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Abstract. The rationale of this research is to investigate approaches based on modelling 

and remote sensing data for estimating the spatial distribution of yield and irrigation of 

wheat in semi-arid areas. The specific objective is to compare the performances of two 

approaches to test the STICS crop model using remotely sensed estimates of Leaf Area 

Index (LAI). 

An experimental study of phenology, yield and water balance of an irrigated wheat 

was made in the Marrakech-Haouz plain during year 2003. Experimental data allowed 

to run STICS using two approaches: 1) calibration of the parameters that control the 
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time course of LAI ; 2) driving from LAI time series interpolated with a simple model. 

The results show the accuracy of STICS to simulate actual evapotranspiration and yield 

for both approaches. 

Finally, the two approaches were compared using remotely sensed estimates of LAI 

upon four scenarios of satellite time revisit frequency. The simulations we obtained 

always show acceptable results. However, differences appear between the variables, 

between the approaches and between the frequencies. 

Keywords: STICS crop model; calibration; semi arid; wheat; evapotranspiration; yield.

1. Introduction 

In the semi-arid Haouz plain that surrounds the city of Marrakech (Centre of 

Morocco), water availability is one of the main factors that controls crop vigour and 

yield. Indeed, the evaporative demand - around 1600 mm per year according to 

reference evapotranspiration estimates (Allen 2000) - is very large when compared with 

rainfall, which are about 240 mm per year. In this context, a critical term to be 

monitored is the surface actual evapotranspiration (AET). This is particularly true in 

semi-arid flat areas where rainfall and irrigation supply are generally so low than run-

off, drainage and deep percolation can be neglected. Consequently, AET remains the 

dominating term which controls the soil water balance. An accurate estimation of this 

variable for wheat, the main irrigated cereal crop around Marrakech, would present a 

first step to schedule irrigation in order to save water while sustaining the production. 

In Morocco, cereals have covered 59% of ploughed area during the 1990-2000 

decade (Karrou 2003). Therefore, the monitoring of cereal irrigation and water balance 
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at a regional scale is a major challenge for a sustainable development of agriculture. In 

this regard, the SudMed project (Chehbouni et al. 2003) has focused, amongst several 

approaches, on the combination of crop models and remote sensing data. 

Crop models simulate the relations between soil, plant and atmosphere in order to 

predict biomass components and grain yield. They can be used to monitor the plant 

phenology as well as to evaluate yield and water use in many agricultural applications. 

They are useful to evaluate the crop response to environmental stress, e.g. drought, in 

complement with field experiments. For these reasons, the number of crop models has 

increased within the scientific community: there are models for particular crop, e.g. 

ARCWHEAT (Weir et al. 1984) or CERES-Wheat (Ritchie and Otter 1985), as well as 

generic models, e.g. EPIC (Williams et al. 1989) or DAISY (Hansen et al. 1990). In 

spite of the fact that many of these models have been designed to operate at the field 

scale, most of them have been already tested at larger scale (Guérif and Duke 1998, 

2000, Clevers et al. 2002, Prévot et al. 2003). 

Although the use of crop model at a regional scale presents many assets for 

agricultural decision-makers, shortage of input data at the appropriate space-time scales 

represents a major limitation for operational use (Guérif and Duke 1998, Moulin and 

Guérif 1999). For agricultural applications such as regional yield estimation (Arkin et 

al. 1980) and irrigation scheduling (Harris and Mapp 1980), the combination of a 

minimum of inputs is favoured. Additionally, remote sensing can contribute to the 

knowledge of some key-variables of crop models, and especially their time and space 

variation (Moulin et al. 1998, Kimes et al. 2000, Kite and Droogers 2000, Schmugge et 

al. 2002). There are many possibilities to use in conjunction crop models and satellite 

data, based on driving, calibration or assimilation techniques (Olioso et al. 1999, 
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Jacquemoud et al. 2000, François et al. 2001, Weiss et al. 2001, Combal et al. 2003, 

Moulin et al. 2003, Verhoef and Bach 2003, Boegh et al. 2004, Demarty et al. 2004, 

Mo et al. 2004, Pellenq and Boulet 2004). 

In the optical part of the spectrum, the properties of surface reflectances have been 

heavily investigated. As a result, several methods have been developed to monitor crop 

biophysical variables such as the leaf area index (LAI) or the fraction of 

photosynthetically active radiation that is absorbed by the vegetation (Baret and Guyot 

1991, Gutman and Ignatov 1995, Hall et al. 1995, Asner et al. 1998). At the present 

time, two types of images are provided by Earth Observation Systems : large field-of-

view sensors such as VEGETATION (http://www.spot-vegetation.com), MERIS 

(http://envisat.esa.int/instruments/meris/) or MODIS (http://modis.gsfc.nasa.gov/) 

provide a global observation on a daily basis at 1 km spatial resolution, while 

decametric spatial resolution sensors such as SPOT (http://www.spotimage.fr/) or

Landsat-TM (http://geo.arc.nasa.gov/sge/landsat/landsat.html) observe with a basic 15- 

to 30-day revisit frequency. However, thanks to the constellation of SPOT satellites and 

their off-nadir viewing capabilities, it is possible to obtain an image on specific Earth 

places, nearly each day. It is a challenge for future missions to reach systematically this 

repetitivity with a high spatial resolution around 10 m, following the design concept of 

ROCSAT (Chern et al. 2001) or RHEA (Dedieu et al. 2003) missions. 

The rationale of this research is to investigate approaches based on modelling and 

remote sensing data for estimating the spatial distribution of yield and irrigation of 

wheat crops in the Marrakech-Haouz plain. The specific objective of this study is to 

compare the performances of two approaches to test a crop model using remotely-

sensed estimates of LAI under various time revisit capabilities of Earth Observation 

Page 5 of 51

http://mc.manuscriptcentral.com/tres   Email: IJRS-Administrator@Dundee.ac.uk

International Journal of Remote Sensing

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

http://geo.arc.nasa.gov/sge/landsat/landsat.html
http://www.spotimage.fr/
http://envisat.esa.int/instruments/meris/


For Peer R
eview

 O
nly

5

Systems. This work is based on simulated satellite data and the STICS (Simulateur 

mulTIidisciplinaire pour les Cultures Standard) crop model (Brisson et al. 1998, 2002, 

2003), with a particular focus on three variables (LAI, AET and yield). Satellite data 

have been simulated from an experimental data set (ground-based radiometer) collected 

on one irrigated wheat field in the semi-arid Marrakech-Haouz plain. 

2. Material 

The area of interest is located in the Haouz plain, Centre of Morocco, 40 km East 

from the Marrakech city. The field of study was monitored during the 2002/2003 

agricultural season. A full description of the experiment can be found in Duchemin et 

al. (2005) and in Hadria et al. (2005). It is referred to as “field I” in Duchemin et al. 

(2005) and “field C3” in Hadria et al. (2005), which describe the experiment. These 

experiment data have allowed us to collect the data required to run and validate the 

STICS model. A brief description of the material of interest for this particular study is 

given below, with an emphasis on the LAI-NDVI relationship and on the cloudiness 

analysis which have provided the basis to simulate remote sensing data. The STICS 

crop model is introduced at the end of this section. 

2.1 Experimental data on the field of study 

The field of study was sown on day of year 11 with a short duration durum wheat 

variety (Karim) over 4 ha. After sowing, irrigation water was supplied six times on 

average every 20 days, by flooding. Fertilizers were applied at the beginning of grain 

filling phase. At the end of May, final grain yield was estimated to 2 t/ha by a visual 

estimates of ORMVAH (Office Regional de Mise en Valeur Agricole du Haouz)
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technicians. This value is lower than that obtained in many other sites (Jamieson et al. 

1998a, Clevers et al. 2002, Rodriguez et al. 2004), but it matches that observed on 

average for Morocco (Karrou 2003). The probable explanation is linked to the absence 

of fertilization during the growing phase (Hadria et al. 2005).  

The climate is basically of a semi-arid continental type (Duchemin et al. 2005,

Hadria et al. 2005), with a high contrast between rainfall (200 mm) and the climatic 

evaporative demand (540 mm). The surface energy and water balances of the field of 

study were intensively monitored from March to May 2003. The evapotranspiration was 

obtained from the energy balance equation using sensible heat flux collected from a 2-

meter tower equipped with an eddy covariance system (Ultrasonic Anemometer Model 

81000, R.M. Young company, USA). 43 days of measurements have been available for 

this study, which have been recorded from days of year 79 to 123 (114 and 115 being 

missing). According to the first analysis of these data (Duchemin et al. 2005), no severe 

water-stress has occurred during the period of measurement. The problem of advection 

has been neglected since the field of study was surrounded with others wheat fields 

which have been managed with coherent agricultural practices by the same farmer 

(Fields C to I in Duchemin et al. 2005).  

2.2. LAI and NDVI 

The LAI-NDVI relationship we used in this study is based on the formalism 

proposed by Baret et al. (1989) and its calibration was performed by Duchemin et al. 

(2005). The LAI was derived from observations of leaves density and size on small 

square plots sampling. This technique provides direct and accurate estimates, but it is 

very time-consuming and very local. The NDVI (for Normalized Difference Vegetation 
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Index) was derived from surface reflectances measured with a hand-held multispectral 

radiometer (MSR87, Cropscan, Inc., USA) with the spectral bands of Landsat-TM 

sensors. On a weekly basis, surface reflectances are collected along several transects 

every 10 meters. This technique has allowed to rapidly sample a large surface (around 

40 m²) of the field of study, 14 times between sowing and maturity. The cross 

comparison has allowed to establish the exponential relationship between NDVI and 

LAI (eq. 1). 

LAI*Kexp*)NDVINDVIs(NDVINDVI −∞−+∞= (1) 

Where: ∞NDVI  = 0.93 for an “infinitely-dense” canopy; NDVIs = 0.14 for dry bare 

soil; and K= 0.54 is the light extinction coefficient. These values are discussed in 

Duchemin et al. (2005).  

[Insert Figure 1 about here] 

Figure 1, extracted from Duchemin et al. (2005), shows the LAI-NDVI relationship. 

The NDVI and LAI were found highly correlated, but the performance of the 

relationship was poor at high values because the NDVI saturates when the vegetation is 

totally covering the soil. This is consistent with previous results (Asrar et al. 1984, 

Baret et al. 1989, Richardson et al. 1992, Weiss and Baret 1999). 

2.3. Cloudiness 

In order to get realistic simulation of remote sensing data, we analysed time series of 

cloud occurrence using a global radiation data set recorded at seven meteorological 

stations spread over the Haouz plain. These stations have been installed in the frame of 

the SudMed project after summer 2002. From these data, we have studied the 

cloudiness at the crossing time of most of Earth Observation Systems, around 11 h local 
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solar time. The clear-sky incoming radiation was computed following Allen et al. 

(1998), then a day was declared cloudy if the observed incoming radiation was lower by 

30% than the clear-sky value. This provides with a binary flag (cloudy/cloud-free) for 

each day and for all the meteolorogical stations. The cloudiness analysis was performed 

from these time series using 30-day window, i.e. considering for the D day all 

observations of the sky status between day D-15 and day D+15. It has allowed us to 

characterise the probabilities of cloud occurrence and the transition in sky status from 

one day to the next, e.g. the probability that the day following a cloud-free day was 

cloudy.  

Figure 2 shows the variation of these probabilities from January to May, along with 

the monthly cumulated rainfall observed in Marrakech during the last century. The 

cloud occurrence probability ranges between 20 and 45% in coherence with rainfall, e.g. 

maximum value of rainfall (35 mm in March) corresponds to maximum cloud 

occurrence. All the transition probabilities looks more or less constant except the one 

associated to stable clear conditions (see the probability that the day following a cloud-

free day was cloud-free, highlighted in Figure 2), which knows a peak at the end of 

January that witnesses for long sunny periods. This is coherent with the occurrence of 

the two ‘rainy’ seasons in the area of study, the first one in November-December and 

the second one in March-April.  

 [Insert Figure 2 about here] 

2.4. The STICS crop model and basic parameters 

This work is based on the STICS crop model. Its theory and parameterization have 

been detailed in Brisson et al. (1998, 2002), and a sensitivity analysis has been 
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performed by Ruget et al. (2002). The last version (version 5.0), which was used here, 

has been presented in Brisson et al. (2003). Our previous works (Duchemin et al. 2003, 

Rodriguez et al. 2004, Hadria et al. 2005) as well as others studies (Baret et al. 2002, 

Prévot et al. 2003) showed that the STICS crop model combines accuracy in its 

simulation and easiness in use with remote sensing data. Indeed, the LAI is a key-

variable of the model, which controls for a large part AET and yield and which can be 

monitored from remotely-sensed data.  

The STICS parameters can be grouped into four classes: crop management, climate, soil 

and plant characteristics. All the parameters of the model were kept at their standard 

values, which are furnished with the 5.0 version of the software, except some main 

parameters, which have been adapted to the field of study. In addition to the sowing 

date, amount and time of irrigation and fertilizer, these parameters include the rate of 

foliage production and the thermal units between phenological stages in case of 

calibration approach. In the case of driving approach, only the thermal duration between 

plant emergence and beginning of grain filling stages were adjusted. The adaptation of 

these parameters is detailed in Hadria et al. (2005). These parameters are common to all 

the simulations we have performed. 

3. Methodology  

The simulation scheme follows the three steps summarised in Figure 3 : 

[Insert Figure 3 about here] 

1) The STICS model was first tested against LAI field observations in order to get 

several runs named “reference simulations” (top part from left to right in Figure 3). Two 

approaches are compared to run the model: calibration and driving. In the calibration 
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approach, we adjusted one parameter of the STICS, in addition to the main phenological 

stages, in order to minimise the difference between observed and simulated LAI. In the 

driving approach, LAI time series are interpolated at a daily span step then used as an 

input variable to drive the STICS model.  

2) Both approaches provide with LAI time courses at a daily step, which are used to 

simulate satellite data in a second step (middle part from right to left in Figure 3). The 

satellite data are processed through an algorithm that results in LAI time series referred 

to as “degraded LAI”, because some data are missing or inaccurate. The algorithm is 

believed to simulate both observation errors due to uncertainty in the atmospheric 

correction and data losses due to the presence of clouds or the absence of satellite 

observations. 

3) Finally, the STICS model was tested with degraded LAI inputs to obtain 

numerous runs referred to as “degraded simulations” (bottom part from left to right 

in Figure 3). 

3.1. Reference simulation – Calibration approach 

In addition to the phenological stages, there are numerous parameters that control 

the LAI time course in the STICS model. In Rodriguez et al. (2004) we calibrated four 

parameters based on the analysis of Brisson et al. (2002), Baret et al. (2002) and Ruget 

et al. (2002). Our recent works (Hadria et al 2005) have shown that the rate of foliage 

production is the key parameter to be adjusted. This parameter was optimised against 

LAI field observations using the Simplex algorithm (Nelder and Mead 1965), which is 

available in the version 5.0 of the STICS model. This approach is referred as SC1 as 
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one parameter of STICS is Calibrated. It provides with one reference simulation 

providing LAI and AET time series associated to a final yield value. 

3.2. Reference simulations – Driving approach 

In parallel to the calibration approach, we tested the STICS model when it is driven 

by LAI. In this case, the LAI time course is not simulated by STICS but provided to it 

as an input. This approach presents the advantage that the characterisation of the 

vegetative phenological stages not have to be known. However, it is necessary to use an 

interpolator of LAI field observations in order to have LAI time series at the daily span 

of the STICS model. For this purpose, the simple model presented in the appendix A 

was used. Two methods have been tested according to the number of parameters we 

adjust to perform the interpolation. The first one is based on the adjustment of all the 

seven parameters of the simple model, while in the second one three parameters have 

been taken constant : the date of plant emergence, the light-use efficiency and the initial 

LAI value. 

In a second step, the daily LAI time series have been provided to STICS as an input, 

then the thermal duration between plant emergence and beginning of grain filling stages 

is adjusted. This approach provides with two additional reference simulations of LAI, 

yield and AET, using two methods which are referred to as SD4 and SD7 (for STICS 

Driving and according to the number of parameters of the simple model we adjust). 

3.3. Simulation of satellite data 

All the reference simulations include daily LAI time series that are used to simulate 

satellite data following Duchemin and Maisongrande (2002). In order to simulate error 
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in the retrieval of LAI from remote sensing data, reference LAI is converted into 

reference NDVI by applying equation 1 in the direct mode, then a Gaussian error is 

added on NDVI. The difference between the reference and degraded NDVI is 

proportional to the NDVI value with a factor of on average 5%. Finally, the equation 1 

is applied in the inverse mode to get a data set that includes 25 scenarios of degraded 

LAI.  

In a second step, the sky conditions are described using a random number generator and 

the characteristics of cloudiness derived from the analysis of the meteorological data set 

(see §2.3.). The cloud occurrence probability at sowing date initialises the procedure, 

while the transition probabilities allows to simulate change in sky condition (e.g. from 

cloud-free to cloudy) from one day to the next during the period of simulation. The 

number of cloudy days ranges on average from 27% to 35% between the 25 scenarios. 

Finally, data are removed on a regular basis according to various revisit capabilities 

of Earth Observations Systems. We considered four possibilities of satellite revisit time 

frequency : every day, every 5 days, every 10 days and every 15 days. The frequencies 

of 1 and 5 days correspond to what can be obtained by large field-of-view sensors such 

as VEGETATION, MODIS or MERIS, which provide a global observation of the word 

at 1 km spatial resolution. A repetitivity of 10 or 15 days simulate the capabilities of 

well-known SPOT-HRV and LANDSAT-TM high spatial resolution missions.  

Since we have crossed 25 scenarios of cloudiness and noise and 4 frequencies, the 

algorithm results in 100 scenarios of degraded LAI time series with disrobed and 

inaccurate values. The number of remaining data from sowing to maturity knows large 

variations with the satellite time revisit frequency (F) ; it ranges between 64 and 95 for 

F=1, from 8 to 21 for F=5, from 4 to 11 for F=10, and from 2 to 8 for F=15. Since we 
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used a Gaussian number generator, the average error on NDVI may differ from one 

scenario to the next, especially when the number of remaining data in the time series is 

low ; it varies between 2 to 10% between the different scenarios for F=15. It is 

important to note that the resulting noise is much larger on LAI (between 10 and 25%) 

and that the degraded LAI is overestimated compared to the reference LAI at high 

values. This is due to the fact that the relationship between NDVI and LAI is 

exponential (see equation 1). 

3.4. Degraded simulations 

The algorithm used to simulate satellite data provides 100 time series of degraded 

LAI which are used to obtain degraded simulations by applying the calibration and 

driving approaches introduced in §3.1 and §3.2, respectively. These approaches have 

been tested with each of the degraded LAI time series as an input, with the re-

adjustment of :  

• the rate of foliage production in the case of SC1 method,  

• the four parameters of the simple model that controls the leaves partitioning and 

senescence in the case of the SD4 method, 

• all the seven parameters of the simple model in the case of the SD7 method. 

In these simulations, the others parameters of the STICS model are kept constant to the 

values used in the reference simulations. 
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4. Results and discussions 

The performances of the STICS model to simulate yield and wheat 

evapotranspiration was intensively investigated in Hadria et al (2005). In this section, 

we present only some comparison between obtained results when the model is 

calibrated or driven both with field (i.e. reference simulations) and simulated satellite 

(i.e degraded simulations) LAI data. The reference simulations were compared to field 

observations while the degraded simulations were tested against the reference 

simulations. The evaluation was based on statistical moments which were applied 

successively for each scenario and for the three variables we focus on, i.e. LAI, AET 

and yield. The equations of Efficiency (EFF), Root Mean Square Error (RMSE), Mean 

Percentage Error (MPE) and Mean Bias Error (MBE) are given in the appendix B. By 

considering well-chosen subsets of scenarios, various comparative analyses have been 

performed between the variables, between the satellite time revisit frequency and the 

methods. Since the difference between the SD4 and SD7 are generally subtle, the 

comparison often focuses on the differences between SC1 and SD4 methods. 

4.1. Reference simulations 

Figure 4 shows the LAI time courses of the reference simulations corresponding to 

the SC1 and SD4 methods, and in Table 1 we summarised the statistics found between 

simulated and observed values for LAI and AET. Not shown here, the LAI time courses 

were similar for SD4 and SD7 methods (driving approach). This is due to the fact that 

the numerous available field-observations (symbols in Figure 4) allow to adjust all the 

parameters of the simple model.  

[Insert Figure 4 about here] 
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[Insert Table 1 about here] 

Looking at LAI in Figure 4 and Table 1, one can see first that both approaches 

works quite correctly : RMSE is lower than 0.23 m².m-²and EFF is larger than 0.98. 

These results are in agreement with those reported in other studies ( e.g.: Clevers et al 

.2002, Panda et al. 2003). We conclude that the sets of parameters chosen for the 

adjustment are appropriate to simulate accurately the LAI time course. In particular, the 

thermal durations used in the SC1 method appear adapted to the wheat variety of the 

field of study. However, the LAI time course obtained with the SD4 method is more 

accurate than that obtained with the SC1 method, by a factor around 2 on MBE, MPE 

and RMSE (Table 1). This was expected, since the number of parameters that were 

adjusted is much larger for the driving than for the calibration approach. Under the 

conditions of this study, the simple model has allowed to better track the observations 

than the STICS model. 

According to the statistics displayed in Table 1, the average level and seasonality of 

AET appear well reproduced with both approaches. The bias between observation and 

simulation is low, around 0.12 mm day-1, a value which is under the range of error 

encountered with any AET measurement devices. However, the error can be large at a 

daily step (RMSE around 0.53 mm day-1, MPE around 13.2%). Further analyses have 

revealed that the error is reduced at a 10-day step (MPE around 9%, RMSE around 0.25 

mm day-1). These errors are consistent with that of others crop modelling studies (Ben 

Nouna et al. 2000, Zhang et al. 2004, and Rodriguez et al. 2004). This last result would 

especially benefits for the monitoring of AET with remote sensing data and crop 

models. Indeed, the period of ten days may be more appropriate since it is adapted for 
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the management of irrigation water while cloud-free imagery could be available at this 

time step given the characteristics of earth observing systems and cloudiness. 

For grain yield, STICS predicts 1.95 t ha-1 with the SC1 method and 2.04 t ha-1 with 

the SD4 method. Thanks to the calibration of the grain filling stage we have performed, 

both of these values are in accordance with the observed yield (around 2 t ha-1). The 

difference between observed and simulated values, around 2.5%, stepped out of the 

resolution of the model and an exact value cannot be retrieved from simulation. 

Furthermore, it appears that yield is firstly sensitive to crop temperature, with two 

distinct effects : 1) accumulated crop temperatures control the occurrence and the length 

of the reproductive phase, and 2) high temperatures, larger than 32°C, cancel the grain 

filling during the reproductive phase. We illustrate these two effects in Figure 5 where 

the time course of grain yield is drawn along with maximal crop temperature for the 

reference simulations obtained with SC1 and SD4 methods. For the calibration 

approach, the beginning of the grain filling stage is delayed by 2 days compared to the 

driving approach. This is due to slight differences in the thermal duration from plant 

emergence to grain filling stages between the methods. Furthermore, due to hot climate 

at the end of the season (after day 133 in Figure 5), the maximal crop temperatures are 

generally larger than the 32° threshold and the grain filling is most often null. Looking 

at the day 145 in Figure 5, with a maximal crop temperature that is slightly lower (SC1 

method) or slightly larger (SD method) than 32°, shows how this threshold is open to 

criticism. Indeed, this value might be adapted since it corresponds to standard wheat 

parameters of STICS, which has been determined for temperate variety. 

[Insert Figure 5 about here] 
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Despite the minor limitation regarding the yield simulation, these results show that 

the STICS model can simulate correctly crop evapotranspiration and grain yield with 

few parameters adapted or optimised. They coincide with the conclusions we have 

reached both in the semi-arid Valley of Yaqui in Mexico (Rodriguez et al. 2004) and in 

the Marrakech/Haouz plain (Hadria et al. 2005). This allows to consider these three first 

simulations as references in order to evaluate the degraded simulations we obtained with 

time series of LAI derived from simulated satellite data.  

4.2. Degraded simulations : LAI and AET 

An example extracted from the case of a satellite revisit time frequency of 5 days is 

first presented to detail the results obtained with satellite simulated LAI. In this example 

we focus on the result obtained with SC1 and SD4 method for the scenarios 10 to 20 

since they illustrates for a large part all the results we obtained. Figure 6 shows the 

statistics on LAI and AET found for each of these 11 scenarios, while Figure 7 presents 

the corresponding simulation of LAI.  

[Insert Figure 6 about here] 

A first look at the statistics in Figure 6 shows that the degraded simulations 

performed generally well : EFF is generally close to one with a minimum value of 0.80, 

the MPE ranges from 4 to 33 %. These results are globally acceptable, but differences 

appear between the methods and between the variables. 

There are large differences between the calibration and driving approaches in the 

statistics displayed in Figure 6. When looking at the LAI, MPE and RMSE are much 

lower for the SC1 method than for the SD4 method. The difference is on average of a 

factor 2.2, e.g. RMSE is on average 0.17 m².m-2 for SC1 and 0.37 m².m-2 for SD4. 
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However, it can reach a factor 4 for particular scenarios such as the simulations 11 and 

14 highlighted with labels in Figure 7. The bias is on average 0.04 and 0.08 for SC1 and 

SD4 methods, respectively. It is positive because degraded LAI values are slightly 

larger than the reference ones in the procedure we used to simulate satellite data. The 

efficiency is on average 0.99 for SC1 method with a minimum value of 0.96 while it is 

on average 0.93 for SD4 methods with a minimum value of 0.80. According to this 

example, the calibration approach appears to work better than the driving approach. 

This is confirmed in Figure 7 : for the SC1 method, the seasonal pattern of LAI is 

highly constrained since key phenological stages (e.g. dates of maximal LAI, dates of 

beginning of senescence) have been kept constant to the values of the reference 

simulations; for the SD4 method, the LAI time courses may not be in phase with the 

reference ones, since the parameters which control the leaf partitioning (during plant 

growing) and senescence are adjusted for each scenario. The simulations number 11 and 

14 highlighted with labels in Figure 7 furnish a good example of large LAI 

overestimation and shift in phase between degraded and reference simulation. 

[Insert Figure 7 about here] 

The trends in errors between the approaches we previously pointed out for LAI are 

similar for AET : the error for the SC1 method is lower than for the SD4 method by on 

average a factor 2. However, there are large differences between LAI and AET in terms 

of accuracy : the MPE ranges from 4 to 34 % on LAI and from 1 to 10 % on AET ; the 

minimum efficiency is 0.80 for LAI and 0.97 for AET ; the maximum value of bias is 

0.26 on LAI while it is only 0.13 on AET ; the RMSE is on average 0.30 m².m-² on LAI 

and 0.16 mm.day-1 on AET, though these two variables know the same range of 

variation. Taking as an example the SD4 method, the scenarios 11 and 14 displays poor 
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results on LAI (EFF around 0.8, MPE around 32%), but quite acceptable results on AET 

(EFF around 0.97, MPE around 9%).  

It is important to note that the error in the simulation of LAI has a small effect on 

the simulation of AET. In order to quantify this, we display in Figure 8 the MPE on 

AET as a function of the error on LAI, with all the satellite time revisit frequencies on 

the same plot. Not surprisingly, it can be see in Figure 8 that the errors increases with 

the frequency and that the error is much lower for the SC1 than for the SD4 method. 

More interesting is that a clear relationship appears, showing that the error is larger for 

LAI than for AET by on average a factor 4. This is particularly visible for the SC1 

method, because there is no scatter since the LAI time courses of reference and 

degraded simulations are completely in phase. The explanation is twofold. Firstly, the 

LAI variable have an opposite effect on plant transpiration and soil evaporation, e.g. 

overestimated LAI will result in overestimated transpiration but underestimated 

evaporation. Since AET is the sum of soil evaporation and plant transpiration, the LAI 

variation will generally result in a lower variation on AET. This statement depends on 

the soil water status, however. Secondly, wheat AET saturates at high LAI values 

because transpiration saturates and evaporation is strongly reduced (Brisson et al. 1998, 

Duchemin et al. 2005). Since large errors in simulated satellite data occur at high LAI 

values (§3.3.), they have a reduced impact on AET. 

[Insert Figure 8 about here] 

[Insert Figure 9 about here] 

Figure 9 shows the MPE on LAI and AET as a function of the satellite revisit time 

frequency (F). It allows to confirm and generalise the example that have been 
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previously discussed from Figures 6 to 8. It firstly appears that the calibration is much 

accurate than the driving approach : the general level of MPE is much lower for SC1 

method than for SD methods, by a factor that varies from 40 to 80% according to the 

variable and the frequency. 

Secondly, it is clear that the calibration approach is much robust than the driving 

approach (Figure 9). Looking at the AET variable, the increase of MPE between F=1 

and F=15 is around 1% for the SC1 method and around 5% for SD methods. This is due 

to fact that wheat phenology is much more constrained for SC1 method than for SD 

methods (see the example of LAI time courses in Figure 7). This is in agreement with 

the conclusion of Bannayan et al. (2003), which have pointed out that phenology is the 

first critical characteristics to be known for simulating the crop dynamics. 

Figure 9 finally allows to detail how the error increases with F between the different 

methods. The error associated to the SC1 method knows a low increase excepted when 

F is larger than 10 for the LAI variable. The error of the SD4 method increases between 

F=1 and F=5, then between F=10 and F=15; it flats out between F=5 and F=10. The 

error associated to the SD7 method continuously increases with F. One can also note 

that the accuracy of the results can know the same order of variation between the 

methods than between the frequency, e.g. the variation of MPE on AET is around 1% 

between the three methods for F=1 as well as between F=1 and F=15 for the SC1 

method.  

Under the prevailing condition in this study, we conclude that the performance of 

the methods is firstly correlated to the numbers of parameters used in the optimisation 

procedure, especially when the satellite revisit capacities are poor (F=10 and F=15 in 

Figure 9). Whatever the variable or the frequency, the most accurate method appears to 
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be SC1, followed by SD4 then SD7, which requires the adjustment of one, four and 

seven parameters, respectively. The explanation lies in the fact that the lower is the 

number of adjusted parameters the more constrained is the time course of LAI. The 

difference is clearly visible between the SC1 and SD4 methods in the example we 

previously discussed (see Figure 7).  

Finally, an additional criterion has been introduced to evaluate the operationality of 

each method. Mathematically, a method of interpolation is more accurate when the 

number of parameters to be adjusted is lower than the point number to be interpolated. 

In this study, the accuracy of the simple model used to interpolate observed LAI values 

is higher when the number of observations is high, more than 4 observations in case of 

SD4 method and more than 7 in case of SD7 method. So, it is reasonable to state that a 

method is operational if the number of parameters to be adjusted is lower than the 

number of available observations. The success ratio criterion we defined counts the 

number of scenario that meets this requirement. This last criterion used in this study 

gives also, not surprisingly, the advantage to the SC1 method (Table 2). The SD4 

method is still 100% operational except at the lowest revisit frequency (F=15), while the 

success ratio of the SD7 methods knows a sharp decrease after F= 10 to reach a very 

low value (20%) when F=15. It is clear that the simple model with seven adjusted 

parameters is oversized. 

[Insert Table 2 about here] 

4.3. Degraded simulations Yield 

[Insert Figure 10 about here] 
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Figure 10 shows the yield predicted by STICS for the scenarios 10 to 20 and a 

satellite time revisit frequency of 5 days, i.e. for the example we discussed in Figures 6 

and 7. Yield is always close to the reference values, but with different groups of values. 

To explain these variations, it is important to keep in mind that the thermal duration that 

control the various reproductive phases are common to all the simulations. Under these 

conditions, the yield mainly varies with the crop temperature, which stops the grain 

filling when its daily maximal value is larger than 32°C. (see Figure 5). Let us refer to 

as N the number of days for which the maximal crop temperature has reached this 

threshold. N varies according to the time course of LAI, which have a slight effect on 

crop temperature. Taking the example of the SC1 method, N is 13 for the reference 

simulation, and either 12 or 13 for the degraded simulations. When N is 13, the yield is 

close to the reference value (around 1.95 t ha-1), while it is larger (around 2.15 t ha-1)

when N is 12 since the grains are filled one day more. Consequently, there are two 

groups of yield values for the degraded simulations that are particularly visible in Figure 

10-a. This results in a lack of coherence from a scenario to the next and with an average 

overestimation of the reference value. The same explanation can be given for the SD4 

method (Figure 10-b) with larger variation of N compared to the SC1 method.  

[Insert Figure 11 about here] 

Figure 11 displays the average and standard variation of yield for each method as a 

function of the satellite time revisit frequency. In all cases, the estimate of yield is 

acceptable, with an average error that is always less than 10% of the reference value and 

a standard deviation, which varies from 10 to 20% of the reference value. However, no 

hierarchy clearly appears between the methods and between the frequencies. The 

explanation lies in the critical role of the maximal crop temperature variable previously 
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discussed in Figures 4 and 9. It would be necessary to revisit the formalism and/or the 

parameters associated to the grain filling process to reach some clear conclusions on 

yield estimate in the conditions of the semi-arid Haouz plain. 

5. Conclusion 

The first comparison between simulation and field observations confirms the 

capacity of STICS to accurately simulate wheat phenology (LAI) and actual 

evapotranspiration (AET). This is an important step towards the monitoring of yield and 

water balance as well as the scheduling of irrigation in the Haouz plain using the STICS 

model. Indeed, AET is the dominant loss term of the soil water balance in semi-arid 

areas, while water stress is an important limiting factor of crop production, especially 

when it occurs during the period from flowering to grain filling. After calibration, 

STICS has also provided with accurate estimates of yield. However, the effect of crop 

temperature on grain filling was found unrealistic for the climatic conditions of the 

Haouz plain. This study pointed out the necessity of a further adaptation of the STICS 

formalisms and parameters to the wheat variety cropped in the field of study.  

The main objective of this study was to test two approaches, which consist in 

calibrating or driving the STICS model with LAI derived from remote sensing data. 

This study has allowed to compare the two approaches for satellite time revisit 

frequency from 1 to 15 days. All the simulations provide with acceptable results, but 

large differences appear between the variables, between the approaches and between the 

frequencies. 

When tested against field observations, it was shown that the two approaches works 

accurately to retrieve LAI, AET and yield. Error in LAI and AET for the reference 
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simulations were low and under the range of many values found in the literature. When 

using satellite simulated data, large differences appear in the accuracy between LAI, 

AET and Yield. The ratio of the LAI errors to the AET errors was always found around 

4. The explanation is twofold : 1) soil evaporation compensates plant transpiration at 

low LAI values ; 2) soil evaporation is negligible and plant transpiration saturates at 

high LAI values. On the opposite, errors on yield estimates have shown no correlation 

with these variables, because the effect of crop temperature was found dominant and 

non-adapted to the field of study. Yield prediction ranges from -5% and 22% of the 

reference values. However, under the conditions that prevail in this study, it was 

impossible to establish trends or hierarchy between the approaches or between the 

revisit capabilities of Earth observation systems. 

The performance of LAI and AET simulations has been found very different 

according to the used approach. These variations are explained by the quantity of a 

priori information given to the model, which is opposite to the number of parameters 

that require to be adjusted. The calibration approach, which requires the adjustment of 

only one parameter, provides the best accuracy. This accuracy is larger for this approach 

than for the driving approach by a factor that varies from 1.25 to 2.5 according to the 

variables of interest (LAI or AET) and the satellite time revisit frequency. Furthermore, 

the calibration approach is operational even with the lowest satellite time revisit 

frequency. However, the robustness of the calibration approach could be limited by the 

fact that it needs an annual adjustment of the rate of foliage production.  

The accuracy of LAI and AET simulations has been also found directly related to 

the satellite revisit time frequency. Not surprisingly, the daily frequency gives always 

the best results on the estimates of LAI and AET with no strong differences between the 
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approaches. The calibration approach was found the most accurate at a higher 

frequency. This method appeared particularly robust: the ratio of the errors on AET 

between a 15-day and a daily frequency is about 1.5 for the calibration approach while it 

is about three for the driving approach. Under the low cloudiness conditions of the 

Marrakech-Haouz plain, a good compromise for the satellite revisit capacity appears to 

be the 10-day frequency. According to this study, this frequency allows an accuracy of 

around 10% and 18% on LAI, around 3 and 4.5% on AET, for the calibration and 

driving approach, respectively. 

Finally, it is important to note that all the observations that have been used to 

calibrate and evaluate the simulations are derived from a single field with a particular 

environment (soil, climate) and no water stress. A validation on additional conditions in 

the plant characteristics or the environmental stress would be necessary to confirm these 

statistics. Additionally, the models used in this study are not evaluated on an 

independent data set. Consequently, this study is essentially a curve-fitting exercise. 

The studied field was characterized by a low yield, which matches that observed on 

average for Morocco. However, a local calibration of the yield could be necessary to 

apply the studied approaches over other site in the world.  
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Appendix A: A simple model to interpolate leaf are index 

This model has been developed in the frame of the SudMed project. The modelling 

of the vegetation dynamics is based on the mathematical formalisms developed by 

Monteith (1965) for the photosynthesis and the biomass production, and Maas (1993) 

for the conversion of the assimilats in green leaves. The vegetation module is initialised 

with two parameters: an initial green LAI associated to the day of plant emergence. 

Along the vegetative period, solar radiation is converted into photosynthetically active 

radiation using a climatic efficiency coefficient of 0.48 (Varlet-Grancher et al. 1982). A 

part of this radiation is absorbed and converted into aerial dry biomass according to the 

light-use-efficiency parameter and the specific leaf area coefficient, which was 

measured at field (0.022 m2 g-1). The dry aerial biomass is partitioned between green 

leaves and stems following the two parameters function suggested by Maas (1993). The 

leaves senescence is modelled according to a classical degree-day approach, with two 

parameters that control the starting date and the rate of yellowing, respectively. The 

senescence is supposed total when the green LAI is lower than the initial value 

associated to plant emergence. 

Seven parameters are required to run this model : the initial LAI value, the day of 

plant emergence, the light-use-efficiency, the two parameters used in the partitioning 

function, and the two parameters used in the senescence function. However, reasonable 

assumptions can be made on the initial conditions and many studies have deal with the 

light-use-efficiency (Sinclair and Muchow 1999, Jamieson et al. 1998b, Hammer and 

Wright 1994). Consequently, it is expected that this model would furnish a good LAI 

interpolator by fitting only the four parameters used to simulate partitioning and 

senescence. 
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Appendix B: Statistic moments 

The following statistics variables were used : the efficiency (EFF), which judges the 

performances of simulation data; the Root Mean Square Error (RMSE) and the mean 

percentage error (MPE), which measures the variation of predicted values around 

observed values; the Mean Bias Error (MBE), which indicates the average deviation of 

the predicted values from the measured values. Mathematical expressions of these 

variables are given by equations B 1 to B 4: 

∑ −
∑ −

−=
=

=
n

i obsobsi

n

i obsii

yy

yy
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 −

=
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mod 100
 (B 3) 

obsyyMBE −= mod  (B 4) 

Where modiy and obsiy are individual values of modelled and observed variables, mody

and obsy are their averages, and n is the number of available observations.
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Table 1. Statistics associated to the reference simulations of LAI and AET with SC1 and 
SD4 methods  

(*) values calculated for LAI larger than 0.5 m²/m². 
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Table 2. Success ratio of SC1, SD4 and SD7 methods as the function of the satellite 
time revisit frequency (F). 

 

F =1 F =5 F =10 F= 15 
SC1 100 % 100 % 100 % 100 % 
SD4 100 % 100 % 100 % 84 % 
SD7 100 % 100 % 68 % 20 % 
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Figure 1. LAI-NDVI relationship. Symbols are centred on field-averaged LAI 

and NDVI values. Horizontal bars are minimum and maximum LAI values 

observed within fields. Vertical bars are the standards deviation of NDVI. An 

exponential relationship is fit on the scatterplot with infinitely dense canopy 

(NDVIINF) and soil (NDVISOIL) values adjusted according to specific observation 

(they worth 0.93 and 0.14, respectively). 
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Figure 2. Cloud occurrence probability (symbols) and transition probabilities (lines) 

of the sky status (cloud-free or cloudy) in the Marrakech-Haouz plain from January 

to May. The thick line highlights the probability of transition from cloud-free to 

cloud-free. Vertical bars show the mean monthly precipitation in Marrakech during 

the last century. 
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Figure 3. Simplified diagram of the methodology. 
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Figure 4. Reference simulations of LAI with SC1 (solid line) and SD4 method (dotted 

line) along with field LAI (symbols). The labels highlight the STICS phenological 

stages that control the time courses of LAI for the SC1 method : SOW = sowing date ; 

LEV = plant emergence; AMF = beginning of the stems elongation; LAX = maximum 

LAI; SEN = beginning of leaves senescence; LAN = total yellowing. 
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Figure 5. Grain yield and maximal crop temperature time courses in the reference 

simulations, with SC1 (solid line) and SD4 (dotted line) methods. The horizontal dotted 

line highlights the temperature threshold used to stress grain filling. 
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Figure 6. Statistic moments associated to the retrieval of LAI (left Figures) and AET 

(right Figures) in degraded simulations, with SC1 (black bars) and SD4 (grey bars) 

methods: EFF = efficiency, MBE = Mean Bias Error, RMSE = Root Mean Square Error 

and MPE = mean percentage error. These results correspond to scenarios of cloudiness 

numbered 10 to 20 and to a satellite time revisit frequency of 5 days. 
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Figure 7. Times courses of LAI in degraded (lines) and reference 

(symbols) simulations : a) SC1 method ; b) SD4 method. The 

degraded simulations correspond to scenarios of cloudiness 

numbered 10 to 20 and to a satellite time revisit frequency of 5 

days (same as Figure 6). For the SD4 method (Figure b), the 

labels highlight the scenarios numbered 11 and 14, which 

displays the worst statistics moments (see greys bars in Figure 

6). 
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Figure 8. Mean Percentage Error (MPE) in the degraded 

simulations of AET and LAI: a) SC1 method, b) SD4 method. 

White, light grey, dark grey and black symbols corresponds to 

the various satellite time revisit frequency : F=1, F=5, F=10 

and F=15, respectively. 
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Figure 9. Mean percentage error on LAI (top) and on AET 

(bottom) as a function of the satellite time revisit frequency, 

for SC1 (triangles), SD4 (lozenges) and SD7 (circles) 

methods. Each symbol corresponds to an average over the 25 

scenarios of cloudiness. 
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Figure 10. Yield values in degraded simulations, with : a) SC1 method; 

b) SD4 method. Horizontal dotted lines highlight the values obtained 

for the reference simulations. The degraded simulations correspond to 

scenarios of cloudiness numbered 10 to 20 and to a satellite time revisit 

frequency of 5 days (same as Figures 5 and 6). 
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Figure 11. Average (symbols) and standard deviation 

(vertical lines) of yield values in degraded simulations 

as function of the satellite time revisit frequency, with: 

a) SC1 method; b). SD4 method; c) SD7 method. 

Dotted horizontal lines highlight the values obtained for 

the reference simulations. 
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