversion of f inv
1

is provided in Appendix B.

B. Loop 2: insure the convergence of the iterative values of F (W inv
G , f1)

Given a fixed value of f1, the algorithm computes an associated value of F (W inv
G , f1). The

point is that the computation of F requires an initialization of the soil moisture distribution

Wl. It is reminded that the computation of Projected soil temperature in (7) requires an a

priori estimation of fine scale soil moisture. Therefore, the disaggregated soil moisture Wl

expressed in (10) and the cost function F (W inv
G , f1) depend on the initial values of Wl. A

May 3, 2005 DRAFT



JOURNAL OF LATEX CLASS FILES, VOL. 1, NO. 11, NOVEMBER 2002 30

LOOP 3

LOOP 2

LOOP 1

PSfrag replacements

Invert the SMOS scale soil moisture W inv
G = ArgminWG

F (WG, 0)

Aggregated surface conditions YG =< Y m
l >

Initialize the contrast parameter f1 = 0

Increment the contrast parameter f1

Initialize the disaggregated soil moisture: Wl = W inv
G

Evaluate the cost function F (W inv
G , f1)

Compute Projected soil temperature: Ts
m
l = Ts

m
l −

[

LS(Wl, Y
m
l ) − LS(Wl, YG)

]

Compute the disaggregated soil moisture: Wl = W inv
G + f1(Ts

m
l − < Ts

m
l >)

Adjust the aggregated soil moisture < Wl >RT

Aggregate fine scale soil moisture < Wl >RT

Adjust fine scale soil moisture: Wl = Wl + W inv
G − < Wl >RT

Run LOOP3 while < Wl >RT is different from W inv
G

Compute the cost function F (W inv
G , f1)

Run LOOP2 to achieve the convergence of F (W inv
G , f1)

Run LOOP1 as long as disaggregated values are all positive

The ouput soil moisture distribution is such that F (W inv
G , f1) is mimimum
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=
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Fig. 10. Schematic diagram representing the three loops of the algorithm. Loop 1 is run to increment the contrast parameter

from an initial value 0 to the extremal value. Given a fixed value of the contrast parameter, loop 2 is run to compute the

corresponding value of the global cost function. Loop 3 is run to maintain the global level of the soil moisture distribution

at the value inverted from SMOS observation.

loop on Wl is hence necessary to achieve the convergence of F (W inv
G , f1). Actually, initial

soil moisture values are set to the inverted SMOS scale soil moisture W inv
G :

Wl = W inv
G (18)

and loop 2 is run as long as the gap between two iterative values of F is above a given

threshold. Once the convergence is achieved, the cost function obtained is independent on

initialization and is associated with the given value of the contrast parameter.

C. Loop 3: adjust the value of the soil moisture aggregated at SMOS scale

It is reminded that the algorithm estimates a soil moisture distribution with (10) by setting

WG = W inv
G . As RT model is generally nonlinear, the value of the soil moisture aggregated
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at SMOS scale (i.e. WG) is generally not equal to the global value inverted with RT model.

It follows that equation (10) is valid only when the aggregated soil moisture WG is manually

adjusted to the inverted soil moisture W inv
G . On the algorithmic level, the aggregated soil

moisture is adjusted by adjusting the ensemble of disaggregated values as follows:

W after
l = W before

l + W inv
G − < W before

l >RT (19)

with W before
l the disaggregated soil moisture before adjustment, W after

l the disaggregated soil

moisture after adjustment and < Wl >RT the soil moisture value aggregated in the sense of

RT model as:

< Wl >RT= ArgminWG

∥

∥

∥

∥

∥

1

N

N
∑

l=1

RT(WG, Xm
l ) − RT(Wl, X

m
l )

∥

∥

∥

∥

∥

2

(20)

Loop 3 is run on the aggregated soil moisture WG =< Wl >RT as long as the gap between

< Wl >RT and W inv
G is above a given threshold. Note that < Wl >RT is a priori different

from W inv
G because the second term of the norm in (20) is different from TBm

G .

APPENDIX B

ILLUSTRATION OF THE INVERSION PROCESS

As described in Appendix A, the algorithm inverts the SMOS scale soil moisture W inv
G

at the beginning of the scheme. Next, the contrast parameter f1 is incremented to find the

minimum value of the cost function F (W inv
G , f1) in an acceptable range of f1. The values of

f1 parameter should be negative (with the atmospheric conditions considered in Sections IV,

V and VI, soil temperature is a decreasing function of soil moisture) and should not exceed

the extreme value for which at least one value of the disaggregated soil moisture becomes

negative. We provide an illustration of the inversion process of the contrast parameter f1. In

Fig. 11 are presented the variations of the normalized global cost function for different values

of the contrast parameter. The simulation is performed with the synthetic data generated in

Section IV with the soil moisture range 10–25 % and with an increment of the contrast

parameter equal to −0.1. The normalized cost function Fnorm is defined as:

Fnorm(W inv
G , f1) =

F (W inv
G , f1) − Fmin

Fmin
(21)

with Fmin the minimum value of F obtained for the optimal value of the contrast parameter

f inv
1

. In our example, the value of the inverted contrast parameter is found to be −1.0 %/K.
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Fig. 11. The minimal value of the global cost function corresponds to f1 = −1.0 %/K.
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