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INTRODUCTION 

Mountainous regions concentrate more than half of the earth’s fresh water (Klemes, 1988; Rodda, 

1994; Weingartner et al., 2003). In the current context of global environmental degradation and 

climate change, preservation of this fragile environment is a high priority and requires a good 

understanding of the different physical processes that affect the dynamics of these complex 

systems. However, the hydrology of mountainous areas is poorly known; Klemes (1988) qualifies 

it as “the blackest of the water cycle’s black boxes”. Observation networks are often very limited 

even though their density should be higher than what is available in the floodplains in order to 

capture the high variability in space and time of the water fluxes.  

Thanks to the High Atlas range, the semi-arid regions of the south of Morocco receive an 

important amount of precipitation that sustains both agriculture and urbanization (Schulz and de 

Jong, 2004). However, whereas water demand is increasing due to demographic pressure, water 

resources are expected to decrease both in quality and quantity due to environmental changes. 

Appropriate hydrological modeling is thus required to understand the dominant processes 

controlling the water balance in the basin so that local authorities can be provided with science-

based elements to carry out decisions on the management of water resources. This study focuses 

on a head-watershed (227 km²) in the Central High Atlas for which a large proportion of the 

precipitation falls as snow from November to April. Understanding the hydrology of head 

watersheds, the supplying zone, is a first step towards improved water management but it is also a 

challenge since many possible transfer mechanisms can be activated in theses watersheds: 

evapotranspiration, surface runoff, sub-surface runoff, groundwater flow, and snow dynamics. 

Because of the harsh observation conditions of most mountain environments, gathering 

information through a combination of remote sensing, ground measurements, geographical 

information system (GIS) and models is a necessity. If many improvements have been made 

through the growing availability of remote-sensing data, selecting a model adapted to mountain 
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hydrology remains a challenge. For instance Krishna (2005) combined remote sensing images, 

GIS techniques and ground measures to assess the snow and glacier cover in the Himalayas. For 

mountainous catchment-scale hydrological modeling Holko and Lepistö (1997) used 

TOPMODEL in Slovakia. Limitations of their modeling performance were due to their 

assumption of a homogeneous soil profile and inadequate snow subroutine. Andréassian et al. 

(2004) used two simple, continuous lumped watershed models (GR4J- a 4 parameter model and 

TOPMO –a 8 parameter modified version of TOPMODEL) on 62 watersheds in France. Both 

lumped models give good results but cannot provide any insight into the different processes. To 

learn more about the streamflow generation mechanisms in the Western Ghats region (mountains 

located in South India) Putty and Prasad (2000) used a lumped conceptual model based on the 

variable source area theory. Results show that flow from dynamic subsurface saturated zones 

contributes substantially to quickflow: field work and a modified version of the model were 

necessary. Globally, as stated by Winiger et al. (2005), remote sensing techniques and runoff 

models can lead to a better understanding of the mountain hydrology but they need to be 

improved and adapted to the region of interest. 

Because the main characteristic of mountain environments is their complexity, one would be 

tempted to choose a detailed, physically based model to represent its water cycle. But more 

information than what is available is required to implement a distributed conceptual hydrological 

model leading to over-parametrization and a need for calibration. When conceptual rather than 

lumped modeling is implemented, special attention has to be paid to the calibration process since 

a better fit does not always mean that the model represents the reality of the processes. This 

problem is amplified over complex watersheds where almost all hydrological processes 

(superficial runoff, groundwater contribution, evapotranspiration, snow melt …) can occur 

simultaneously and their impact on streamflow are space-time scale dependent. In this context, 

the key questions are: 
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a- Does a good simulated streamflow guarantee a realistic representation of intermediate water 

balance processes including storage terms (e.g. snowmelt) and lateral flow redistribution (e.g. 

groundwater flow) ? 

b- How can we get insight into processes without very intensive field work, or in other words, is 

it possible to develop a limited measurement strategy of some key variables that ensure proper 

assessment of the water balance components? 

 

In this study, we first addressed the issue of parameter inter-correlation in the context of 

conceptual hydrological modeling over a semi-arid mountainous watershed. Then attempts were 

made to address the realism and accuracy of the simulated components of the water cycle such as 

groundwater flow and snow cover depletion once the model had been calibrated against observed 

streamflow only. 

 

The main scope of this paper is to demonstrate that comparing the observed and the simulated 

streamflow is not sufficient to validate a model; intermediate processes have to be analyzed since 

compensation effects on the resulting outlet flow can be important. Obtaining good modeling 

results for the wrong reasons is indeed a well-known problem in the modeling community 

(Andréassian et al., 2004; Batchelor et al., 1998; Beven and Quinn, 1994). In this context, the 

underlying question is: can correct global streamflow restitution coincide with incorrect simulated 

processes? 

 

This paper is organized as follows: we first present the object of our study, the Rheraya 

watershed. We then briefly describe the distributed conceptual model used to assess the 

hydrological cycle of this catchment, the Soil and Water Assessment Tool (Arnold et al., 1993). 

In the third section, the model performance, is analyzed in terms of streamflow simulation and the 

problem of parameter intercorrelation is identified throughout the optimization process. In the 
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fourth section, we analyze the methodology and instrumentation developed to characterize two 

intermediate processes, namely the deep drainage and the contribution of snowmelt to 

streamflow. Finally, the results and the approach are discussed with respect to the objectives and 

questions raised above. 

 

SITE LOCATION AND AVAILABLE DATA 

The Haouz plain in south-central Morocco is made up of several intensively irrigated districts and 

is fed by nine head-watersheds located in the High Atlas range. The Atlas range and the Haouz 

plain belong to a larger watershed called the Tensift watershed covering 20450 km² (see Figure 

1). This region is characterized by scarce water resources and is subject to frequent drought.  

The study took place in one of the nine Atlasic head watersheds: the Rehraya catchment. This 

head watershed covers a surface area of about 227 km² and is characterized by a semi-arid and 

mountainous climate. Indeed, the mean measured annual precipitation at the outlet was 363 mm 

for the period 1971-2002 and the closest meteorological station registered a mean annual 

potential evapotranspiration of 1816 mm from a COLORADO pan for the period 1984-2001. The 

watershed altitude ranges from 1084 to 4167m, precipitation occurring as snow in the upper parts 

of the watershed. The main geological formation is granite but some clay inclusions are present 

north of the watershed as well as limestone-marl formations. Overall, the bedrock is shallow and 

fractured. In terms of geomorphology, rockfaces as well as scree slopes, debris fans and gravelly 

riverbeds are found. Slopes are very steep with an average grade of 19 % and soils are shallow. 

Based on these features, quick flow response is expected in this basin: its concentration time, 

estimated from geometric and geomorphological data, is 4 hours. Figure 2 presents the mean 

monthly rainfall and streamflow data at the watershed’s outlet between 1971 and 2002. Rainfall 

and streamflow data are characterized by high inter- and intra- annual variability which is typical 

of semi-arid areas. The average streamflow is 19.3 mm/ month which represents 1.67 m3.s-1. A 2- 

to 3-month shift is observed between the pattern of annual rainfall and that of streamflow. This 
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delay characterizes slow flow processes which can be caused by the existence of different 

geomorphological units as well as important groundwater and/or snow component in the water 

balance. 

The Rehraya watershed is thus a complex terrain in which many hydrological processes are likely 

to be involved: i.e. surface runoff on the steep slopes and shallow soils under convective rainfall 

events, shallow sub-surface flow in the fractured bedrock, high evaporation rates under semi-arid 

climatic conditions, slow processes due to snow melt and/or to groundwater flow. Besides, few 

data are available: the only measurements are streamflow and rainfall collected at the outlet 

(Tahanaoute, see Figure 1) which are insufficient to provide insight into the hydrological 

processes occurring in the watershed.   

 

Precipitation in a semi-arid mountainous watershed as in most other mountain watersheds is 

spatially and temporally highly variable (Holko and Lepistö, 1997; Krishna, 2005; Tani, 1996; 

Weingartner et al., 2003; Winiger et al., 2005). Figure 2 shows that temporal variability of 

precipitation and streamflow at the watershed’s outlet is such that the standard deviation is of the 

same order of magnitude as the mean. As a result of the watershed morphology (high elevation 

gradient and the co-existence of different climatic influence: semi-continental from the north, 

oceanic from the west and Saharan from the south) important spatial variations of precipitation 

exist. The preliminary analysis of the data collected for a raingauge network installed in the 

watershed in 2003-2004 shows that annual precipitation (from 1st of April 2003 to 1st of April 

2004) varies from 241mm to 562mm across the watershed (see Chaponniere, 2005a). Since only 

one raingauge is available before 2003, it is necessary to select years during which this raingauge 

is representative of the rainfall events occurring over the whole watershed, if not, hydrological 

modeling should not be attempted since modeling results depend on the quality of input data 

(Holko and Lepistö, 1997). We assume that a good correlation between the timing of peak flow 
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and rainfall throughout the year attests that the outlet raingauge has been representative of the 

events which occurred on the watershed.  

 

THE SOIL AND WATER ASSESSMENT TOOL  

We chose, based on the climatic and topographical characteristics of the Rehraya watershed 

combined with the poor data set, a model that accounted for most of the hydrological processes 

while maintaining a simple approach,. Based on a comprehensive literature review, the Soil and 

Water Assessment Tool (Arnold et al., 1993) turned out to be most suitable. 

The Soil and Water Assessment Tool (SWAT) was developed to assess the impact of land-use 

and climate changes on water balance at the watershed scale. It operates at a daily time step, is 

physically based, spatially distributed and takes into account a large number of processes. SWAT 

has been extensively used and validated at various spatial and temporal scales. Hernandez et al. 

(2000) and Muttiah & Wurbs (2002) proved the validity of streamflow simulation under semi-

arid climates. Arnold & Allen (1996) demonstrated the validity of major hydrological processes 

on three Illinois watersheds. 

The elementary spatial unit of the model is the Hydrological Response Unit (HRU) which is 

defined by a unique combination of geology, land use and soil type in a given subbasin. Figure 3 

illustrates the way the hydrological cycle is simulated by SWAT on each HRU; the processes are 

calculated sequentially. Major inputs for the model are topography, land use, soil type, 

groundwater characteristics and climatic data. Outputs are available at different spatial scales 

namely the Hydrological Response Unit, the subbasins and the basin; they mainly consist of 

water fluxes (evapotranspiration, surface runoff, infiltration, lateral runoff, percolation, 

streamflow in the stream network …) and vegetation variables (yield, root water uptake, ..). 

 

Following an intensive sensitivity analysis (see Chaponniere, 2005a), eight model parameters 

were selected: the altitudinal gradients for precipitation and temperature (spatialization of the 
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climatic dataset), the soil depth and available water capacity, the delay coefficient for 

groundwater and subsurface flow, a parameter used to convert snow water equivalent into snow 

coverage (parameter ‘cov2’ in equation 4) and the snowfall temperature. These parameters will be 

calibrated in the following section.  

When implementing the model on the Rehraya watershed we took into account three HRUs based 

on geomorphological in situ observations and soil and geological maps (see Figure 4): one unit is 

the valley bottom (referred to as “soil 2”) characterized by deep soil with a texture dominated by 

sand (the river bed is gravel) and clay and the main land cover is a dense agricultural vegetation, 

the second unit is located in the upper part of the watershed (“soil 1a”) and is made up of bare 

shallow and sandy soil and finally the third unit (“soil 1b”) is in the lower part of the watershed 

and is characterized by intermediate shallow soil with a loamy sand texture and sparse trees 

(pines and juniper). All soils are considered to be constituted of a single layer. Once the spatial 

distribution of HRU is taken into account, twelve parameters must be calibrated. 

 

STREAMFLOW MODELING PERFORMANCE AND IDENTIFICATION OF 

INTERCORRELATED PARAMETERS 

The accuracy of the routinely available hydrological data is questionable: precipitation 

observations are rarely representative of the whole catchment, and streamflow itself is subject to 

measurement errors. Streamflow at the outlet is calculated on the basis of the measured water 

depth and the stage-discharge rating curve. In semi-arid and mountainous areas, intense 

convective rainfall events cause important fluvial erosion and deposits. The streambed is 

frequently modified and this affects the rating curve. Rating curves are valid for several years 

under stable environmental conditions, but must be updated several times a year in the Rehraya 

watershed. Rating curve updating is an expensive and time-consuming task when done so 

frequently and the hydrological services in the Tensift watershed have to monitor a large number 

of stations under these conditions. Consequently, rating curves are not always updated and 
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streamflow measurements are thus subject to errors. We analyzed streamflow measurements and 

corrected them when possible to allow reliable time-series.  

To ensure that rainfall events are representative of the whole catchment, we selected hydrological 

years for which there is a good correlation between peak flow and precipitation at the outlet. The 

years 1980-1981 to 1983-1984, 1990-1991 to 1998-1999 and 2001-2002 were considered. 

Streamflow data at the outlet is an important measure since it integrates all the hydrological 

processes active in the watershed (Winiger et al., 2005). It is also the most commonly available 

data. As a consequence, model calibration is generally achieved by minimizing the distance 

between the measured and the simulated streamflow estimates. In this study, calibration is carried 

out by maximizing the Nash and Sutcliffe efficiency (Nash and Sutcliffe, 1970) which is defined 

by equation (1) where i is the time-step, N the total number of simulated time-steps, obsi is 

observation on time-step i, simi is simulation on time-step i and obsmy the mean of the 

observations for the simulated period. 
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 When implementing a distributed conceptual hydrological model, uncertainty can come from 

different sources (Pellenq & Boulet, 2004): boundary conditions, initial conditions, model 

parameters, forcing variables, and model formulation. Concerning the parameters, available data 

are mostly insufficient to reduce this uncertainty (e.g. uncertainty in the parameters’ spatio-

temporal distribution and their representative mean; uncertainty in the value of the parameters 

themselves). When the degree of freedom of the simulation is higher than the degree of 

constraints –defined by all the available observations- the observation system is under-determined 

or over-parameterized (Ambroise, 1999). Over-parameterization is common when distributed 

conceptual models are used. Through model optimization, the issue of over-parameterization is 

linked with the issue of parameter intercorrelation and parameter dependence. Two parameters 
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are fully independent if the optimal value obtained for one parameter is independent from that of 

the other parameter. On the other hand, when two parameters are correlated, the same model 

output can be simulated with different combinations of these parameters. This means that when 

this output is used to compute the cost function, a large number of solutions represented by best 

fit couples of parameters are obtained. Under these conditions, improvement of model 

performance is as likely to result from parameter intercorrelation (existence of many best-fit 

realistic values) as  from any improvement of the representation of physical processes (Batchelor 

et al, 1998). Indeed, Beven and Quinn (1994) showed that a wide range of parameter sets can be 

fitted so that models are able to reproduce observed data. This has been named the “equifinality” 

issue (Beven, 1996). Consequently, in order to assess the hydrological modeling performance, 

several simulated processes should be analyzed individually and not only the resulting 

streamflow. Moreover, priority should be given to the analysis of processes which are simulated 

using parameters for which intercorrelation issues have been identified. However, investigating 

the performance of the model in terms of intermediate processes is often difficult and requires 

heavy investment in measurement networks. In fact, model outputs represent processes that are 

controlled by physical properties which vary both in time and space. Apart from discharge data 

which integrates basin-scale processes, most of the other measurements (such as soil moisture, 

leaf area index, groundwater recharge, …) represent instantaneous physical properties at a single 

point/grid. Different solutions have been suggested in the literature to overcome this scale 

problem. Regarding soil moisture for example, Schmugge and Jackson (1996) show that the 

simple mean of soil moisture values can be sufficient, and most authors put high hopes on remote 

sensing techniques that provide large-scale area-averages values. Despite the existence of 

techniques such as high spatio-temporal resolution satellite sensors and large aperture 

scintillometers which give access to the spatial and temporal distributions of the process, their 

implementation remains confined to very specific studies and teams. Most hydrological studies 
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do not have the required budget and skills to implement such instrumentation and rely on more 

classical measurement devices.   

The problem of parameter intercorrelation can be identified by analyzing best fit parameter 

ranges when one, two or more parameters are tuned to reduce the difference between the 

simulated and the observed daily streamflow. If the optimal values of one particular parameter are 

within the same range no matter how many parameters are calibrated, this parameter is not 

subject to intercorrelation. However, if the optimal values are scattered or if the optimal range 

changes when the number of tuned parameters increases, intercorrelation should be expected. 

Sorooshian and Gupta (1983) identify three sources of equifinality issues during calibration: 1) 

the structure of the model, 2) the inadequacy of the model in representing reality and 3) the data 

and its associated measurement or scaling error. We have already mentioned issues related to the 

third source of equifinality. In the following sections we focus on the first two factors.  

During the calibration period, a good simulation performance can be achieved with SWAT (see 

Figure 5: a Nash efficiency of 0.83 is obtained). The good-fit values (values of the parameter that 

produce 80% of the global maximum efficiency) were analyzed throughout the calibration of an 

increasing number of parameters. As stated above, the range of best-fit parameters during 

successive calibrations is a good illustration of parameter intercorrelation. Behaviors of pairs of 

parameters along the successive calibrations are displayed in Figure 6, Figure 7 and Figure 8. 

Figure 6 presents the altitudinal gradient of precipitation on the x-axis (“gdt pcp”), the altitudinal 

gradient of temperature on the y-axis (“gdt tmp”) and the Nash efficiency on the z-axis 

(“efficiency”). Each point represents a good-fit simulation: a specific combination of both 

gradients leads to an efficiency greater than 80% of the maximum efficiency. In the first graph 

(“opt 2p”) only two parameters are calibrated (the two gradients), while in the following graphs, 

additional parameters are calibrated (three “opt3p”, four “opt4p” up to 8 “opt8p”). Altogether, up 

to 12 parameters have been calibrated but all graphs are not displayed here. We analyzed the 

consequence of the calibration of these additional parameters on the values obtained for the 
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altitudinal gradients. In Figures 7 and 8, the same representation is adopted for different 

parameters. In Figure 7, the depth of one soil type (referred to as “Depth(soil1a)”) is reported on 

the x-axis of the graphs located on the left part of the figure and the depth of another soil 

(“Depth(soil2)”) is reported on the x-axis of the graphs located on the right hand side of the 

figure. On the y-axis the depth of the third soil type (“Depth(soil1b)”) is reported on all graphs. In 

Figure 8, the x-axis displays the value of the groundwater delay (referred as “Gw delay”) whereas 

the y-axis displays the value of the snowfall temperature (“Tsnowfall”). 

To identify possible intercorrelation issues, one can interpret the extent of the good fit parameter 

space. The three figures show different behaviors: in Figure 6 the scatter plot occupies a very 

limited space; when the fifth parameter is calibrated the range of possible values increases, but 

the cluster of points is centered around the same space as when only four parameters are tuned. 

Altitudinal gradients of temperature and precipitation do not seem to be subject to 

intercorrelation. However in Figures 7 and 8, the scatter is much more important and remains so 

throughout the successive calibrations. Different parameters have been analyzed following the 

same approach: the parameters related to the soil compartment such as soil depth (see Figure 7) 

and available water capacity (not shown), to groundwater (see groundwater delay in Figure 8) and 

-to a lesser extent- snow modules (see Figure 8), all show a large scatter of points in the two-

parameter space and thus evidence of potential intercorrelation. Given the lack of available 

observation tools for this compartment, at least at the catchment scale, subsurface water transfer 

has not been addressed in this study. Concerning the groundwater and snow modules, 

geochemistry and remotely sensed data have been used to understand the processes and make 

direct comparison between the modeled and measured processes. How close to “reality” are the 

simulated intermediate processes? We attempt to answer this question in the next sections, 

alongside a description of the tools and methodologies specifically used or developed to answer 

it. 
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In what follows, the calibrated parameters are set according to the calibration exercise and remain 

unchanged. After calibration, a validation exercise was performed for various hydrological years 

displaying contrasting hydrological conditions. Table 1 presents the mean streamflow and 

simulation performance (the correlation coefficient, the Nash efficiency and the Root Mean 

Square Error -RMSE) for the six selected years. The mean streamflow ranges from 0.64 m3.s-1 to 

1.83 m3.s-1. Correlation coefficients range from 0.43 to 0.75 but the Nash efficiencies are mostly 

negative. This demonstrates a poor simulation performance. Figure 9a presents precipitation 

together with the measured and simulated streamflow for the years 1981-1982. The simulation 

reproduces the seasonal pattern of streamflow fairly well (correlation coefficient=0.64) but some 

major events are missing at the beginning and at the end of the simulation period. This explains 

the negative Nash efficiency (-0.12) and the high RMSE (2.09 m3.s-1) of that particular year. 

Figure 9b presents the simulated streamflow and the measured precipitation and streamflow for 

1995. The simulated hydrograph, although reproducing the shape satisfactorily (correlation 

coefficient=0.59), is shifted by about one month: the high flow period begins and ends one month 

earlier in the simulation compared with the observations. With no major peak flows missing 

throughout the simulation, the Nash efficiency is positive (0.11). In both cases we observe poor 

modeling performance for different reasons (either peak flows omitted or a one-month shift). 

Semi-arid mountainous environments face extreme spatial variability of meteorological 

conditions which cannot be taken into account if an appropriate observation network is not 

available. The hydrological community should put considerable effort into developing 

observation network but this remains a difficult and expensive task rarely fulfilled by national 

hydrology services especially in developing countries.  

 

 

INTERMEDIATE PROCESSES: METHODOLOGY AND RESULTS 

 1. Geochemical analysis of groundwater contribution to streamflow 
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1.1. Methodology 

A river’s geochemical signature gives some information on the origin of its water. Its 

composition depends on the reservoir it originates from (whether it is the surface, sub-surface or 

deep reservoir). Geochemical sampling can thus be used to identify the contributing reservoirs 

during a flood and to quantify their relative contribution to annual streamflow. In this study, we 

analyzed the silica and Dissolved Organic Carbon (DOC) content of water with respect to 

streamflow. These two elements were chosen for two reasons. Firstly they are not significantly 

influenced by atmospheric contamination, since precipitation contains almost no silica or 

dissolved organic carbon (Probst et al., 1990). Secondly they have different origins (Idir et al., 

1999, Tardy et al., 2004): whereas silica originates from mineral alteration and its concentration 

increases when water flows through the deepest soil horizons, dissolved organic carbon is 

released from leaching of superficial soil layers rich in organic matter. Therefore, these elements 

can be used as tracers for deep and superficial reservoirs respectively. Water coming from deep 

reservoirs is characterized by high silica and low dissolved organic carbon concentrations 

whereas water coming from the superficial reservoir presents the inverse geochemical signature. 

To separate the hydrograph into contributions from both reservoirs, we applied the method of 

Pinder and Jones (Pinder and Jones, 1969) which has been used in many other studies (Idir et al., 

1999, Pilgrim et al., 1979, Probst, 1992, Tardy et al., 2004). Following this method, geochemical 

analysis is only required at the outlet and the contribution of the different reservoirs can be related 

to streamflow which has to be measured continuously. The method determines, at each sampling 

time t, the individual contribution of each reservoir k (Qk(t) in m3.s-1) to the total streamflow (Qt(t) 

in m3.s-1) as specified by equation (2). The main assumption of the method is that the contribution 

of the different reservoirs (from 1 to k) changes with time independently of its geochemical 

characteristics (Ci
k is the concentration in geochemical element i of reservoir k) (see equation 3).  

∑ =
=

K

k kt tQtQ
1

)()(          (2) 
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Water samples were collected on a fortnightly basis at the outlet of the watershed from April to 

December 2003. Common assumptions are that the contribution of the superficial reservoir is 

dominant during the high flow period (Probst, 1992) whereas the deep reservoir is the only one 

contributing to streamflow during the low flow period (Smakhtin, 2001). The geochemical 

composition of each reservoir can thus be directly characterized by the geochemical signature of 

streamflow at these specific periods of time. Once the geochemical composition of the reservoir 

is known, the relative contribution of each reservoir can be calculated at each sampling time and 

then extended throughout the year by establishing a relation between the contribution of one 

reservoir and the total streamflow. This method reveals the contribution of deep and superficial 

reservoirs to streamflow. In the following section, these contributions were compared to the deep 

reservoir contribution simulated by the SWAT. 

  1.2. Results 

The geochemical compositions of both reservoirs are displayed in Table 2. The superficial 

reservoir is characterized by a high content in DOC and low content in silica whereas the deep 

reservoir presents the inverse geochemical signature. The linear regression established to estimate 

the contribution on a continuous basis is presented in Figure 10. Consequently, the reservoirs 

contributions to streamflow were identified and plotted in Figure 11. The deep reservoir 

contribution (thick line) is very stable and equal to the summer streamflow. The superficial 

reservoir (diamond symbols) shapes the hydrograph. The partition of the contributions is 

consistent with the basin features, i.e. a steep mountainous watershed with shallow soils. The 

geochemical measures show that the deep reservoir contribution could be simulated as a constant 

value throughout the year. 

SWAT simulations of groundwater contribution to streamflow present consistent patterns from 

one year to the next (see Figure 12.a to c). Very little groundwater contribution is simulated 
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during low flow period but it increases slightly during high flow period. The groundwater 

contribution to streamflow is expressed in SWAT as an increasing function of an average soil 

water content with a proportionality factor; in our example it follows the streamflow signal 

pattern with no contribution from summer to December. In some cases though, what is simulated 

is a small increase in late winter and generally a gradual increase in spring followed by gradual 

decrease one or two months later. Overall however, the simulated groundwater contribution is 

small since the soils are shallows and exhibit a very low water storage capacity. This pattern is 

not consistent with the results from geochemical analysis. The formulation adopted by SWAT’s 

groundwater module is thus not appropriate for the characteristics of the mountainous watershed 

under investigation: even if the amplitude of the groundwater signal were to increase through 

increased soil storage capacity, it would remain mathematically impossible to simulate a constant 

groundwater release with a strict application of an average Darcy-like equation. Other authors 

(Conan et al., 2003; Sophocleous & Koelliker, 1999) reported similar conclusions in different 

climatic and geographical conditions.  

 

2. Remote sensing for snow surface identification 

  2.1. Methodology 

As mentioned earlier, the watershed culminates at 4167 m. Each year, snow covers the upper 

parts of the basin. There is no snow cover monitoring network on the site. Implementing one 

would represent significant investment due to the remoteness of the region and the cost of 

installing snow water equivalent measuring devices or snow height monitoring stations. Remote 

sensing is thus a useful tool for snow surface monitoring in high mountainous area where field 

instrumentation is difficult to implement and expensive to maintain. In semi-arid mountainous 

zones where snowmelt dynamics are very rapid (see fig. 4 in Schulz and de Jong, 2004) and the 

terrain is highly heterogeneous (slope and aspect, vegetation cover and types), sensors presenting 

a high temporal frequency and high spatial resolution are required. However such sensors do not 
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yet exist. To overcome this difficulty, we developed a method combining high resolution 

(LANDSAT-TM images, 30m of resolution) and low resolution (SPOT-VEGETATION images, 

1km resolution) satellite images (Chaponnière et al., 2005b). This method establishes a 

relationship between the snow index at low resolution and the snow surface derived from the 

classification of high resolution images. In this research, a new snow index specifically adapted to 

the Atlas Mountains was developed. It corrects for the influence of the soil spectral 

signature/noise in the original snow index. However, information on snow depth cannot be 

retrieved from these wave lengths. The main limitations of the methodology are (see Chaponniere 

et al., 2005b): the coarse spatial resolution of the images (1 km), the high scatter of low values in 

the index-to-area relationship and the temporal intervals of the low resolution images (SPOT-

VGT), which are often longer than one or two days. As a consequence, uncertainty of the snow 

surface estimates are difficult to quantify. The features related to snow cover dynamics that can 

be estimated with the highest degree of confidence are i) the start and end dates for the snow 

cover and ii) the maximum values of snow cover during the season. In the next section the 

temporal profiles obtained from satellite imagery will be compared to the profiles simulated by 

the SWAT model.  

. 

  2.2. Results 

Time series covering the hydrological years 1998-99 to 2001-02 were processed with the above-

mentioned remote sensing methodology (see Chaponniere et al. 2005b for details). The snow 

cover (in km2) over the basin obtained from satellite images was considered as the reference (or 

“ground truth”) but was subject to a large number of uncertainties as stated above. The data was 

compared to the snow-cover simulated by SWAT to investigate how the model is able to 

reproduce this secondary process. In SWAT the snow water equivalent SNO for a given HRU is 

converted to snow surface snocov via Equation 4. SNO100 is the threshold snow water equivalent 

for which 100% coverage is reached, cov1 and cov2 design the shape of the curve that characterize 
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the distribution of snow within the HRU. Runoff is not affected by SNO100  but snow surface is 

highly sensitive to it. 
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Modification of SNO100 (from the default value to a measured or calibrated value) greatly influences snow 

dynamics. For the year 1998-99, this parameter was calibrated (‘simu opt’ on Figure 13) to fit the 

observed snow cover. Figure 13 shows time series of snow cover simulated by SWAT using the 

default parameter of the snow-distribution equation (‘simu ref’, continuous line); simulation with 

the calibrated parameter (‘simu opt’, dashed line) and satellite observation (‘satellite’, diamond 

symbols). As far as the seasonal pattern is concerned (snow accumulation, maximum cover and 

snow disappearance periods), both simulations are close to satellite observations. Snow surface is 

present from early December to late June. Despite differences between the simulated and the 

observed time series in the calibration data set, the calibration of the snow distribution equation 

improved the results in terms of simulated snow surface and dynamics. The calibrated equation 

was then applied for the additional time-series in the validation data set. Figure 14.a to c. shows 

simulated snow cover using either calibrated or default parameters, as well as satellite observation 

for years 1999-2000, 2000-01 and 2001-02, these three years representing our validation data set. 

The calibrated equation shows an overall satisfying fit with all observations and a significant 

improvement compared to the default equation in terms of estimated snow surface and timing of 

snowfall and snowmelt. We thus conclude that the formalism adopted in SWAT for the 

simulation of snow cover dynamics is appropriate for our watershed. Of course, important 

differences remain between simulated and satellite-retrieved snow cover temporal profiles for the 

reasons presented above (uncertainty of “observation” and simplicity of simulation).  

The correlation between the remotely sensed snow cover and SWAT’s outputs presents some 

limitations. Indeed, some snowfall events are not simulated at all (the first and last events in 
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figure 13, the last events in Figure 14 a and 14 b, the first event in Figure 14 c) due either to a 

unobserved precipitation event in the rainfall data set or to high generated atmospheric 

temperature preventing rainfall from falling as snow. Also, the typical decline of snow cover is 

not well reproduced in the model especially in the spring time. The model presents a scale-shaped 

curve characteristic of models using thresholds. This is the case for SWAT’s snow module, based 

on the degree-day method. Comparison of its performance against that of an energy balance 

model can be found in Chaponniere (2005a). 

As predicted by the sensitivity study, the use of either the default or the calibrated equation has 

very little impact on the runoff simulation. Increased accuracy in the simulation of this 

intermediate process does not affect the runoff simulation quality.  

 

DISCUSSION 

The watershed studied here is complex and different storage and redistribution processes 

(“intermediate processes”) contribute to the streamflow signal at the outlet. Significant surface 

runoff is expected on the steep slopes and shallow soils during intense rain events. Rapid 

overland flow contributes to streamflow within a few hours to a few days. In terms of “slow 

processes”, groundwater and snow melt contribute to streamflow at a time scale of several weeks 

to months. There are thus at least three major contributions to streamflow which are characterized 

by seemingly distinctive temporal signatures. The modeling exercise shows that the processes 

which might present high equifinality issues include soil, groundwater and snow modules. The 

problems inherent to the evaluation of soil parameters have not been addressed here, but could 

definitely provide some important insight in the rapid-streamflow response of the basin. The 

groundwater and snowfall/snowmelt processes have been analyzed in more detail in order to 

estimate how realistically these “intermediate processes” are simulated by the model. These 

processes have similar temporal signatures on the streamflow time series and are intercorrelated: 

it is thus important to be able to analyze how realistically they are modeled. We found that the 
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algorithms used in the SWAT to compute the groundwater contribution to streamflow are not 

appropriate. Modeling them as a simple constant contribution would be enough in our zone of 

interest. Regarding the snow cover, it is fairly accurately reproduced by the model once the 

distribution equation is calibrated.  

The modeling presented in this study considered three HRU for the whole watershed. This 

division was chosen based on geomorphological observations and the analysis of soil and 

geological maps. It reflects the major geomorphological units of the watershed and the number of 

units seemed reasonable to us given the lack of information on the hydrological cycle of the 

basin. However, this number is low and does not reflect the complexity of the watershed. 

Considering a higher number of HRU would be more realistic but would bring up equifinality 

issues. Additional details in the modeling would first require a better hydrological 

characterization of the watershed.  

The study takes place in a semi-arid environment where high water losses are expected: via 

evapotranspiration for the vegetation and via sublimation for snow. Snow penitentes (pointed 

peaks of hard snow) are signs of a high sublimation rate. On the southern slopes of the High 

Atlas, Schulz and de Jong (2004) observed penitents. Modeling snow ablation with an energy 

balance model, they found an average 44% of snow removed by sublimation. The modeling was 

conducted at two sites located at 3250m and 2960m during 39 days and 20 days respectively. 

Sublimation is thus an important component to take into account. However, we believe the 

sublimation rate in the Rehraya watershed to be less important because northern slopes 

experience less arid climatic conditions than southern slopes and because we observed only a few 

penitents above 4000m (whereas Schulz and de Jong observe more and at lower elevation). In 

SWAT, evapotranspiration is simulated with the Penman equation and potential evaporation 

applies directly to snow which sublimates to fulfill the demand (which equals half the potential 

evaporation) unless the quantity of snow is below a given threshold. The impact on the runoff 

retrieval accuracy of using in situ climatic data or generated climatic data from long-term 
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historical mean is low, as demonstrated in Chaponniere (2005a). However, the potential and 

actual evapotranspiration have not been compared to ground measurements via scintillometry for 

example. Andréassian et al. (2004) discuss the impact of potential evaporation errors on model 

efficiency and provide a very complete literature on this issue. Further investigation of this 

compartment in the Rehraya watershed would definitely provide a valuable input. 

 

CONCLUSION 

In Southern Morocco, large irrigated districts rely on the water coming from the Atlas Mountain. 

However, water transfer mechanisms from the mountains down to the plains remain poorly 

understood. An understanding of these mechanisms is of crucial importance for developing 

management strategies that ensure the sustainability of irrigation under the currently changing 

environment. In this paper, the water cycle of a poorly instrumented semi-arid mountainous 

watershed is simulated. The main aim of this work was to analyze whether optimal parameters 

sets –calibrated using a cost-function based on the streamflow data- are consistent with a realistic 

process representation or whether they only reflect parameter intercorrelation. The Soil and Water 

Assessment Tool was implemented for the Rehraya watershed. We found that evaluating the 

model performance by comparing simulated and observed streamflow only is insufficient 

especially when parameter intercorrelation is identified. The analysis of best-fit parameter ranges 

when tuning an increasing number of parameters shows that compensation effects seem to take 

place in the soil, the groundwater and the snow modules, i.e. for the quickest and the slowest 

water transfer processes. The evaluation of soil parameters was not addressed in the present 

study. To be able to accurately separate the influence of the slowest processes on streamflow, 

especially during low-flows, special tools and methodologies tailored to the situation (remote 

access, low level of instrumentation, high variability, etc) have been used. A geochemical 

analysis was performed for the groundwater module and a remote-sensing methodology was 

developed for the snow module. The outputs from the model were compared to the 
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“observations” corresponding to the individual processes, and the quality of the simulation of the 

process was assessed. The geochemical method shows that the groundwater contribution to 

streamflow of this watershed is low and constant (equal to low flow) throughout the year whereas 

the model simulates this contribution as a portion of the total streamflow thus following the 

general streamflow pattern. As for the snow module, the simulated evolution of snow cover is 

compared to the satellite-retrieved snow extent. The distribution equation of the model used to 

compute snow cover is adapted to the watershed. We showed on the one hand that the 

groundwater module was not appropriate for our mountain watershed and on the other hand, that 

simulated snow distribution better reflects the observed patterns after calibration of the snow 

distribution equation. To be taken further, the study would need to analyze soil parameters, which 

would provide valuable insight into the rapid-streamflow response of the basin. Also a detailed 

analysis of the evapotranspiration module would bring valuable inputs. Benefiting from the 

information on different individual processes, modification of the model would lead to realistic 

and fully validated modeling. The multi-disciplinary approach adopted here to increase the 

insight into the hydrological processes is supported by the hydrological community (Sivapalan et 

al., 2003) but still uncommon. More efforts should be dedicated to these kinds of approaches 

since they give access to information which is not available in major parts of the world where 

measurement networks do not exist.  
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FIGURE LEGEND LIST 

Figure 1 : The Tensift watershed situated in southern Morocco and the Rehraya sub-watershed 
situated south of the Tensift watershed, in the Atlas mountain range. Tahanoute, the outlet of 
the watershed, is located north of the Rehraya. 

Figure 2: Mean monthly precipitation (in mm) and streamflow (in m3.s-1) and standard deviation 
at the outlet of the Rehraya watershed on the period 1971-2002. 

Figure 3 : SWAT’s modeling scheme for the water balance. Initial soil water is known (SW0). 
During a rainfall event (PCP), infiltration (1) and percolation (2) are the two first simulated 
processes: surface runoff (Qsurface) is then established and soil water actualized (SWact). A 
second step consists in calculating transpiration (3) and evaporation (4) fluxes in response to 
the atmospheric evapotranspiration demand (Potential Evapo-Transpiration or ETP). Soil 
water is updated (SW’act) and sub-surface runoff is calculated (Qsub-surface). Finally, the 
updated soil water provides the percolation flux towards the deep reservoir and the 
contribution of this reservoir to the streamflow (Qbase). 

Figure 4 : HRU distribution on the Rehraya watershed. 
Figure 5 : Simulated (dashed line) and measured (thick line) streamflow (m3.s-1) together with 

precipitation (mm) for year 1990-91 
Figure 6: Values of temperature (“gdt tmp”) and precipitation (“gdt pcp”) altitudinal gradients 

leading to a modelling performance higher or equal to 80% of the maximum efficiency when 
2, 3, until 12 parameters are calibrated 

Figure 7 : Values of soil depth (“Depth(soil1b)”, “Depth(soil1a)”, “Depth(soil2)”) leading to a 
modelling performance higher or equal to 80% of the maximum efficiency. 

Figure 8 : values of snowfall temperature (“Tsnowfall”) and groundwater delay (“Gw delay”) 
leading to a modelling performance higher or equal to 80% of the maximum efficiency. 

Figure 9 : Simulated (dashed line) and measured (thick line) streamflow (m3.s-1) together with 
precipitation (mm) for year a. 1981-82 and b. 1995 

Figure 10: Linear relationship between total streamflow (Qtotal) and streamflow from the 
superficial reservoir (Qsuperficial) established from point measurements in order to define 
Qsuperficial throughout the year. 

Figure 11: Rehraya watershed hydrograph (in m3.s-1) between April and December 2003. The 
total streamflow is represented by a dashed line, the superficial reservoir contribution to 
streamflow is represented by diamond and the groundwater reservoir contribution is 
represented by a thick line. 

Figure 12: Total streamflow (dashed line) and groundwater streamflow (thick line) simulated with 
the SWAT model for year a. 1981-82, b. 1990-91 and c. 1996-97. 

Figure 13: Estimated surface snow temporal profiles (in km²) for year 1998-99 by satellite images 
(‘satellite’, diamond symbols),  reference SWAT simulation (‘simu ref’, continuous line) and 
calibrated SWAT simulation (‘simu opt’, dashed line) 

Figure 14: Estimated surface snow temporal profiles (in km²) by satellite images (‘satellite’, 
diamond symbols), reference SWAT simulation (‘simu ref’, continuous line) and calibrated 
SWAT simulation (‘simu opt’, dashed line) for year a. 1999-2000, b. 2000-2001, c. 2001-
2002 
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Table 1: Simulation criteria (correlation coefficient, Nash efficiency and RMSE) obtained on 
validation years 

Table 2: Geochemical profile (sodium and dissolved organic carbon) of both reservoirs 
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Year Correlation 

coefficient 

Nash efficiency 

(-) 

RMSE 

(m3.s-1) 

Mean streamflow 

(m3.s-1) 

1980-81 0.43 -0.07 1.42 1.18 

1981-82 0.64 -0.12 2.09 1.25 

1983-84 0.75 -0.53 1.30 0.64 

1993-94 0.43 -1.19 3.65 1.83 

1995 0.59 0.11 1.23 1.33 

1996-97 0.66 -7.34 2.72 0.88 

 

Table 1: Simulation criteria (correlation coefficient, Nash efficiency and RMSE) obtained on 

validation years 

 
 

Composition Si (ppm) COD (mg.L-1) 

Superficial reservoir 4.57 2.69 

Deep reservoir 5.89 0.87 

Table 2: Geochemical profile (sodium and dissolved organic carbon) of both reservoirs  
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