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a b s t r a c t

To monitor seasonal water consumption of agricultural fields at large scale, spatially

averaged surface fluxes of sensible heat (H) and latent heat (LvE) are required. The scintilla-

tion method is shown to be a promising device for obtaining the area-averaged sensible heat

fluxes, on a scale of up to 10 km. These fluxes, when combined with a simple available

energy model, can be used to derive area-averaged latent heat fluxes. For this purpose, a

Large Aperture Scintillometer (LAS) was operated continuously for more than one year over

a tall and sparse irrigated oliveyard located in south-central Marrakesh (Morocco). Due to

the flood irrigation method used in the site, which induces irregular pattern of soil moisture

both in space and time, the comparison between scintillometer-based estimates of daily

sensible heat flux (HLAS) and those measured by the classical eddy covariance (EC) method

(HEC) showed a large scatter during the irrigation events, while a good correspondence was

found during homogenous conditions (dry conditions and days following the rain events).

We found, that combining a simple available energy model and the LAS measurements, the

latent heat can be reliably predicted at large scale in spite of the large scatter (R2 = 0.72 and

RMSE = 18.25 W m�2) that is obtained when comparing the LAS against the EC. This scatter is

explained by different factors: the difference in terms of the source areas of the LAS and EC,

the closure failure of the energy balance of the EC, and the error in available energy

estimates. Additionally, the irrigation efficiency was investigated by comparing measured

seasonal evapotranspiration values to those recommended by the FAO. It was found that the

visual observation of the physical conditions of the plant is not sufficient to efficiently

manage the irrigation, a large quantity of water is lost (�37% of total irrigation). Conse-

quently, the LAS can be considered as a potentially useful tool to monitor the water

consumption in complex conditions.
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1. Introduction

The arid and semi-arid regions constitute roughly one third of

the total earth surface. In these regions water scarcity is one of

the main limiting factors for economic growth. The impact of

such water scarcity is amplified by inefficient irrigation

practices, especially since about 85% of available water is

used for irrigation in these regions. In this context, several

research programs have been designed to develop tools to

support efficient management of irrigation water in arid and

semi-arid zones. SUDMED (Chehbouni et al., 2003, 2004) and

IRRIMED (http://www.irrimed.org) projects are amongst those

programs taking place in the southern Mediterranean region.

These projects focus on the assessment of temporal and

spatial variability of water needs and consumption of irrigated

agriculture under limited water resource conditions. The

projects area is located in the Tensift river basin which

includes the Haouz plain (near Marrakesh city, Morocco). In

the Haouz plain the climate is semi arid and is characterized

by low and irregular rainfall. The average amount of rainfall

per year is about 240 mm, whereas the evaporative demand is

very high – around 1600 mm per year – according to the FAO

method (Allen et al., 1998). Cereals (wheat, barley), olive and

citrus orchards are the dominating crops in the plain and use

as much as 84% of the total available water.

Due to its high adaptability to semi-arid climate, olives

make up the main component of the orchard in the Houaz

plain. Flood irrigation is widely practiced by the majority of the

farmers (more than 85%). Part of the water supplied to the

orchard by rainfall and irrigation is effectively consumed by

the crop, whereas the remaining is stored in the soil,

percolates to deeper soil, or is lost through soil evaporation.

In this regard, one can classify the loss in two categories:

agronomical loss and hydrological loss. Agronomists consider

that all the water which is not used by the plant is lost, while

hydrologists judge only the soil evaporation to be lost since the

infiltrated water is used to refill the ground water.

The present study focused on estimating seasonal water

needs and consumption of a tall and sparse irrigated oliveyard

(Agdal). Eddy covariance (EC) technique was used to monitor

evapotranspiration, it is proven to be the most accurate method

to measure evapotranspiration or latent heat flux: LvE is a local

measurement and therefore difficult to use in the case of

heterogeneous surfaces, unless a network of EC systems is

available which is very costly and require a well trained staff to

operate and to maintain it. Moreover, over tall sparse vegetation

such as an oliveyard, the variability of local fluxes appears to be

large(e.g.Vogtetal.,2004), therefore,strictlyspeakingseveralEC

systems are needed, whereas a scintillometer provides an area

average. From the view point of the farmer, a scintillometer has

the advantage that the receiver and detector are installed at the

peripheral of the field and not in the centre. This seriously limits

the applicability of such system at the scale of the irrigation

district which is the relevantscale for water managers. For these

practical reasons it is worth investigating the applicability of

scintillometry over this tall sparse vegetating type. As far as we

know such a study on scintillometer applicability to large scale

water management has never been performed before.

In this context, the scintillation method which can provide

either direct or indirect estimates of LvE along a path length,
Please cite this article in press as: Ezzahar, J. et al., The use of the scin
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whose dimensions may range from a few hundred metres up to

10 km has been considered as an effective way to overcome this

difficulty (Chehbouni et al., 1999). Three types of scintillometers

are available: radio wave scintillometers (RWS), small aperture

(laser) scintillometers (SAS), and large aperture scintillometers

(LAS). The RWS, which operates at radio wavelength is the most

sensitive to humidity fluctuations (Andreas, 1989) and is more

suitable for directlyobtainingLvEover large areas.However, this

type of scintillometer is not widely used since its system

components are expensive and difficult to operate, moreover

some interferences may occur especially close to cities

(Meijninger et al., 2002a). Conversely, the LAS which operates

in the visible and near-infrared wavelength region of the

spectrum is relatively cheap and very robust which makes it

suitable for operation in remote fields. This explains the fact

that the LAS is regularly used nowadays in micrometeorological

experiments (e.g. Chehbouni et al., 2000 (SALSA); Hoedjes et al.,

2002 (Yaqui 2000); Hartogensis et al., 2002; Poulos et al., 2000

(CASES-99); Beyrich et al., 2000 (LITFASS-98), and 2006 (LITFASS-

2003)).

However, the LAS only provides spatially averaged sensible

heat flux (HLAS). As it has been shown in Meijninger et al.

(2002a), latent heat flux (LvELAS) can then be obtained as the

residual term of the energy balance equation providing

estimates of available energy (Rn � G), where (Rn) is the net

radiation and (G) is the soil heat flux.

In this study the potential of the LAS to derive LvELAS over a

complex field was investigated. The complexity is due to the

fact that the vegetation is tall and sparse, which means that

transfer processes are more complex than for short and dense

crops, and this Monin-Obukhov similarity theory may not

apply. Moreover, flood irrigation creates a large heterogeneity

in soil humidity, and in some cases advection from the

surrounding areas occurred.

The main objective of this paper is two-fold: (1) to combine

the LAS measurements with estimates of available energy to

derive spatially averaged LvELAS, and (2) to investigate the

feasibility of using the LAS to monitor seasonal water

consumption of olive orchards in the Haouz semi-arid plain

and to document irrigation efficiency through the comparison

between LAS-based estimates of evapotranspiration values to

those recommended by the FAO method (FAO-56). This paper

is organised as follows: a brief physical background of the

scintillation method and the proposed models to estimate the

available energy are first provided. Second, an overview of the

experimental design follows with a presentation of the results

before presenting comparisons between simulated and

observed fluxes. Finally, a discussion about the potential of

the LAS combined with the estimated available energy to

calculate the LvE over olive orchards, and the ability of this

approach to monitor the water consumption over semi-arid

land, is presented.

2. Theoretical background

2.1. Determining the sensible heat flux, HLAS, with LAS

The LAS is a device that provides measurements of the

variation in the refractive index of air caused by atmo-
tillation technique for monitoring seasonal water consumption of
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spheric turbulence. This instrument consists of a transmit-

ter and a receiver installed at a certain height zLAS above the

surface. The LAS used in this study has an aperture

diameter D of 15 cm. The transmitter emits electromagnetic

radiation at wavelength l = 940 nm over a known path

length (L). The fluctuations in the light intensity at the

receiver are analysed to give the variation of C2
n along the

path.

Hill et al. (1980) has related C2
n with the structure

parameters of temperature (C2
T), humidity (C2

q) and the

covariant term (CTq) as follows:

C2
n ¼

A2
T

T2
C2

T þ
ATAq

Tq
CTq þ

A2
q

q2
C2

q (1)

where AT and Aq are quantities that represent the relative

contribution of each term to C2
n, which are both dependent on

optical wavelength and the mean values of temperature (T),

humidity (q), and atmospheric pressure (p). In the case of the

LAS in this project, the values of AT and Aq are given by

Andreas (1989):

AT ¼ �0:78� 10�6 p

T
(2)

Aq ¼ �57:22� 10�6q (3)

Generally, the first term, containing C2
T, is much

larger than the other two terms, except in the case

where the Bowen-ratio b (=HLAS/LvELAS) is much smaller

than 1. Assuming that temperature and humidity

fluctuations are perfectly correlated, Wesely (1976)

showed that the temperature structure parameter C2
T can

be derived from the refractive index structure parameter C2
n

by:

C2
T ¼ C2

n

T2

g p

 !2

1þ 0:03
b

� ��2

(4)

where g is the refractive index coefficient for air

(7.8 � 10�7 K Pa�1). The final bracketed term is a correction

for the effects of humidity. C2
n and C2

T are in (m�2/3) and

(K m�2/3), respectively.

According to the Monin-Obukhov Similarity Theory

(MOST), it is possible to link the temperature structure

parameter C2
T and the temperature scale T* for unstable

conditions, i.e., LMO < 0:

C2
T ¼ T2

�ðzLAS � dÞ�2=3h
ðzLAS � dÞ

LMO

� �
(5)

where z and d are the measurement and displacement

height, respectively, h is a universal function. Wyngaard

et al. (1971) found the following relation for h under unstable

conditions:

h
ðzLAS � dÞ

LMO

� �
¼ cT1 1� cT2

ðzLAS � dÞ
LMO

� ��2=3

(6)

where cT1 and cT2 are constants, given by De Bruin et al. (1993)

as 4.9 and 9.
Please cite this article in press as: Ezzahar, J. et al., The use of the scin
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Under stable conditions, Thiermann and Grassl (1992)

proposed:

h
ðzLAS � dÞ

LMO

� �
¼ 6:34 1þ 7

zLAS � d
LMO

þ 20
zLAS � d

LMO

� �2
 !1=3

(7)

LMO is the Monin-Obhukov length (m) given by:

LMO ¼ �
Tau�2

kgT�
(8)

with k = 0.41 is the von Karman constant, g = 9.81 m s�2 (grav-

ity) and u* (m s�1) is the friction velocity:

u� ¼ ku ln
ðzLAS � dÞ

z0

� �
� c

ðzLAS � dÞ
LMO

� �� ��1

(9)

u is the wind speed and c is the integrated stability function

defined for unstable conditions (z/LMO < 0) as (Panofsky and

Dutton, 1984)

c
ðzLAS � dÞ

LMO

� �
¼ 2 ln

1þ x
2

� �
þ ln

1þ x2

2

� �
� 2 arctanðxÞ þ p

2
(10)

with

x ¼ 1� 16
zLAS � d

LMO

� �1=4

z0 is the roughness length. Knowing u* and T*, the sensible heat

flux HLAS (W m�2) can be calculated as:

HLAS ¼ rc pu�T� (11)

with r (kg m�3) and cp (J kg�1 K�1) are the air density and heat

capacity, respectively.

The latent heat flux from the LAS is obtained as the residual

the energy balance as (Meijninger et al., 2002a):

LvELAS ¼ Rn � G�HLAS (12)

In this study, a footprint model proposed by Horst and Weil

(1992, 1994) was applied to determine the source areas for

turbulent fluxes from the EC and the LAS (see Appendix A). In

the case of the LAS, one has to combine footprint function with

the spatial weighting function W(x) of the LAS in order to

calculate the source area.

2.2. Proposed models to estimate available energy

2.2.1. Net radiation
The net radiation quantifies the energy available for crop

evapotranspiration, photosynthesis, and soil heating (Mon-

teith and Unsworth, 1990). Several authors have related net

radiation to solar radiation by means of empirical relation-

ships (André and Viswanadham, 1983; Kowalik and Turner,

1983; Mermier and Seguin, 1976). Unfortunately, these

relationships may be difficult to be generalized to all surface

and atmospheric conditions. In this study, the following
tillation technique for monitoring seasonal water consumption of
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Fig. 1 – Overview of the study site (Quickbird image). The

white dotted line represents the LAS path, and the location

of EC system is also presented.
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method for estimating net radiation at half-hourly time step

from classical meteorological data is used. The net radiation is

expressed as follows (Ortega-farias et al., 2000):

Rn ¼ ð1� aÞRg þ eSRa � Rt (13)

where a is the surface albedo, Rg is the solar global radiation

(W m�2), eS is the surface emissivity, Ra the atmospheric radia-

tion which is emitted by air molecules (W m�2) and Rt is the

terrestrial radiation which is emitted by the surface (W m�2).

By using the Stefan–Boltzman equation (Monteith and Uns-

worth, 1990), Ra and Rt can be expressed as a function of air and

surface temperatures, respectively. Then, Eq. (13) can be

rewritten as:

Rn ¼ ð1� aÞRg þ eSsðeaT4
a � T4

surfÞ (14)

with ea is the emissivity of the atmosphere, Ta is the air

temperature (K), Tsurf is the surface temperature (K), and s

is the Stefan–Boltzman constant (5.67 � 10�8 W m�2 K�4). In

this study, Tsurf was estimated from measured soil and canopy

temperatures weighted by the fractional area of vegetation

(Norman et al., 1995):

Tsurf � ½ f cT4
c þ ð1� f cÞT4

s �
1=4

(15)

where fc is the cover fraction of olive trees.

Many authors have proposed empirical relationships

which relate the atmospheric emissivity to the air tem-

perature (Angstrom, 1918; Brunt, 1932; Idso, 1981). In what

follows, we used the expression proposed by Brutsaert

(1975) where ea is computed from air temperature and

vapour pressure as:

ea ¼ 1:24
ea

Ta

� �1=7

(16)

where ea is the air vapour pressure (hPa). Brutsaert (1975)

pointed out that the 1.24 value for the proportionality coef-

ficient, which was derived on an atmospheric radiative

transfer basis, should vary according to variations in the

type of atmosphere. Hatfield et al. (1983) and Olioso (1992)

found that the original coefficient in the Brutsaert formula

(1.24) led to an underestimation in calculated atmospheric

radiation by 5%.

2.2.2. Soil heat flux
Due to the complexity of surface cover and physical

processes occurring in the soil, the soil heat flux is the

most difficult scalar to measure accurately at the appro-

priate space-scale. Several authors have related this scalar

to the net radiation (Stull, 1988; Villalobos et al., 2000). In

this study, we used the simple formula proposed by Su et al.

(2001):

G ¼ Rn½G c þ ð1� f cÞðG s � G cÞ� ðW m�2Þ (17)

in which they assume the ratio of soil heat flux to net radiation

is Gc = 0.05 for full vegetation canopy (Monteith, 1973) and

Gs = 0.315 for bare soil (Kustas and Daughtry, 1989).
Please cite this article in press as: Ezzahar, J. et al., The use of the scin
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3. Experimental site and measurements

3.1. Site description

The experiment was carried out between day of year (DOY) 323

(2002) and DOY 323 (2003) at the 275 ha Agdal olive orchard

which is located to the southeast of the city of Marrakech,

Morocco (318360N, W0078580). Fig. 1 displays the area of interest

on a very high spatial resolution image acquired by the

Quickbird satellite (0.62 and 2.4 m in panchromatic and multi-

spectral, respectively). The climate is typically semi arid

Mediterranean; precipitation falls mainly during winter and

spring, from the beginning of November until the end of April,

with an average ranging from 192 to 253 mm per year. The

atmosphere is very dry with an average humidity of 56% and

the evaporative demand is very high (1600 mm per year),

greatly exceeding the annual rainfall.

The experiment was set up in the southern area of the Agdal

orchard, of about 700 m � 800 m, surrounded by fields of orange

and olive trees (Fig. 1). The average height of the olive trees is

6 m with an average coverage that reaches approximately 55%.

Two water basins are used for irrigation. Water is diverted

manually to every tree through a network of ditches, each tree is

surrounded by a small earthen levy that retains the irrigation

water, allowing application of irrigation water to every tree. The

amount of water used during each irrigation event was about

80 mm. Irrigation starts on the southern border of the field, and,

depending on available manpower, progresses towards the

northern border of the site in approximately 12 days.

3.2. Micrometeorological and flux measurements

The field was equipped with a set of standard meteorological

instruments to measure wind speed and direction (with a
tillation technique for monitoring seasonal water consumption of
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Fig. 2 – Observed values of C2
T ECðzEC � dÞ2=3=T�2EC plotted

against observed (zEC S d)/LEC, all data were derived from

the EC system. Solid line represents the scaling giving by

De Bruin et al. (1993): 4.9(1 S 9(zEC S d)/LEC)S2/3.

Fig. 3 – Inter-comparison between the two scintillometers

referred as LAS1 and LAS2 used in the experiment.
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Young Wp200 anemometer), air temperature and humidity

(with a vaisala HMP45AC probe) at 9 m above the ground. The

four components of the net radiation were measured using a

CNR1 radiometer (Kipp & Zonen), i.e. independant estimates

incoming and outgoing solar and far-infrared radiation. The

CNR1 was located in a place (at 8.5 m) that is representative of

the vegetation and soil. Radiative soil and vegetation tem-

peratures were measured using 2 IRTS-P’s (Apogee). The soil

heat flux density was measured using heat flux plates (HFT3-L,

Campbell Scientific Ltd.) at three locations with contrasting

amounts of radiation reaching the soil. The measurement

depth was 1 cm. The plates were placed: one below the tree

near the trunk in order not to be exposed to direct solar

radiation; one was exposed directly to solar radiation, the last

one in an intermediate position. An average of these three

measurements was made to obtain a representative value. Soil

temperature was recorded at two locations at a depth of 0.05 m

(temperature probe 108). Soil moisture was measured at

different depths (0.05, 0.1, 0.2, 0.3 and 0.4 m) using 5 CS616

water content reflectometers (Campbell Scientific Ltd.). Mea-

surements were sampled at 1 Hz, averaged, and then stored at

30 min intervals on CR10X dataloggers.

An EC system was installed to provide continuous

measurements of vertical fluxes of heat, water vapour and

carbon dioxide (CO2) at 9.2 m (see Fig. 1). During the first three

months the EC system consisted of a 3D sonic anemometer

(CSAT3, Campbell Scientific Ltd.) which measured the fluctua-

tions in the wind velocity components and temperature, and

an open-path infrared gas analyser (LICOR-7500, Campbell

Scientific Ltd.) that measured concentration of water vapour

and carbon dioxide. Raw data were sampled at a rate of 20 Hz

and were recorded using a CR23X dataloggers (Campbell

Scientific Ltd.) which were connected to portable computer to

enable storage of large raw data files. After the first three

months of the experiment, the LICOR-7500 IRGA was replaced

by a Krypton hygrometer (KH20, Campbell Scientific Ltd.), and

the datalogging system was replaced with a CR5000 datalogger

(Campbell Scientific Ltd.), equipped with a 1 Gb PCMCIA-card

for the storage of large raw data files. The half-hourly fluxes

were later calculated off-line after performing planar fit

corrections (Wilczak et al., 2001), correcting the sonic

temperature for the presence of humidity (Schotanus et al.,

1983), frequency response corrections for slow apparatus and

path length integration (Moore, 1986), the inclusion of the

mean vertical velocity according to Webb et al. (1980) and

oxygen correction for the Krypton hygrometer, which is

sensitive to O2 (Van Dijk et al., 2003). For the data processing,

use was made of the eddy covariance processing software

‘ECpack’, developed by the Meteorology and Air Quality Group,

Wageningen University. This software is available for down-

load at http://www.met.wau.nl/.

In order to ascertain that the height of the EC was adequate

and fulfils the conditions required for turbulent fluxes

measurements (i.e. the constant-flux layer), one can study

the behaviour of the temperature structure parameter (C2
T EC),

the temperature scale (T�EC) and the Monin-Obhukov length

LMON EC derived from the EC according to MOST. For this

purpose, observed values of C2
T ECðzEC � dÞ2=3=T�2EC have been

plotted against observed values of ðzEC � dÞ=LMON EC in Fig. 2,

together with the scaling curve (Eq. (6)). The measurements
Please cite this article in press as: Ezzahar, J. et al., The use of the scin

olive orchards in a semi-arid region, Agric. Water Manage. (2007),
TE
Dfollow the shape of the theoretical scaling given by De Bruin

et al. (1993). Therefore, it can be conclude that the measure-

ments were taken in the constant-flux layer.

Additionally, two identical LAS were used in this experi-

ment, the first one (denoted LAS1) was operated from the

beginning of the experiment until DOY 12 (2003) and was then

replaced with the second one (denoted LAS2). Both of them

were built by the Meteorology and Air Quality Group

(Wageningen Agriculture University, the Netherlands). These

instruments were made according the basic design described

in Ochs and Wilson (1993). They have an aperture size of

0.15 m and the wavelength of the light beam emitted by the

transmitter is 940 nm. At the receiver, C2
n was sampled at 1 Hz
tillation technique for monitoring seasonal water consumption of
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Fig. 5 – Comparison between daily estimated (Rnest S Gest)

and observed (Rnmes S Gmes) available energy.
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and averaged over 1 min time steps by a CR510 datalogger. The

LAS were installed perpendicularly to the dominant wind

direction with a path length of 1 km. The transmitter was

mounted on a tripod installed on a roof, located on the

southwest corner of the field, while the receiver was mounted

on a 15 m high tower that was positioned next to the road (see

Fig. 1). The path of the scintillometer was chosen so that the

saturation effects are expected to be small (Kohsiek et al.,

2006).

In order to be more confident in the consistency in the

measurements made by both LAS, an inter-comparison of the

two LAS was performed between DOY 284 (2002) and 288

(2003). To avoid possible interference between the two signals,

the transmitter and receiver were alternated. They were

deployed at the same height. The linear regression forced

through the origin yielded (m�2/3): C2
nðLAS1Þ ¼ 1:04C2

nðLAS2Þ,
R2 = 0.99. This means that the agreement is excellent with 4%

difference (Fig. 3). This small difference lies within acceptable

instrumental error.

4. Results and discussions

In this paragraph we first analysed the closure of the energy

balance. Then the measured and simulated (Rn � G) compo-

nents were compared, as well as the sensible heat flux

measured by EC (HEC) and that derived from the LAS (HLAS).

After that, the feasibility of deriving the latent heat flux from

the LAS with the estimated values of the available energy

(Rn � G) was checked, so that LvE can be derived at large scale

with a minimum number of instruments in the fields.

4.1. Energy balance closure

The energy balance closure is an important indicator of the

performance of an EC system. By ignoring the term of canopy
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Fig. 4 – Assessment of energy balance closure. Daily

average fluxes of net radiation (Rn) minus the soil heat flux

(G) are compared against the sums of sensible (HEC) and

latent heat (LvEEC) measured by the eddy correlation

system.
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 Pheat storage at daily time scale (Testi et al., 2004; Baldocchi

et al., 2004) and assuming the principle of conservation of

energy, the energy balance closure is defined as

Rn � HEC � LvEEC � G and should be close to zero (LvEEC is the

latent heat flux derived from the EC). In this study all daily

values were calculated by averaging up the half-hourly values.

Fig. 4 presents a cross plot between measured (Rn � G) and the

sum of the turbulent fluxes (HEC + LvEEC) for daily time scale. A

linear regression yields: Rn � G = 1.05(HEC + LvEEC) and

R2 = 0.86, with RMSE = 17 W m�2 (the equation used to calcu-

late RMSE is presented in Appendix B). The difference in terms

of the sources areas of the different instruments has the

biggest impact on the closure of the energy balance especially

over sparsely vegetated surfaces. The source area sampled by

eddy covariance is much larger than that of net radiation and

soil heat flux and it can change rapidly depending on wind

speed and direction and on surface conditions. However,

comparatively to what has been reported in the literature

(Testi et al., 2004; Baldocchi et al., 2004; Twine et al., 2000), the

closure can be considered as fairly good.

4.2. Estimating available energy

The net radiation is derived from Eq. (14) using an albedo value

of 0.11 (annual averaged measured with CNR1), a surface

emissivity of 0.98 (Jones et al., 2003), and the atmospheric

radiation is computed from air temperature and vapour

pressure using Brutsaert’s formula with a correction factor

taking into account the 5% underestimation shown by

different authors (Hatfield et al., 1983; Olioso, 1992; Ortega-

farias et al., 2000). The soil heat flux was estimated using

Eq. (17). Due to power supply problems at the beginning of the

experiment, some data were missing, we therefore used 270

days of data.

The comparison between daily observed and estimated

available energy is presented in Fig. 5. A regression analysis

yields (W m�2): Rnest � Gest = 0.91(Rnmes � Gmes), R
2 = 0.94, and

RMSE = 16 W m�2. The subscripts est and mes referred to
tillation technique for monitoring seasonal water consumption of
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Fig. 7 – (a) Comparison between the daily averaged LAS and

EC sensible heat fluxes, HLAS and HEC, respectively, during

homogenous conditions (dry conditions and days

following the rain events). (b) Comparison between the

daily averaged LAS and EC sensible heat fluxes, HLAS and

HEC, respectively, during heterogeneous conditions

(periods of irrigation events).
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estimated and measured values, respectively. It can be seen

that the simple model used to estimate the available energy

works fairly well over tall and sparse vegetation (an under-

estimation of 9%). It must be noted that the use of the

Brutsaert’s formula which was established for clear sky

conditions only, may create an important scatter for low

radiation values. To overcome this difficulty, a comparison

between the Rnmes and Rnest using the measured and the

estimated atmospheric radiation was made (not shown). A

regression analysis for both comparisons yields almost the

same slope (�0.96), but the R2 and RMSE differed. The R2 and

RMSE were 1 and 5 W m�2, and 0.95 and 12 W m�2 for

measured and estimated atmospheric radiation, respectively.

4.3. Sensible and latent heat fluxes

To assess the accuracy of the LAS, a comparison of the daily

sensible heat fluxes derived from the LAS and those measured

from the EC system was made. The days with missing data in

LAS and EC measurements were not taken into account.

Missing data was mostly due to rainfall and very strong wind

associated with storms which disturbed the alignment of the

LAS (about 12% of the data).

During this study, the site changes from being almost

homogeneous under dry conditions or following rain events to

very heterogeneous during the irrigation. The irrigation

method creates a large difference in terms of soil moisture

which leads to a large difference in the characteristics of the

source area sampled by the LAS and by EC, respectively. In

Fig. 6, the footprints of the LAS and EC (corresponding to

approximately 95% of the sensible heat flux) for the prevailing

wind direction are presented, together with the orientation of

irrigation. It can be seen that during the irrigation the small

source area of the EC will be irrigated much sooner than the

large area of the LAS. Consequently, the EC source area started

to dry out before the entire source area of the LAS is irrigated.

Fig. 7a and b, present comparisons between HLAS and HEC over
Please cite this article in press as: Ezzahar, J. et al., The use of the scin

olive orchards in a semi-arid region, Agric. Water Manage. (2007),
homogeneous and heterogeneous conditions, respectively.

The correlation between HLAS and HEC during the irrigation

was very poor (R2 = 0.26, RMSE = 19.3 W m�2), this disagree-

ment was expected due to the irrigation method used, which

causes a large heterogeneity in soil humidity of the sources

area of the LAS and EC, which in turn affects the sensible heat

flux. In contrast, the correlation was very good (R2 = 0.95,

RMSE = 6.25 W m�2) during homogenous conditions (dry con-

ditions and days following the rain events). Examining the

comparison during the entire year (Fig. 8), yields a satisfactory

agreement (R2 = 0.72, RMSE = 13.3 W m�2). It can be therefore

concluded that the effect induced by the irrigation method is

compensated when comparison is made during the entire

season. This result is of great interest since it indicates that the

LAS can be effectively used to accurately estimate spatially
tillation technique for monitoring seasonal water consumption of
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entire year.

Fig. 10 – Comparison between daily observed (derived from

EC system LvEEC) and simulated evapotranspiration

(derived from the LAS using the measured available

energy, LvELAS).

a g r i c u l t u r a l w a t e r m a n a g e m e n t x x x ( 2 0 0 7 ) x x x – x x x8

AGWAT 2393 1–11
averaged sensible heat flux despite the heterogeneity induced

by the irrigation method.

A comparison between the daily latent heat flux from the

LAS (LvELAS) calculated as LvELAS = Rnest � Gest � HLAS and the

latent heat flux from EC (LvEEC) is shown in Fig. 9. The

regression analysis gives: LvELAS = 0.86LvEEC, R2 = 0.72 and

RMSE = 18.25 W m�2. Such discrepancy can be explained by

the combination of several factors. First, the error asso-

ciated with the closure of the measured energy balance is

translated into an error in the simulated LvELAS. Second,

since the scintillometer-based LvELAS is obtained as the

residual term of the energy balance, any difference between

measured and simulated available energy is directly
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Fig. 9 – Comparison between daily observed (derived from

EC system LvEEC) and simulated evapotranspiration

(derived from the LAS using the estimated available

energy, LvELAS).
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Dtranslated into error in the simulated LvELAS. In this regard,

comparison between the LvELAS simulated using the mea-

sured available energy values (Fig. 10) and the LvEEC yields to

LvELAS = 0.96LvEEC, R2 = 0.74 with RMSE = 14 W m�2. More

importantly, the impact of the difference in the footprint

of the LAS and EC which was very important during the

irrigation events greatly influences the correspondence

between observed and simulated fluxes. Although a mod-

erate discrepancy is observed, the correspondence between

measured and simulated LvE is deemed acceptable. There-

fore, one can conclude that combining LAS measurements

with estimates of available energy is a very effective and

operational tool for seasonal crop water consumption

assessment at a scale relevant to the managers (i.e. the

irrigation district).

4.4. Irrigation efficiency assessment

In this paragraph, we investigate the efficiency of the irrigation

practices over the study site which is representative of the

practices in the region. To achieve this, crop water require-

ments deduced from the FAO-56 method (FAO-56 paper, Allen

et al., 1998) were compared to the LAS-based estimates of

ETLAS and the sum of the rainfall and irrigation.

During the experiment, the total irrigation applied by the

farmer was about 800 mm over 10 irrigation cycles. Total

precipitation (P) during the experiment reached 354 mm,

which is much higher than the annual average of 240 mm.

The yearly estimated evapotranspiration (ETLAS) derived from

the LAS was calculated by summing up the daily values. The

result in terms of yearly estimates of ET using our approach

(ETLAS) was about 860 mm.

In order to compare this value against that suggested by the

FAO, the crop water requirement (ETc) was calculated

following the standard procedure of the FAO (FAO-56 paper;

Allen et al., 1998). ETc is computed by multiplying reference
tillation technique for monitoring seasonal water consumption of
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evapotranspiration (ET0) by a crop coefficient Kc. The mean

value ofKc for olive orchard under environmental conditions is

0.68 (Er-Raki et al., 2006). The yearly simulated ETc during our

experiment was 920 mm. The accumulated ETLAS and ETc for

olive season are shown in Fig. 11. By analyzing this figure, the

accumulated ETLAS and ETc curves are close over the period

DOY 323 to DOY 190. For the remaining days, ETc was higher

than ETLAS. This is due to the stress induced by irrigation delay.

It can be noticed also in this figure, that although the sum of

irrigation and rainfall was greater than ETc, one stress event

occurred (from DOY 190). Such behaviour can be explained by

inadequate distribution of irrigation. In fact, the farmer

irrigated just after the recorded rainfall (four irrigations were

applied in this case: DOY 353 (2002), 109 (2003), 169 (2003) and

303 (2003)). Some of those irrigations should have been

delayed (169 (2003), 309 (2003), 109 (2003)) and the first

irrigation (353 (2002)) was unnecessary because it had rained

for a long period beforehand. In addition, an important

amount of water was lost by the flood irrigation technique.

This quantity was lost by deep percolation and runoff and is

noted DP. In order to quantify this term, the water balance

equation of the FAO method on a yearly basis (Allen et al.,

1998) was applied. In this study we ignored the variation in the

water storage in the study area, because the initial conditions

were similar to the conditions at the end of the experiment. So

DP approached the sum of the total precipitation and irrigation

minus the cumulative of the ETLAS. The yearly DP obtained was

around 295 mm considering the irrigation’s quantity applied

by the farmer, so it represents about 37% of the total applied

irrigation. Another study was done over the same field by

Williams et al. (2003) and showed that after the irrigation the

soil evaporation represents about 14–28% of the total

evapotranspiration. The result revealed that the farmer

applied a large amount of water and the irrigation system

was not appropriate for the orchard in the Haouz plain

conditions.
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5. Conclusion

The purpose of this investigation was to identify whether the

large aperture scintillometer combined with a simple available

energy model could be used to monitor the water consump-

tion in difficult environment conditions (tall vegetation,

irrigation method which has an irregular pattern in space

and time, and variable soil characteristics). An experiment

was conducted over the irrigated oliveyard of Agdal which is

located in Marrakech (Morocco). An eddy covariance (local

scale measurements) and LAS (large scale measurements)

were installed above the olive trees.

The daily sensible heat fluxes derived from the LAS agreed

reasonably well with those derived from the EC during

homogenous conditions (dry conditions and days following

the rain events). This result confirms that the LAS works well

over tall and sparse vegetation. During the irrigation events

(flooding irrigation), the comparison showed a large scatter

between the two methods due to the large difference in the

sources area of the LAS and EC created by the irrigation

method.

Consequently, the comparison between the latent heat flux

derived from the LAS and that measured by EC yields an

acceptable agreement with an underestimation of 14% and a

large scatter (R2 = 0.72 and RMSE = 18.25 W m�2). This differ-

ence was related to the poor closure of the energy balance

based on EC turbulent fluxes estimates, the different char-

acteristics between the source areas of the LAS and EC (due to

the irrigation method which created a large heterogeneity in

soil moisture), and the use of Brutsaert’s formula to compute

downward longwave radiation. It is concluded that the use of

estimate available energy which can be derived from the

satellite image, the scintillometer is a potentially useful tool to

obtain the latent heat flux at large scale even over complex

surfaces. Therefore, this device provides a great potential for

practical application of remote sensing approaches to basin

scale water balance studies.

In addition, the study revealed that the method of irrigation

applied by the farmer was not appropriate for the orchard

conditions, because a large quantity of water is (�295 mm) lost

by deep percolation and overflow (�37% of total irrigation).

One can therefore conclude that the irrigation is not efficient,

because the irrigation monitoring is done by visually observing

the physical conditions of the plant which is not sufficient to

manage the irrigation. As a result, it would be advisable to

improve the irrigation management and to recommend to the

farmer to follow a more technical irrigation scheduling criteria

such as, that is by taking into account the actual soil type,

slope, length of water run, flow rates, and weather forecast.
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Appendix A

The contributing surface to scalar flux measurement

from the EC and the LAS, called the source area (SA), was

calculated using the analytical footprint model proposed by

Horst and Weil (1992, 1994). The footprint function f, or the

contribution per unit surface flux of each unit element of

the upwind surface area to a measured vertical flux, relates

to the vertical flux measured at height zm, F (x, y, zm), to the

spatial distribution of surface fluxes, F(x, y, z = 0) � F0(x, y),

i.e.,

Fðx; y; zmÞ ¼
Z 1
�1

Z x

1
F0ðx0; y0Þ fðx� x0; y� y0; zmÞdx0 dy0 (A.1)

(Horst and Weil, 1994). Where x and y, respectively, are the

upwind and crosswind distances (m) from the point where the

measurements are taken. The source area arises from the

integration of the footprint function. In this study we

calculated the crosswind-integrated footprint function using

the model of Horst and Weil (1994):

f̄
yðx; zmÞffi

dz̄
dx

zm

z̄2

ūðzmÞ
ūðcz̄Þ A exp � zm

bz̄

� �r
� �

(A.2)

where z is the mean plume height for diffusion from a surface

source and u (z) the mean wind speed profile. The variablesA, b

and c are gamma functions of shape parameter r. We have

assumed that the violation of the MOST is small (Meijninger

et al., 2002b). In the case of the LAS, one has to combine f with

the spatial weighting function W(x) of the LAS in order to

calculate the source area.

Appendix B

The root mean square error (RMSE), which measures the

variation of predicted values around observed ones, is

calculated as follows:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1

ðyi sim � yi obsÞ
2

vuut

where yi sim and yi obs are the values of simulated and observed

variables, respectively, and n is the number of observations.
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