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Abstract

Global temporal composites of surface reflectances are among the most commonly used products of wide field-of-view satellite-borne

instruments such as the Advanced Very High Resolution Radiometer (AVHRR), the MODerate resolution Imaging Spectroradiometer

(MODIS) and VEGETATION. The multi-temporal and spatial consistencies of these composites are key elements for their usefulness. In this

paper, we use two different criteria to evaluate the quality of existing and new temporal composite products in SPOT–VEGETATION

imagery. The first criterion, based on variograms, analyses the spatial characteristics of composite images, and the second one evaluates the

quality of the time series based on the analysis of simultaneous imagery from VEGETATION 1 and VEGETATION 2. Thanks to these

criteria, we show that the standard deviation of the errors that affect the surface reflectances of current composite products can be reduced by

a factor greater than 2 using improved algorithms detailed in this paper. Finally, we produce multi-instrument composites by integrating

images from both VEGETATION instruments to further improve the composite products.

D 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The Earth observation satellite SPOT 5 was successfully

launched on May 4th, 2002, with VEGETATION 2 instru-

ment onboard. VEGETATION 2 joined up SPOT4/VEGE-

TATION 1 (launched in April 1998) on the same orbit. Both

VEGETATION instruments are of multi-spectral push-

broom type with a very wide field of view (more than

2000 km), and a geometrical resolution of about 1 km at

Nadir. Each VEGETATION instrument provides an almost

daily acquisition of the whole continental surfaces at four

wavelengths termed B0 (blue), B2 (red), B3 (near-infrared),

Medium InfraRed (MIR) and centred around 460, 670, 840
0034-4257/$ - see front matter D 2004 Elsevier B.V. All rights reserved.
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and 1640 nm, respectively. Like many wide field of view

earth observation systems such as the Advanced Very High

Resolution Radiometer (AVHRR), the MODerate resolution

Imaging Spectroradiometer (MODIS), and the MEdium

Resolution Imaging Spectrometer (MERIS), VEGETATION

offers a broad range of products that correspond to an

increasing degree of data processing. These products are

classified in three levels, according to the definition by the

Committee on Earth Observation Satellites (CEOS) (King-

well et al., 1996).

Level 1 products provide users with geolocated and

calibrated top of atmosphere (TOA) reflectances acquired

during a time period that does not exceed the duration of

one orbit. The Level 1 processing does not make any

assumption on the physical nature of the observed target,

and only corrects for sensor artefacts. Level 1 products from

VEGETATION are called VGT-P products (P for Physical).
ent xx (2004) xxx–xxx
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Fig. 1. Images acquired above France on July 21st, 2002 by Vegetation 1 (a)

and 2 (b, c), at approximately (a) 10.30 h, (b) 10.00 h (c) 11.40 h.
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To derive variables describing the vegetation cover, it is

necessary to convert the TOA reflectances into land

surface reflectances. This is done during the Level 2

processing of VEGETATION data. Level 2 products are

not distributed to users by the VEGETATION ground

segment, but are a step towards the production of level 3

products.

VEGETATION Level 3 surface reflectance products,

often called composite products or syntheses, are obtained

using all the level 2 data acquired during periods of 10

days. Level 3 products are useful for applications that do

not require daily observations: compared to level 2

products, they provide global or regional maps that

minimise data volume and cloud cover. Currently, two

different compositing methods are used, resulting in

products named S10 and D10. The differences between

the algorithms that deliver S10 and D10 products are

described in Section 2.1.

Many error sources degrade the estimates of level 3

surface reflectances: instrumental noise, calibration or

geometric registration errors, interpolation errors during

geometrical projection, cloud screening, atmospheric cor-

rection errors, directional normalisation errors, or surface

reflectance variation during the compositing period. Meas-

uring errors in level 3 products is complicated because

field measurements of reflectance at a 1-km resolution are

not available except for some rare occasions and for very

uniform sites such as deserts or polar regions, and rarely

for vegetated areas. In situ measurements with a few

meters resolution are available at some very rare sites

(Privette et al., 2002; Weiss et al., 2001), and for very few

dates, but generally, biophysical variables such as Leaf

Area Index are measured instead of reflectance. It is also

worth noting that the accuracy of field measurements of

reflectance is not perfect, and that errors might often be

added when scaling up data acquired at a few meter

resolution to at least 1 km2. Although the comparison of

temporally composited reflectance to field measurements

of reflectance is useful to detect biases, it is not an efficient

way to characterise the errors that affect temporally

composited products.

A number of authors (Duchemin & Maisongrande, 2002;

Goward et al., 1993 for instance) have used the smoothness

of the variation with time of reflectance (or vegetation

index) as a criterion to judge the quality of products, but it

is often uneasy to decide whether a given variation

represents an artefact or is due to an actual change in the

surface. For this reason, the above authors use regional

averages, and do not try to assess the quality on a pixel by

pixel basis.

Nowadays, both VEGETATION sensors can observe the

same point twice a day with a 30V time lag (Fig. 1). This

bextra acquisitionQ has a twofold interest: first, the

comparison of products issued from each sensor gives

the opportunity to quantify the noise that affects time series

of temporally composited products, using the quality
criterion defined below. Second, having two satellites

increases the amount of available data and consequently

adds more information to the directional variations of

reflectance.

This paper begins with a description of VEGETATION

operational level 3 algorithms, followed by several

proposed improvements. Then, two criteria to assess the

quality of products are presented, and finally used to

assess the performances of current and enhanced VEGE-

TATION composite products.
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2. Operational level 3 algorithm and possible

improvements

2.1. Operational algorithms

Currently available S10 and D10 products differ in the

compositing strategy. Up to level 2, the same processing

line is used to perform cloud screening and atmospheric

correction. The cloud screening for VEGETATION products

is based mainly on a threshold on B0 TOA reflectance

because the contrast between clouds and Earth surface is the

greatest in the blue band: if reflectance is above 0.246, the

pixel is not cloud-free (Kempeneers et al., 2000). The

atmospheric correction is done using the SMAC method

(Rahman & Dedieu, 1994) with METEO FRANCE

analyses as input for the pressure and water vapour content,

and with a month average total column of ozone. The

aerosol content is determined following a method described

in Duchemin et al. (2002) and Maisongrande et al. (2004).

This method is based on an empirical relationship between

the ratio of blue and MIR bands and the Normalised

Difference Vegetation Index NDVI (see Eq. (1)). The

algorithm searches the aerosol optical depth for which the

atmospherically corrected reflectances agree at best to this

relationship.

2.1.1. S10 compositing method

The most common technique to produce reflectance level

3 products over lands is the Maximum Value Composite

(MVC) (Holben, 1986; Tarpley et al., 1984). This method

has been applied for years to AVHRR, and is also used to

produce VEGETATION 10-day (S10) composite products.

For a given time window, the MVC selects the measure-

ments of the date when the Normalised Difference

Vegetation Index (NDVI) is maximum. This method is only

applicable over land, and helps rejecting pixels affected by

clouds because their NDVI is always lower than that of

cloud free pixels. The NDVI definition is recalled in Eq. (1),

where qred (resp qNIR) is the TOA reflectance in the red part

of spectrum (resp Near-Infrared). For VEGETATION, B2

band is the red band and B3 the NIR band:

NDVI ¼ qNIR � qred

qNIR þ qred

ð1Þ

Among the many vegetation indexes, NDVI was

designed to reduce the noise that affects reflectance. If the

same error occurs in the NIR and red channels, the error is

cancelled. This is quite true for cloud shadows or thin cirrus

clouds, and, since the anisotropy of reflectances varies

slowly with the spectral bands, the NDVI varies also slowly

with the viewing direction. While NDVI is not too sensitive

to directional effects, the reflectance composites derived

from the MVC methods are very noisy. Selecting the

maximum values of the NDVI minimises the selection of

cloudy and/or heavy aerosol pixels but it does not take

directional effects into account. When the observation and
illumination geometries vary, it is fairly common to observe

reflectance variations above 50% (Roujean et al., 1992), that

have a deleterious impact on reflectance time series.

2.1.2. D10 compositing method

To cope with directional effects, a better composite

product, the 10-day Directional composite (D10), has been

developed by the VEGETATION project to enhance

reflectance composites. The MODIS production entity

(Schaaf et al., 2002) consider a similar approach. S10

production was maintained to preserve data continuity. The

D10 algorithm is based on four elementary steps as detailed

in Duchemin et al. (2002). First, for each pixel, the

algorithm selects the 10 most recent cloud free acquisitions,

even if the older ones are not within the 10-day compositing

period. Second, the series of ten clear observations is used to

fit a Bidirectional Reflectance Distribution Function

(BRDF) that specifies surface scattering as a function of

illumination and view angles. Third, the fitted BRDF is used

to normalise the non-cloudy reflectances observed during

the 10-day period, to Nadir viewing direction and to the

solar elevation observed at 10.30-h local time for the median

day of the compositing period. Finally, the D10 value is

obtained by averaging the normalised, cloud free reflectan-

ces found in the last 10 days (it is computed even if only one

observation is available, resulting in a high sensitivity to the

quality of this observation).

The model from Roujean et al. (1992) describes the

BRDF as a linear combination of three terms.

q hs; hv;/ð Þ ¼ k0 þ k1f1 hs; hv;/ð Þ þ k2f2 hs; hv;/ð Þ ð2Þ

hs, hv, / are, respectively, the solar zenith, view zenith and

relative azimuth angles, while f1 and f2 are the geometric

and volume scattering functions respectively, and ki are the

weighting parameters of the fi functions. The method tries to

minimise the cost function C defined as:

C ¼
XN
i¼1

qi � q̂qið Þ ð3Þ

where N is the number of observations available during the

synthesis period, qi are the observations, and q
ˆ
i are the best-

fit values of the Roujean model.

2.2. Improvements

Although directional syntheses represent a considerable

advance in the art of optical data processing, they still

remain very sensitive to the quality of cloud filtering and

atmospheric corrections. As shown in Section 4.2, the

performances of operational S10 and D10 products are far

from being perfect. To test new algorithms, a qualification

line has been implemented at CNES. The general frame-

work and main algorithms are inspired by the VEGETA-

TION official processing lines, but we also have the

possibility to plug in new and enhanced algorithms.
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2.2.1. Improved cloud screening

Defining a good cloud threshold, valid for the entire

world, is a very difficult task (Stowe et al., 1991). The

official cloud screening for VEGETATION uses a constant

threshold on B0 TOA reflectance, regardless of the surface

cover or of the pixel viewing geometry. To avoid

discarding pixels when the atmospheric path radiance is

high, the threshold is loose, and many clouds remain

undetected.

The cloud threshold that we propose is based on the

surface reflectance in the B0 spectral band: qS (B0). It is

computed after correcting for Rayleigh scattering and

molecular absorption using the SMAC method (Rahman &

Dedieu, 1994). Our threshold also depends on surface

cover: a land-cover classification (De Fries et al., 1998) is

used as input to determine if a given pixel lies on a

desertic or dry savanna region. In such a case, the pixel is

considered cloudy if qS (B0)N0.23. As some regions are

dry during part of the year only, and since the B0

reflectance is higher during the dry season, our threshold

value also depends on the NDVI. If the NDVI is below

0.2, a threshold of 0.14 is used; if the NDVI is above 0.2,

the threshold is set to 0.09. Cloud shadows are also

discarded taking into account viewing and solar angles,

under the assumption that clouds are at a 5-km altitude. As

an additional precaution, pixels distant by less than 3 km

to a cloudy pixel or to a shadow are classified as cloudy as

well. For the time being, our algorithm considers snow

covered pixels as cloudy pixels, although VEGETATION

enables to discriminate snow and clouds thanks to the

MIR band. The above thresholds have been tuned and

tested with several images, and the resulting improvement

for composite products has been checked using the

temporal criterion exposed in next section (see the results

in Section 4.2.2).

2.2.2. Improved compositing method

As it will be seen Section 4, the D10 compositing

method is very sensitive to residual clouds that are still

present despite our strict screening method. For a given

pixel and a given 10-day period, the distribution of the

viewing angles inside the field of view is irregular, because

of the cloud cover. If an undetected low cloud affects a

viewing direction at a high viewing angle and if no more

measurements are available near that viewing angle, the

directional model fitting such a series will be biased (see

Fig. 2). We have studied two ways of avoiding such errors:

(i) using a priori information: a confidence interval for the

parameters of the Roujean model can be used to

constrain the least-squares fit. Data leading to model

parameters too far from the constrained value are

discarded, using an iterative process;

(ii) increasing the number of observations with longer

compositing periods or simultaneous VEGETATION 1

and 2 data.
2.2.2.1. Using a priori information. In order to constrain the

Roujean model, we add two conditions to the least-squares

minimisation system:

k1 ¼ C1 kð Þ; k2 ¼ C2 kð Þ

As a result, the cost function is modified as follows:

C ¼
 XN

i¼1

qi � q̂qið Þ
r2
i

2!
þ ðk1� C1 kð ÞÞ2

r2
k1

þ k2� C2 kð Þð Þ2

r2
k2

ð4Þ

where 1/ri
2 are the weights of the observations (related to

the standard deviation of errors), 1/rk1
2 and 1/rk2

2 are the

weights of the constraints.

Evidently, the choice of the constraint values has some

influence on the results. In our study, a very simple option

was used: C1(k) and C2(k) do not depend either on the

pixel or on the date. C1 and C2 are determined by running

the unconstrained algorithm for various types of landscapes

and by averaging the retrieved k1 and k2 values. To discard

erroneous values before computing the average, we selected

only the pixels for which k1 and k2 values derived from

VEGETATION 1 and 2 products gave very close values. Of

course, using only one single value for surface covers

ranging from deserts to dense forest is a bit hazardous:

therefore, we have chosen to give a small weight to the

constraint equations by choosing rk1
2=rk2

2=4ri
2. In the near

future, we intend to introduce pixel-dependent constraints:

to produce the synthesis for a given period, we could use as

a constraint the values of k1 and k2 obtained for the

previous one. But the main issue is to ensure that the process

does not diverge.

To mitigate the problem of undetected clouds, it is also

possible to use a priori knowledge on the statistics of errors

in the observations. As a matter of fact, the distribution of

errors that affect surface reflectances differs considerably

from a gaussian curve. The instrumental noise, and mainly

the atmospheric correction errors contribute to a gaussian

with a standard deviation ranging from 2% to 10%,

depending on the bands. But the main noise contributor is

the cloud detection error: positive errors ranging from 10%

to 50% may be observed, corresponding to thin or broken

clouds, while negative errors, related to cloud shadows, are

much less frequent.

Having constrained the BRDF model, it is easier, in

most cases, to detect and discard cloud-contaminated pixels

(Fig. 2). The detection is done using the B0 band because

it enables the best distinction between clouds and

continental surfaces. If the standard deviation of errors r
of the model fit is above a threshold, our algorithm

discards all the observations that are greater that the

adjusted model values plus r. At this stage, many

previously undetected cloudy pixels are discarded. Then

a second fit and a new r value is computed (smaller than
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Fig. 2. Left column, reflectances (diamonds) and the retrieved BRDF model (solid lines) for two different pixels (Côte d’Ivoire, December 2002) in spectral

band B2, during a period of 15 days, using the D10 method. Right column, retrieved model using the new proposed method that uses a priori information. In all

plots, unfilled symbols correspond to outliers that were discarded by the iterative process.
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the previous one); all the pixels with a difference to the

fitted model greater than 1.5* r are discarded whatever the

sign of the difference. This last stage is iterated until no

pixel is discarded anymore, or until the number of

remaining pixels is lower than 3.

In the D10 method, pixels with a strong deviation from

the model fit were also discarded, but with no distinction

between higher and lower values. The improvement due to

this new method is illustrated for an example pixel in Fig. 2

and the impact on composited products is evaluated in

Section 4.2.2.

2.2.2.2. Increasing the number of observations. To better

constrain the BRDF model, it is wise to increase the

amount of available data, since the number of valid

observations acquired during 10 days is often insufficient.

The compositing period duration can be increased, keeping

in mind that if the time period is too long, surface

variation will be observed within the time window. We

tested here 15- and 30-day periods instead of 10 (see

Section 4).
The simultaneous availability of VEGETATION 1 and 2

data also gives the opportunity to double the number of

observations to enhance the directional fit, without increas-

ing the compositing period. Images from both sensors are

used in the compositing just as if they came from the same

instrument.
3. Performance criteria

In this study, we used two complementary criteria to

estimate the quality of level 3 products. The first one, called

btemporal criterionQ uses both VEGETATION instruments

to estimate the noise on time series. The second one, called

bspatial criterionQ estimates the spatial noise added to

images.

3.1. Temporal criterion

SPOT 4 and SPOT 5 are in the same geo-synchro-

nous polar orbit at an altitude of 830 km, SPOT 5
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crossing the equator 30 min before SPOT 4. Because of

the Earth rotation, the track of SPOT 4 is about 750 km

westward (at the equator) from the SPOT5. Since

VEGETATION instruments have a 2200 km field of

view, the footprints of VEGETATION 1 and 2 overlap

largely, as shown in Fig. 1. Moreover, the VEGETA-

TION 2 footprint acquired during the subsequent orbit

(110 min after the first one) also overlaps the VEGE-

TATION 1 footprint. Therefore, a given point on the

Earth surface may be observed up to three times a day

(up to twice near the equator), with observation angles

that may differ by more than 308.
Fig. 3 shows the complementarity of VEGETATION 1

and 2 data acquired for a given day, where VEGETATION 1

data fill a gap between the observation angles provided by

VEGETATION 2. Depending on the instrument, the errors

on the surface reflectance due to unfiltered clouds or aerosols

affect different parts of the observation angle range and

induce different errors on the BRDF model fit. As a

consequence, the errors on level 2 products will have a

different impact on the composite reflectance for VEGETA-

TION 1 or 2, and the errors on composite products have a

quite good statistical independence, even if not perfect (of

course, for a given day, if a pixel is cloudy for VEGETA-

TION 1, it is fairly likely that it will also be cloudy for

VEGETATION 2).

Therefore, it is possible to estimate the errors on

composite reflectances (noted q) from the comparison of

products coming from both satellites. As values provided

in the composite images of each instrument are estimates

of the mean value of the Nadir normalised reflectances

during the compositing period, they should be identical in

the absence of artefacts. The quality estimation is based
Fig. 3. Surface reflectances measured for B2 band by VEGETATION 1

(triangles) and VEGETATION 2 (diamonds), for an example pixel. Note

that VEGETATION 1 data fill a gap in the observation angle range and also

that atmospheric correction errors that occurred during the same day

correspond to different viewing angles for the two instruments.
on what we call the Normalised Reflectance Difference

(NRD) index:

NRD ¼ 2
qVGT2 � qVGT1

qVGT2 þ qVGT1

ð5Þ

The bias between VEGETATION 1 and 2 syntheses is

evaluated with the mean NRD over all the points that are

valid for both VEGETATION images. Assuming that the

errors affecting both data sets are statistically independent,

the local (in time and space) standard deviation of the noise

may be estimated by the standard deviation of NRD divided

by the square root of 2. Since this criterion is a an estimator

of the standard deviation of the noise added to the time series

of individual pixels, it will be known as btemporal criterionQ.

3.2. Spatial criterion

Current temporally composited S10 images have a very

obvious characteristic when compared with daily images of

the same scene acquired under clear atmospheric conditions

(Fig. 5). They have a different grain despite the fact that

both types of images have the same resolution. The reason

for this difference is that daily images can be considered as

snapshots of the scene, in which all elements are simulta-

neously acquired, while temporally composited images are

synthetic products in which information from different dates

is mixed. The nature of landscape changes smoothly with

the location and as a result, pixels tend to be more similar to

their neighbours than to those located at larger distances.

The particular form of such spatial dependency for the

different elements of the scene is an important characteristic

that becomes distorted by the temporal compositing.

Semivariograms are a very simple and commonly used

statistical tool to analyse spatial dependency. These estima-

tors, which have been applied to remotely sensed imagery on

numerous occasions are plots of half of the average squared

difference between m pairs of pixel values (I) against the

distance (h) between the elements of the pairs (I and Ih):

c hð Þ ¼ 1

2m

Xm
1

I � Ihð Þ2 ð6Þ

Note that if n sites (n=2m) are used instead of m, the same

plot is known as a variogram.

To evaluate the distortion of the spatial dependency that

is introduced by the different compositing methods (the

spatial criterion), we compare variograms of VEGETATION

operational products and those of our newer composites in

several windows. The spatial variability of reflectances

observed in the variograms results from the interaction

between the errors introduced by the compositing methods

and the spatial heterogeneity of the scene itself. To try to

extract the errors of the compositing process, we compare

the variograms of the various composite products to those of

a reference image: this image is a single day image of the

same zone acquired under very clear atmospheric condi-
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Table 1

Summary of criteria for evaluating the performance of each algorithm

CW Africa

12/02

SW Europe

09/02

Other zones

12/02

S10 Spatial–Temporal Spatial Temporal

D10 Spatial–Temporal Spatial Temporal
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tions, within the compositing period. It is assumed that this

reference is closest to a perfect composited product in terms

of spatial quality. In order to make a fair comparison, we

combine cloud masks of all products and calculate all

variograms with their reunion. Only pixels that are valid (i.e.

declared cloud free) for all the methods are considered.

D10*, E10 Temporal Temporal

E15 Spatial–Temporal Spatial–Temporal

F15 Spatial Spatial
4. Assessment of composite products quality

4.1. Data sets

Owing to operational reasons, a global coverage of the

continents by both instruments is possible but quite costly.

During the commissioning phase (May to December 2002),

VEGETATION 2 was acquiring data over the whole

Europe and Africa, whereas VEGETATION 1 was covering

all continents. During the first 10 days of December 2002,

both instruments observed the whole continental surfaces.

For this study, global S10 and D10 syntheses were pro-

duced for each instrument from the global data set acquired

by both instruments during the first decade of December

2002. S10 and D10 data were extracted and their perform-

ances evaluated over four geographical zones depicted in

Fig. 4.

We were not able to produce global data sets of our

improved products for operational reasons (data availability,

computer power). For these new products, we used a data

set that covers two of the geographical zones mentioned

above: Central West (CW) Africa and South West (SW)
Fig. 4. Areas o
Europe, from July 2002 to March 2003. For the first decade

of December 2002, S10 and D10 products are also available

for both instruments, and it is thus possible to compare the

new products to the official ones using the temporal

criterion. Unfortunately, this comparison is not possible

above SW Europe in December because of a heavy cloud

cover. For this zone, we used a different period, September

2002, but since the official products of VGT2 are not

available for this date, the comparison of new and official

products is only feasible with the spatial criterion that only

requires one instrument.

In order to simplify the description of results, the

enhanced products have been named:

– D10*, product obtained with the D10 compositing

method, but with the enhanced cloud screening

– E10 (Enhanced, 10 days) for the enhanced product

obtained with only one sensor over 10-day period

– E15 (Enhanced, 15 days) same as E10, with 15-day

periods (E30, 30 days)
f study.
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– F15 (Fusion, 15 days) for the enhanced products

obtained with both VEGETATION sensors.

Table 1 summarises the data sets for which performances

were evaluated.
Fig. 5. Details of the different composite products for vignettes distributed in the SW

currently available Maximum Value Composite (10-days period); R1 1-day ima

enhanced compositing method (15-day period) using one single instrument; F15,
4.2. Performance of operational and improved products

4.2.1. Visual inspection

Fig. 5 shows vignettes extracted from all S10, D10 E15

and D15 composite products for nine different zones: (rows
Europe scene (rows 1–7) and in the CWAfrica scene (rows 8 and 9). S10,

ge; D10, currently available Directional Composite (10-day period); E15,

enhanced compositing method (15-day period) using both instruments.
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1–7) are situated in the SW Europe scene and rows 8 and 9

are situated in the CW African scene. For nearly all the

vignettes, S10 products look very noisy, and for a few of

them, D10 is also quite noisy, whereas the enhanced

algorithms seem to perform well when enough data (more

than 3) are available to perform the BRDF model fit.

Vignettes located in more arid zones (rows 5–8) show that

D10, E15 and F15 are very similar under clear atmospheric

conditions while S10 products are spatially corrupted.

Vignettes located in more humid zones (rows 1–4, 9), prone

to more hazy and cloudy conditions, show that D10

products approach the poor quality of S10 products under

these circumstances, while E15 and F15 seem correct.

4.2.2. Temporal criterion results

4.2.2.1. Bias. Lack of continuity between successive

instruments has been a source of serious trouble for Earth

observers in the past. Many authors have had problems at

processing time series derived from successive AVHRR

instruments (Kaufmann et al., 2000). (Maisongrande et al.,

1995; Malmström et al., 1997) show a 10% variation in the

evaluation of Net Primary Production when AVHRR 9 is

replaced by AVHRR 11. Biases may be caused by

calibration errors, spectral band differences and/or angular

differences related to different overpass times. In the case of

VEGETATION, the overpass times are the same, and

spectral bands differ by only a few nanometres. A special

care has been given to the cross calibration of VEGETA-

TION 1 and 2. This task was accomplished by using the

desert sites method (Cabot et al., 2000), and the resulting

uncertainty is believed to be better than 2% at the top of

atmosphere. However, calibration biases are worsened after

atmospheric correction, in particular for B0 and B2 bands.

Table 2 sums up the mean value of NRD over four

geographical zones in December 2002. In order to make a

fair comparison of the S10 and D10 products, statistics are

computed only for those pixels that are simultaneously valid
Table 2

Bias between S10 and D10 products from instruments VEGETATION 1

and 2, computed for the first decade of December 2002, and for four

geographic zones

D10 B0 B2 B3 MIR

SW Europe �6.9 0.8 4.9 �0.4

Australia �8.8 0.8 1.8 �2.0

NE USA 10.1 7.9 4.4 �0.3

CW Africa �6.3 0.9 3.0 �2.0

S10 B0 B2 B3 MIR

SW Europe �5.3 �4.1 �2.1 �6.5

Australia �2.9 �1.2 �0.1 �3.4

NE USA 14.8 �4.0 0.9 �5.2

CW Africa �4.4 2.8 3.5 �0.2

The bias estimated is the mean value of the Normalised Reflectance

Difference (NRD), expressed in %.
for VEGETATION 1 and 2 S10 and D10 products. Biases

between instruments are kept within F5%, except for B0

band, with some differences from one zone to the other, or

from one compositing method to the other. The average

biases for B2, B3 and MIR bands are lower than 2%. For the

B0, the bias may be as high as 20% for the NE USA zone,

and nearly 0 for CWAfrica. Such a high variability for this

band is due to the fact that the atmospheric contribution

often represents more than 70% of the top of atmosphere

signal, particularly in the Northern Hemisphere in winter.

Moreover, a cloud that is detected for one instrument and

not for the other may introduce a very large difference in the

average reflectances.

According to our results, the continuity between VEG-

ETATION 1 and 2 is correct (except for the B0 band) with a

small bias between the two data sets. Therefore, it is

possible to use time series of data that span before and after

the change of the operational instrument for the temporal

analysis of the dynamics of surface properties.

4.2.2.2. Standard deviation of NRD. We plot in Fig. 6 the

estimations of the standard deviation of NRD (divided by

square root of 2) measured on the official composites S10

and D10, for the four zones in December 2002. Two facts

are worth mentioning: first, the standard deviations are very

high in the B0 band, exceeding 30% in the Northern

Hemisphere, but decreasing as wavelength increases.;

second, for most cases, the D10 products performances

are better than those of S10, except for B0 and B2 bands

when cloud-free observations are very scarce. For B3 and

MIR bands, the standard deviation is reduced by a factor

greater than 2 for all zones, except on the cloudy SW

Europe. As regards NDVI, S10 products still have better

performances than D10 products except marginally in the

dry Australian zone. The NDVI tends to cancel the errors

added to the B2 and B3 bands when they are highly

correlated (Tarpley et al., 1984). The D10 algorithm reduces

the noise on reflectance but somewhat un-correlates the

errors in the various bands, reducing the advantages of the

NDVI formulation. To confirm this hypothesis, we have

computed the correlation coefficient of the NRD of B2 and

the NRD of B3 for the African scene: the correlation

coefficient is 0.91 for the S10 algorithm, 0.83 for the D10

and is decreased to 0.64 for the E15.

The temporal criterion shows the very poor temporal

performances of the MVC method to yield reflectances in

the S10 products, whereas the benefit of taking directional

effects into account in D10 products is evident. However,

the D10 compositing method is quite sensitive to the quality

of the cloud screening and produces more invalid pixels, it

thus needs more cloud-free observations than the MVC

method. But our main conclusion is that despite the

enhancements, the standard deviation of the D10 products

is still usually above 5% for B3 and MIR bands, and above

10% for B2 and B0 bands. There is therefore plenty of room

for improvement.
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Fig. 6. Results of the temporal criterion (standard deviation of NRD divided by square root of two) over four different geographical zones, for S10 and D10

methods and for all spectral bands plus NDVI, in December 2002.
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Fig. 7 shows the decrease of standard deviation of errors

brought by the new improved products described in Section

2.2. The performances are evaluated with the temporal
Fig. 7. Comparison of the standard deviation of NRD (temporal criterion) for a

December 2002.
criterion in the CW Africa region, in December 2002,

considering only pixels that are valid for each method and

each instrument. Performances are roughly enhanced by a
ll level 3 algorithms (current and enhanced), for the CW African zone, in
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Fig. 9. Comparison of the percentage of valid pixels in the image obtained

for each algorithm for the CW African zone in December 2002.
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factor 2 for the E15 compared to the D10. Standard

deviations for the E15 product are now under 2% for B3

and MIR, under 5% for B2. After all the enhancements, the

B0 band has still a standard deviation of about 10%, but this

band is specifically sensitive to atmospheric effects and is

not intended for vegetation monitoring. As far as NDVI is

concerned, the performances are improved compared to D10

product, and the E15 product performs as well as the S10

product.

The same comparison has been done for a completely

different landscape (SW Europe), in September 2002, but

the results, presented in Fig. 8 are very close to those

obtained for CW Africa, except standard deviations in B0

and B2 a bit higher for SW Europe than for CW Africa,

probably because average reflectances in B0 and B2 are

lower for the former zone than for the latter.

As shown in Fig. 9, the amount of valid pixels (for

which a sufficient number of cloud free observations is

available) decreases for the D10* and E10 since the cloud

thresholds are stricter, but the E15 and E30 products

increase again the coverage. The E30 product further

enhances the performances, but of course considerably

reduces data repetitivity. However, it is still possible to use

30-day composite products produced every 10 days with a

shifting window. The E30 performance is also a good

indicator of the performance of the F15 product, since it is

roughly obtained with the same amount of data (the

performances of F15 product cannot be estimated with

the temporal criterion, since it would require four VEGE-

TATION instruments to build two independent data sets).

The degradation of performances brought by small differ-
Fig. 8. Comparison of the standard deviation of NRD (Temporal criterion) for enha

composited products from both VEGETATION-1 and 2 were not available for th
ences in the instruments should be compensated by the use

of a shorter time period, with a lower evolution of the

vegetation cover.

It is also interesting to study how performances evolve as

a function of the number of observations used to inverse the

BRDF model. This can be done with the temporal criterion,

using only pixels for which the number of observations for

VEGETATION 1 and 2 syntheses is above a minimum

number. Fig. 10 shows the standard deviation of NRD as a

function of the minimum number of observations: the

standard deviation of errors is greatly reduced when the

minimum number of observations is greater than 6. Of

course, discarding pixels obtained with less than five

observations would improve the global performances of

products, but their coverage would be reduced. A better
nced level 3 products, for the SW Europe zone in September 2002. Current

is time period.
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Fig. 10. Temporal criterion for the SW Europe zone for an E15 product. Standard deviation of NRD divided by square root of two, as a function of the

minimum number of observations used in the BRDF model inversion.

Fig. 11. Variograms of the four temporally composited products (S10, D10, E15 and F15) and the image acquired on 10-October-2002 (bR1Q), for the region in
SW Europe defined in Fig. 10. S10, currently available Maximum Value Composite (10-day period); R1, image acquired on 10-October-2002; D10, currently

available Directional Composite (10-day period); E15, enhanced compositing method (15-day period) using one single instrument; F15, enhanced compositing

method (15-days period) using both instruments. Note that the S10 product has a higher spatial variance at all scales and in all spectral bands. The higher the

variogram, the more spatial noise.

O. Hagolle et al. / Remote Sensing of Environment xx (2004) xxx–xxx12
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Table 3

Percent of the surface with invalid values produced by each composite

method

Product S10 D10 E15 F15

SW Europe 0.0 2.9 6.4 2.8

W Africa 0.0 4.3 11.0 4.1

W Africa (500 km coastal fringe) 0.0 10.8 27.0 10.1

Invalid values occur when the number of cloud free observation is not

sufficient.
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approach is to use the number of observations used in the

model inversion as a quality index for each pixel: many

applications, in particular those involving data assimilation

techniques, really need estimations of the uncertainty

associated to each measurement.

4.2.3. Spatial criterion results

Fig. 11 presents the semivariograms of four of the

composited products (S10, D10, E15 and F15) and of a

clear-atmosphere single day image (R1) in all spectral bands

of the SW Europe scene. Results from this figure can be

summarized as follows:

– S10 products have a coarser grain in all bands, while the

other composite products present a spatial quality that is

similar to that of an image acquired in a clear-day (R1),

except in the B0 band ;

– products E15 and F15 are very similar in terms of spatial

characteristics and have a finer grain than D10.

– for B0, the band that is most affected by residual

atmospheric noise, the variogram of D10 is almost as

high as the variogram of the S10 product. For bands B3

and MIR, the variogram of D10 is only slightly grainier

than the ones of E15 and F15.
Fig. 12. Variograms of the four temporally composited products (S10, D10, E15 a

Africa scene. See Fig. 10 for notation.
Results from the CW Africa scene (Fig. 12) give further

insight. While the ordering and shapes of R1, E15 and F15

are similar to the pattern found in the scene of SW Europe,

the highest values of spatial variance are found in D10

images rather than in S10 images. A careful inspection of

the CW African scene reveals that, in fact, there is no

contradiction with results presented in the previous para-

graph. As stated above, the quality of D10 products

decreases as atmospheric conditions worsen at a higher rate

than for remaining methods and the frequency of overcast

conditions in CWAfrica is much higher than in SW Europe

for the considered time periods (Table 3).

For the NDVI (Fig. 13), the results obtained with the

spatial criterion for the African scene are very close to those
nd F15) and the image acquired on 12-December-2002 (bR1Q) for the CW
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Fig. 13. Same plot as in Fig. 11, but for NDVI instead of reflectances.
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of the temporal criterion, showing that the E and F products

slightly improve the quality of NDVI compared to the S10,

but that the D10 degrades it.

Considering results from variograms and from the

visual inspection of the vignettes altogether, we can

conclude that even if D10 products are a significant

improvement over S10 products, this improvement

decreases as atmospheric conditions worsen. The enhanced

products E15 and F15 still perform well in the humid

zones, but, conversely to the temporal criterion that shows

a quality improvement between E15 and E30, the spatial

criterion does not measure a quality improvement between

E15 and F15: the remaining noise on those products must

be low enough to be negligible compared to the spatial

variability of the scene.

However, the essential fact is that the F15 method

produces a much lower fraction of null values than E15 (see

Table 3). The advantage of using both VEGETATION 1 and

2 instruments to compensate for the high probability of

cloud cover is most evident here: while E15 produces a 27%

of null values in the coastal fringe of the CWAfrica scene,

F15 reduces this proportion to 10%.
5. Conclusion

This paper addresses the problem of estimating the

performances of global reflectance composited products

over land surfaces. Two criteria were used to perform such

estimations: a spatial criterion based on variograms to

examine the spatial noise, and a new criterion based on the

comparison of products issued from VEGETATION 1 and

VEGETATION 2. The latter criterion has been termed the

temporal criterion since it provides a way to estimate the

standard deviation of the noise added to time series of

reflectance data. These two criteria have been used to assess

the quality of VEGETATION official products and to

quantify the noise reduction brought by a few proposed
enhancements. Both criteria show consistent results even if

the spatial criterion is less sensitive to small errors.

We show in this article that the S10 compositing method

often produces images with very severe distortions of the

spatial structure of the scene. For regions and periods of

time in which good atmospheric conditions are not rare,

D10 products are a good, simple and currently available

alternative. Nevertheless, the quality of D10 products is

very sensitive to the presence of undetected clouds and in

extreme cases such as those in the equatorial zone, the

improvement as compared to S10 data is reduced.

We propose improvements in the cloud screening and

in the D10 compositing method, which are based on the

use of a priori information on the directional model and

on the noise statistics. As a result, the standard deviation

of reflectance errors is divided by 2 when comparing E15

products with D10 products. The E15 product is more

robust to the eventual occurrence of residual clouds in the

time period to be composited. There are, however,

regions and periods of time in which a significant

fraction of the scene does not have a sufficient number

of valid observations for E15 to produce an estimate. In

these cases, the advantage of integrating images acquired

from two instruments, VEGETATION 1 and VEGETA-

TION 2, through the F15 method, becomes evident. Our

work contributes to the idea that a significant improve-

ment of global-scale products can be achieved through

the operation of constellations of small satellites that

acquire near-to-simultaneous images with equivalent

instruments.
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