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Abstract

Remote sensing data in the thermal infra red (TIR) part of the spectrum provides indirect estimates of water stress – defined as a

function of the ratio between actual and potential evaporation rates – at the earth surface. During the first stage of evaporation

(‘‘energy limited’’ evaporation), this ratio is close to one. During the second stage of evaporation (‘‘soil controlled’’ evaporation)

water stress occurs and as a result this ratio drops below one. Recently, methods using TIR data to monitor stress have shifted from

establishing empirical relationships between combined vegetation cover/temperature indices and soil moisture status to data

assimilation of surface temperature into complex soil–vegetation–atmosphere transfer models. However, data and expertise are

often lacking to widely apply those methods. In this paper we investigate the proof-of-concept of using solely the difference

between actual and unstressed surface temperature as a baseline to monitor water stress. The unstressed temperature is the

equilibrium temperature of a given surface expressed in potential conditions, computed with an energy balance model. Theoretical,

modelling, and experimental documentation of the proof-of-concept are shown for datasets acquired within the frame of two

international experiments in semi-arid region. We show that the difference between the observed and the unstressed surface

temperatures is almost linearly related to water stress. A sensitivity study is carried out to test the impact of modelling errors on the

evaluation of the unstressed temperature. We found that even with inaccurate but realistic values of the surface parameters used to

solve the energy balance and compute the unstressed temperature, the observed to unstressed surface temperature difference is still

more relevant to detect second-stage processes than the difference between the observed surface temperature and the air

temperature. The perspective of using an empirical index based on this difference is also investigated. These results are especially

attractive for application based on TIR satellite imagery at a regional scale.

# 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Detection of crop water stress is crucial for efficient

irrigation water management, especially in semi-arid

regions. Water stress, or second-stage evaporation

(Levine and Salvucci, 1999), corresponds to the

reduction in evaporation due to the limited availability

of root zone soil moisture. Water stress results in a drop

of actual evaporation below the potential rate. Its

intensity is usually represented by a Stress Factor (S),

which is defined more generally by the complement to

one of the actual (lE) to potential (lEp) evaporation

ratio:

S ¼ 1� lE

lEp

(1)
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This factor is equal to zero for energy-limited evapora-

tion (unstressed conditions), and increases towards one

for soil-controlled evaporation (water stress condi-

tions).

Water stress can be assessed by measuring evapora-

tion rates, and evaluate potential evaporation using

classical methods such as Penman-Monteith or an

energy balance model by setting the surface resistance

to a minimal value. Measurements of total evaporation

(lE) at the paddock scale can be achieved with the

Eddy-covariance method, but this method is costly and

needs well-trained staff to operate and maintain it. For

larger scale (1 km and above) there is no observational

device to measure routinely evaporation, except

scintillometry. Scintillometers can provide estimates

of the sensible heat flux for a cross-section of about

10 km (Kohsiek et al., 2002). lE can then be obtained as

the residual term of the energy balance equation

providing estimates of available energy at the same

scale using remote sensing data (Ezzahar et al., 2007).

These techniques are not trivial to set up and there is a

large place to develop alternative methods for the

monitoring of water stress.

Data in the thermal infra red (TIR) is linked to soil

moisture and thus to the evaporation flux since the

surface temperature is obtained through solving the

surface energy balance equation. The use of TIR data to

monitor stress can be classified into three broad

categories (Courault et al., 2005). For each of these

categories described below, TIR data can be combined

or not to a surface energy balance model (see Table 1) in

order to provide more elaborate information:

1. Using TIR data for an assessment of instantaneous

flux patterns:

a. The first group of methods computes indices based

on TIR radiance and a combination of surface

reflectances: since index maps can be easily deduced

from remote sensing images acquired in thermal and

visible bands, these methods are very popular.

Amongst such methods, one can mention the Crop

Water Stress Index (CWSI: Jackson et al., 1981;

Jackson, 1982), the Surface Energy Balance Index

(SEBI: Menenti and Choudhury, 1993) or the Water

Deficit Index (WDI: Moran et al., 1994; Moran,

2004); these indices are different expressions of the

Stress Factor, and have been derived from a surface

energy balance model. On the other hand, some

indices like the Temperature–Vegetation Dryness

Index (TVDI: Sandholt et al., 2002) or the

Temperature Vegetation Index (TVI: Prihodko and

Goward, 1997) do not rely on any parameterization

of the energy balance and can be computed directly

from remote-sensing data.

Stress indices are usually based on either the

observed surface temperature itself or the difference

between the observed surface temperature and air

temperature at screen level (Sepulcre-Canto et al.,

2006); they rely upon the assumption that for a given

image there are places that evaporate at a potential

rate (S = 0), and very dry, non-evaporating places

(S = 1); stress levels are scaled according to the

distance between the surface temperature of a given

pixel and the minimum and maximum surface

temperatures observed on the scene; these extreme

values are related to the extreme values of S, i.e. 0 and

1; more recent studies also state that for each water

stress condition the temperature depends on the

amount of bare soil seen by the TIR sensor; the

scaling between both extremes of S depends on a

second remote-sensing variable representing the

vegetation cover fraction, which is usually the

Normalized Difference Vegetation Index (NDVI),

or the Soil Adjusted Vegetation Index (SAVI); this

leads to the classical triangle or trapezoidal shape of

the temperature/vegetation cover diagram (Carlson

et al., 1994; Moran et al., 1994; Boegh et al., 1999;

Moran, 2004; Luquet et al., 2004) with its ‘‘cold’’

(unstressed) and ‘‘warm’’ (stressed) edges. The

trapezoid method is often used to derive a spatial

pattern of instantaneous stress level for a given TIR/

NDVI image (Batra et al., 2006). Since the extreme

vegetation and moisture conditions are not always

present at the time of acquisition, it is not the most

accurate way to represent the space/time variability

of the hydric status. The use of time series of WDI

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172160

Table 1

Classification of some methods to assess water stress from TIR data.

With an energy balance model Without energy balance model

Instantaneous retrieval SEBAL, ALARM, SEBS, etc. TVI, TVDI, etc.

Time series analysis CWSI, SEBI, WDI, etc. Albedo, Ts � Ta, (Ts � Ta)/Rs, etc.

Data assimilation in a state-space model Simple (thermal inertia only, no water balance

involved) or complex (SVAT, water balance involved)

Assimilation of time to stress in water

balance models (e.g. SVATsimple)
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values computed with an energy balance model

appears to be a better alternative to monitor water

stress instead of mapping water stress levels.

b. The second family of methods involves a surface

energy balance model: surface temperature is used as

input to derive the sensible heat flux and obtain lE as

a residual of the energy balance; flux maps are

produced whenever an image is available. The first

methods do not model explicitly the difference

between the aerodynamic and the surface tempera-

tures (Seguin and Itier, 1983; Lagouarde, 1991)

whereas most recent methods parameterize this

difference (Chehbouni et al., 1997) or provide an

estimate of the kB�1 parameter (SEBAL: Bastiaans-

sen et al., 1998; SEBS: Su, 2002; ALARM: Suleiman

and Crago, 2002). As for the indices mentioned

above, some methods assume that on a given image

there are places that evaporate at a maximum rate and

other areas with no evaporation. To provide time

series of lE, extrapolation methods like data

assimilation are required to estimate fluxes for dates

between two successive cloud-free images.

2. Using time series of TIR observations:

The second category of methods takes advantage

of looking at TIR data time series. Amongst them, the

first group, which does not involve any surface

energy balance model, uses change detection

algorithms and is based on the assumption that

when the surface enters the ‘‘soil controlled’’ stage

(this stage is also named ‘‘supply-limited’’ in some

references), there are strong and sudden changes in

surface conditions that impact on the surface

temperature. For bare soil and short vegetation,

Amano and Salvucci (1997) states that ‘‘transitions

from atmosphere-limited to soil-limited evaporation

can be accompanied by either an increase in

afternoon surface temperature relative to either air

temperature or morning surface temperature, or an

increase in land surface albedo’’. The first advantage

of using such methods is that they are catching the

consistency between the evolution of TIR observa-

tions and the date of the last irrigation or rainfall

event instead of computing instantaneous stress

levels independently of the drying/wetting history.

The other advantage is that systematic errors in

observed surface temperature (constant bias) do not

significantly affect the results of stress detection

algorithms since the later are only looking at trends in

the TIR data time series and not at absolute values.

The second type of methods involves a surface

energy balance model. Within this category, and

amongst the most popular methods to use TIR data to

monitor water stress, one can mention the analysis of

time series of CWSI interpreted as the evolution in

time of the Stress Factor (Jackson et al., 1981;

Jackson, 1982). Finally, instantaneous indices can be

compared for a limited number of dates with

continuous time series of independent water status

information: Sandholt et al. (2002) have found a good

correlation between TVDI values and the soil

moisture maps computed with a distributed hydro-

logical model, whereas Goward et al. (2002) have

found a good relationship between time series of TVI

and surface soil moisture simulated by a complex soil

vegetation atmosphere transfer (SVAT) model.

3. Assimilation of TIR data into land surface models:

Assimilation sensu lato enables to adjust either a

state variable or a parameter of a given state-space

process model in order to reduce the difference

between the simulated and the observed radiometric

surface temperatures. Whether the land surface

model is based on the integration in time of the

surface energy balance (in that case the only state

variable is the soil temperature, taking into account

the soil thermal inertia, e.g. Castelli et al., 1999) or

the integration in time of the water balance (Boulet

et al., 2002), or both (Demarty et al., 2004; Olioso

et al., 2005), the problem is that model uncertainty,

especially on the evaluation of soil thermal or

hydrodynamical properties, is large. These methods,

while interesting in the preparation of future

observing systems (Pellenq and Boulet, 2004), have

similar performances as more simple ones cited

before (Jacob et al., 2006).

This study addresses possible improvements in the

second category of methods, more specifically the use

of time series of CWSI/WDI-type indices. The popular

CWSI formulation proposed by Jackson et al. (1981)

suffers from two major limitations: first, it does not take

into account the temporal variability of the canopy

structure and extent (Yuan et al., 2004); furthermore, it

assumes that the surface and the aerodynamic tem-

peratures are equal. Therefore, as stated by Moran

(2004), ‘‘Application of CWSI with satellite- or aircraft-

based measurements of surface temperature is restricted

to full-canopy conditions so that the surface tempera-

ture sensed is equal to canopy temperature’’. Many

other expressions of the Stress Factor are available in

the literature. In the case of sparse vegetation or

changing vegetation cover, Leaf Area Index can be used

to modulate a single-source surface resistance (Moran

et al., 1994) while Boegh et al. (2002) uses a decoupling

coefficient to retrieve simultaneously an equivalent of

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172 161
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the surface resistance for the soil and for the canopy. In

the ‘‘trapezoid’’ approach, Moran et al. (1994) show

that the Stress Factor can be expressed as a function of

two temperature boundaries in the NDVI versus Ts � Ta

space, the unstressed or ‘‘cold edge’’ (Tsp) and stressed

or ‘‘warm edge’’ (Ts0) temperatures. This expression is

called the Water Deficit Index (WDI):

Sffi T s � Tsp

T s0 � T sp

(2)

In (2), Ts0 is the theoretical temperature of a non-

evaporating surface with the same biophysical proper-

ties and climate conditions as the actual. It is calculated

by solving the surface energy balance in actual condi-

tions but replacing lE by 0. Computation of Ts0 is not

trivial, because it corresponds generally to high soil heat

flux values (the soil thermohydric properties are not

easy to evaluate at the appropriate space–time scale) as

well as unstable convective conditions (which rely on

semi-empirical stability functions). Similarly, heat

exchange between the canopy and the soil for sparse

conditions is not easy to evaluate when the soil is hot

and dry but the plant is extracting water from the deep

soil at a near-potential rate. In practice, model uncer-

tainties in the evaluation of Tsp and Ts0, as well as

measurement errors on Ts, can lead to erroneous CWSI/

WDI estimates. Values of CWSI outside the range [0, 1]

are not uncommon (Alderfasi and Nielsen, 2001; Bar-

bosa da Silva and Ramana, 2005), especially in semi-

arid regions where Ts0 can reach very high values.

Outside of the [0, 1] range, CWSI values cannot be

interpreted as S estimates, and need to be rescaled

accordingly. A practical solution to account for this

discrepancy is to stretch the cold and warm edges

simulated by a SVAT model to the boundaries of the

observed trapezoid (Gillies et al., 1995). However, the

use of the WDI is dependant on how one matches the

‘‘observed’’ trapezoid that is not always sampling all

vegetation, moisture and atmospheric conditions and

the ‘‘simulated’’ trapezoid computed with an energy

balance model that should be adapted to those varying

vegetation, moisture and atmospheric conditions.

Furthermore, the retrieved stress level depends largely

on the instantaneous shading conditions.

Acknowledging the limitations of the CWSI/WDI

methods, many recent research avenues on stress

detection have gone back to the interpretation of time

series of surface to air temperature difference (Amano

and Salvucci, 1997), or shifted to data assimilation.

However, when data or expertise is lacking to apply

SVAT models, the CWSI or WDI concept may be useful

if it can be improved with the help of the recent

progresses in the description of the surface energy

balance components of SVAT models to provide simple

yet robust stress indices derived from TIR data (Vidal

and Devaux-Ros, 1995). In this study, instead of

deriving a non-dimensional index, we propose to focus

solely on the WDI numerator, i.e. the difference

between the observed temperature and the temperature

in potential conditions (Ts � Tsp).

The aim of this paper is two-fold: first, to document

the theoretical, experimental and modelling evidences

that the difference between the observed temperature

and the temperature in potential conditions simulated

with little a priori information on the land surface is a

suitable information to monitor water stress under

variable vegetation cover conditions, compared to

‘‘classical’’ indices based on observed variables alone

(air to surface temperature difference, albedo, etc.);

second, to assess the impact of model uncertainties on

the accuracy of stress detection when a simple

uncalibrated ‘‘big leaf’’ model is used to estimate the

surface temperature in potential conditions, and rate this

performance on a validation dataset for several

vegetation types and conditions.

The paper is organized as follows: first the simple

‘‘big leaf’’ energy balance equation is run together with

first guess parameter values to produce unstressed

surface temperature and potential latent heat flux time

series for three water stress periods identified within two

experimental datasets. The evolution of both Ts � Ta

and Ts � Tsp is then plotted against the observed and the

potential latent heat fluxes to investigate the ability of

both thermal indices to detect stress. Then the

relationships between either Ts � Ta or Ts � Tsp and

the Stress Factor S are identified by linearizing the ‘‘big

leaf’’ model. In order to assess the variability of the

linear regression coefficients, a physically-based

‘‘reference’’ SVAT model is applied for a wide range

of vegetation and soil moisture conditions, first in

known conditions, then when uncertainty in the energy

balance components is synthetically taken into account.

After this sensitivity analysis, the validity of the average

linear relationship between Ts � Tsp and S is checked

against experimental data. Finally, some examples of

application of this relationship are provided in

conclusion.

1.1. Relevance of the Ts � Tsp time series in

monitoring stress

Coupling of the energy and the water exchange at the

earth surface is only active when the atmospheric

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172162
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conditions are not limiting the evaporation process;

therefore under most circumstances there is no coupling

and actual and potential conditions are identical. While

the concept of potential evaporation is widely used in the

literature (see Lhomme, 1997, for a review and a

discussion of its definition), the concept of ‘‘temperature

in potential conditions’’ is rarely used outside complex

non-dimensional indices such as the WDI. The difference

between the observed and the unstressed surface

temperature is, in theory, sufficient to detect stress,

but, since Tsp is the output of an energy balance model and

is therefore prone to model and data errors, its proof-of-

concept needs to be investigated. The foreseen advantage

of concentrating on this difference is that detecting

changes in Ts � Tsp time series is easier than for the

CWSI/WDI, since both uncertainty sources can be

graphically represented: while model errors in the Tsp

estimate can be deduced from specified parameter

uncertainty, TIR observation errors can be deduced from

remote sensing radiative transfer studies, independently

of Ts0 uncertainties, and also graphically displayed.

1.1.1. Experimental evidence: analysis of three

water stress events

In this study, two datasets were used: the first one

was collected during the SudMed project (Chehbouni

et al., 2006) in 2003 over two patches of wheat whose

size (4 ha) exceeds the basic fetch requirements: the

B123 site under bare soil conditions and at a maximum

Leaf Area Index L of 3, and the B27 site with a

maximum L of 4; the second one was acquired during

the SALSA experiment in 1997 (Goodrich et al., 2000)

over a large sparse grassland field at two phenological

stages: one at maximum development with a L of the

order of 0.8 and the second at senescence with a starting

L of 0.5. In both datasets, latent heat flux was measured

with a Krypton (B27), a LICOR7500 (B123) or an

EDISOL (SALSA) Fast Response Hygrometer and a 3D

Sonic Anemometer with an embedded fast-thermo-

couple. TIR data was acquired with Everest Infra Red

Thermometers (IRTs) looking at nadir with a 608 field

of view at a height of 2.3 m (SALSA) and 2 m

(SudMed). All IRTs have been calibrated using an

Everest black body during the experiment and prior to

the experiment in a laboratory with an adjustable

ambient temperature. Other measurements include in

situ classical meteorological forcing, albedo and Leaf

Area Index. Experimental set-ups are presented in

Boulet et al. (2000) for SALSA and Duchemin et al.

(2006) (see also Er-Raki et al., 2007) for SudMed. For

each site, stress was assessed by looking at time series

of daily averaged observed latent heat flux (lE) and

simulated latent heat flux in potential conditions (lEp)

during dry down periods in between two successive

irrigations or rainfall events. lEp was computed by

solving the simple ‘‘big leaf’’ energy balance equation

presented in Appendix A for the unstressed surface

temperature (Tsp). Parameter values were taken from the

middle of the a priori ranges given in Table 2, which can

be considered as ‘‘realistic’’ average values for most

continental surfaces. In order to match lE just after an

irrigation (SudMed) or a major rainfall event (SALSA),

lEp was multiplied by an adjustment factor (from 0.9

for B27 to 1.1 for B123). This allows for compensating

for measurement errors in lE or inaccurate parameter

specification in simulated lEp. Sharp divergence of lE

from adjusted lEp time series was interpreted as the

starting date of water stress, or ‘‘time-to-stress’’. Two

water stress periods were identified for B123 and

SALSA, and one for B27 (see Figs. 1–3Figs. 1a-3a). It

corresponds to 6-Mar. (B123 full cover, Fig. 1a), 27-

Mar. (B27, Fig. 2a) and 4-Sep. (SALSA maximum

cover, Fig. 3a). In parallel, time series of Ts � Ta and

Ts � Tsp differences at midday were plotted for the

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172 163

Table 2

Parameter range used in the random generation of actual (Ts,) and unstressed (Tsp) surface temperatures as well as actual (lE) and potential (lEp)

evaporation rates

Model Parameter Parameter range

Both models Minimum stomatal resistance 20–200 (s m�1)

Ratio of perturbated to observed Leaf Area Index (also applies for vegetation height) 0.5–1.5 (–)

‘‘big leaf’’ model Empirical parameter of the aerodynamic to surface temperature relationship 5–20 (–)

Mixed surface albedo 0.15–0.3 (–)

ICARE-SVAT Momentum to heat roughness lengths ratio 2–20 (–)

Sand fraction 0–0.4 (–)

Clay fraction 0–0.3 (–)

Soil albedo 0.15–0.3 (–)

Vegetation albedo 0.15–0.25 (–)

Soil and vegetation emissivities 0.92–0.98 (–)
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selected periods. For B123 and B27, both full cover

(Figs. 1b and 2b) conditions show a quick increase in

Ts � Tsp after the time-to-stress but a continuous

increase in Ts � Ta before and after the time to stress.

Ts � Tsp is therefore a pertinent stress indicator in that

case. In order to check that the increase in Ts � Tsp is not

due to senescence but rather to water stress before

senescence, trends of other biophysical parameters,

albedo and Leaf Area Index, are displayed on Fig. 4.

Albedo values show a clear trend after senescence only,

i.e. around 16-May, while water stress is present as

early as 6-May. For the water stress period identified

within the SALSA dataset (Fig. 3), it is not as clear as

for SudMed. Both Ts � Tsp and Ts � Ta differences

increase at the same time, two days after the time-to-

stress.

1.1.2. Modelling evidence: linearization of the

simple ‘‘big leaf’’ model

Surface temperature in potential conditions can be

obtained through several parameterizations, the most

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172164

Fig. 1. Time series of daily averaged potential and observed total

evaporation (a), and surface to air and potential to surface temperature

difference at midday (b) in the case of the B123 wheat site at

maximum development (full cover conditions). Vertical line desig-

nates the onset of water stress.

Fig. 2. Same as Fig. 1 for the B27 wheat site at maximum develop-

ment (full cover conditions).



Author's personal copy

simple being the Penman-Monteih equation (which is at

the basis of the CWSI index), the most complex, yet

computed in most SVAT models, being the simulated

nadir radiometric temperature, which can be computed

from different individual temperature components (for

example the soil and the vegetation). In that case the soil

and the vegetation surface temperatures can be derived

by solving a dual-source (Shuttleworth and Wallace,

1985; Kustas and Norman, 1997) energy budget in

potential conditions, and setting (1) the soil surface

resistance and the stomatal resistance to a minimum

value and (2) the soil heat flux to a fraction of the ground

net radiation. In this section we will investigate the

relationship between both Ts � Tsp and Ts � Ta tem-

perature differences and S through the use of the simple

‘‘big leaf’’ energy balance equation. The complexity of

this model lies between the Penman-Monteith and the

dual-source energy balance expressions, and it can

easily be linearized. It compensates for both limitations

of the Penman-Monteith expression used in many

studies (e.g. Moran et al., 1994; Vidal and Devaux-Ros,

1995): it takes into account the possible changes in

vegetation cover conditions, and it relates the surface

and the aerodynamic temperatures through an empirical

function that depends solely on the Leaf Area Index

(Chehbouni et al., 1997). The surface temperature Tsp

and the aerodynamic temperature T0p in potential

conditions are obtained by solving the surface energy

balance in potential conditions:

RnpðT spÞ ¼ GpðTspÞ þ HpðT0pÞ þ lEpðT0pÞ (3)

where Rn is the net radiation, G the ground heat flux, H

the sensible heat flux and T0 is the aerodynamic tem-

perature, respectively. Subscript ‘‘p’’ stands for ‘‘com-

puted in potential conditions’’.

The Stress Factor S can be written after linearization

of (3) along Ta, as:

S ¼ lEp � lE

lEp

¼ ’

lEp

ðT s � TspÞ (4)

where ’ ¼ 4essT3
a zð1� jÞ þ rcpz=ra0 (the definition of

all symbols is provided in Appendix A).

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172 165

Fig. 3. Same as Fig. 1 in the case of the SALSA grassland site at

maximum development.

Fig. 4. Time series of Leaf Area Index and albedo for full cover

conditions at the B123 wheat site.
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Comparing stressed and unstressed conditions

yields:

lEp ¼ ’ðT s0 � T spÞ (5)

This means that the WDI expression (2) still holds for

the ‘‘big leaf’’ formulation.

Since Ts0 � Tsp = lEp/w is bounded and does not

depend on S, there is a pseudo-linear relationship

between Ts � Tsp and S.

S can also be written as a linear combination of

Ts � Ta:

S ¼ ’

lEp

ðT s � TaÞ þ
’

lEp

ðTa � T spÞ (6)

It is also a pseudo-linear relationship.

By looking at Eqs. (4) and (6), it becomes clear that a

sharp increase in Ts � Tsp and Ts � Ta time series can

only be interpreted as the starting point of water stress if

(1) the dispersion of Ts � Tsp and Ts � Ta values around

S = 0 is small, and (2) there is a clear and steady rise in

temperature difference for low values of S. Comparing

(4) and (6) shows that the linear regressions Ts � Tsp

versus S and Ts � Ta versus S have the same apparent

slope 1/(Ts0 � Tsp) = w/lEp, but that Ts � Tsp reacts

more quickly to stress than Ts � Ta: for Ts � Ta, there is

an offset in (6) around S = 0 which is proportional to the

difference between Tsp and Ta. For temperate areas, this

difference is generally small, but for semi-arid climates,

as shown in the previous section, this difference can

reach several degrees Celsius. In what follows, we use

model simulation to analyse the variability of the slope

1/(Ts0 � Tsp) = w/lEp and the offsets of the linear

regressions between S and either Ts � Tsp or Ts � Ta.

1.1.3. Modelling evidence: generalization with a

complex SVAT model

In order to check the sensitivity of the Ts � Tsp

versus S and Ts � Ta versus S relationships for a wide

range of soil moisture and vegetation conditions, we

used a complex SVAT model as a reference or

‘‘benchmarking’’ tool to generate time series of Ts,

Tsp, lE and lEp. This synthetic dataset was simulated

with the ICARE SVAT model (Gentine et al., 2007) for

four months (February to May) of climate forcing at the

B123 wheat crop site under actual and potential

conditions (Fig. 5); this dataset is interesting because

it spans a wide range of vegetation conditions (a full

growing season with L values between 0 and 3) and soil

moisture status (succession of wet conditions after

irrigation or rainfall and long drying periods). ICARE is

a physically-based soil–vegetation–atmosphere transfer

model with a dual-source soil-plant interface and a

multi-layer soil module. The energy balance is solved

for two sources of radiation and turbulent heat fluxes,

the soil and the vegetation. The water and the heat

conduction in the soil are solved for soil moisture and

temperature profiles using classical diffusion (heat) and

convection-diffusion (water) equations (Richards,

1931). A moderate non-automatic calibration of the

parameters was undertaken against observed time series

of the energy budget (Rn, G, H, lE) and the water

balance (soil moisture at different levels) in order to

ensure the realism of the model’s outputs (not shown).

This simulation provides time series of a ‘‘reference’’

Stress Factor S (simulated) and the associated values of

Ts and Tsp computed by running the model with the

same input parameters for both actual and potential

conditions. By plotting both temperature differences at

12AM against S, one can check that the correlation

between Ts � Tsp and S is much larger than the

correlation between Ts � Ta and S (Fig. 6). The

pseudo-linear theoretical relationships (4) and (6)

between S and Ts � Tsp or Ts � Ta, respectively appear

more clearly for Ts � Tsp. Ts � Tsp shows a clear trend

around S = 0, contrarily to Ts � Ta which shows a large

scatter of points corresponding to lEp(Tsp � Ta)/w

values around S = 0 (Eq. (6)). It is quite interesting to

see that the relationship between Ts � Tsp and S is very

linear, even though the conditions that prevail through-

out the 2003 growing season vary drastically (bare soil,

growing stage, maturity, senescence) over a large range

of S values. This means that the slope u = Ts0 � Tsp of

G. Boulet et al. / Agricultural and Forest Meteorology 146 (2007) 159–172166

Fig. 5. Time series of instantaneous actual and potential latent heat

flux values simulated with ICARE at midday for the B123 site dataset.
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the Ts � Tsp versus S relationship is very stable across

the different surface and atmospheric conditions, and

could be represented by an average value for all

vegetation, moisture and atmospheric conditions.

1.2. Impact of Tsp estimates uncertainty on index

robustness

The different terms of S and Ts � Tsp in the

‘‘reference’’ simulation presented above reflects the

model’s consistency in simulating stress. It does not

account for uncertainty in Ts � Tsp and Ts � Ta

estimates, and therefore for possible deviations from

the pseudo-linear theoretical relationship due to

simulation/model errors or instrumental biases. Errors

associated with the evaluation of both TIR indicators

falls within these two broad categories:

- measurement errors: georeferencing and registration

shifts, sensor accuracy and spectral characteristics,

atmospheric corrections, radiative transfer scheme

inversion etc can all be responsible for errors in Ts

estimates (see Jacob et al., 2006, for a review); spatial

interpolation of the climate forcing, including Ta is

also a source of error: meteorological forcing is

usually taken from nearby climate stations which are

not representative of the local climate and surface

conditions; eventually, heterogeneity of the vegetation

type and cover and other surface characteristics within

the radiometric pixel or the instrumental field-of-view

makes it difficult to interpret and fully understand the

measurements.

- modeling errors: Tsp is derived from a model of the

energy balance for a given surface. When one uses an

energy balance model like the ‘‘big leaf’’ formulation,

there are three parameters that are uncertain: (1) the

minimum surface resistance to water vapour extrac-

tion, (2) the link between the aerodynamic and the

surface temperature and (3) the ratio between the soil

heat flux and the total net radiation. If a complex

energy balance is used, for instance a dual-source

expression (e.g. Braud et al., 1995) the most uncertain

parameters are usually (1) the minimum stomatal

resistance to water vapour extraction, (2) the para-

meters of the soil resistance to evaporation, and (3) the

ratio between the soil heat flux and the total net

radiation. Beyond the choice of the model, definition

of ‘‘potential conditions’’ itself is not trivial. It is

particularly true in the case of sparse vegetation, and,

in general for intermediate values of L (growing stages

for instance). Because the soil evaporation extracts

water from the top soil whereas roots extract water on

a larger soil depth, in most cases soil dries first, then

the vegetation. Consequently, there are in fact three

stages of evaporation for a given surface (Boulet et al.,

2004). It is thus difficult to separate the decrease in

soil evaporation rate from the vegetation water stress

in a given time series of surface temperature. Possible

confusion between both phenomena could be partly

overcome by looking at directional temperatures

(Boulet et al., 2001).

Given this large range of error sources, one could

argue that although Ts � Ta is related to stress with an

unknown offset lEp(Tsp � Ta)/w, Ts � Ta does not

depend on energy balance uncertainties (unlike Tsp),

and might still be more relevant to monitoring water

stress when Tsp is not known with precision. In order to

check the performance of Ts � Tsp over Ts � Ta as a

water stress indicator under uncertain conditions, a

second synthetic analysis was performed. In this second

analysis, in order to ensure a large uncertainty on Tsp

estimates, Tsp was generated using a different model

than ICARE, and many more ‘‘reference’’ cases than

above were investigated. lE, lEp and Ts were computed

with ICARE under the same conditions as above, and

instead of obtaining Tsp with ICARE, Tsp was calculated

with the ‘‘big leaf’’ model presented in Appendix A

with slightly different surface parameters than the

‘‘reference’’ simulation illustrated in Fig. 6. The ‘‘big

leaf’’ model is a good compromise in terms of model

complexity between the Penman-Monteith formulation

and a dual-source energy balance, and sufficiently

different from ICARE to provide a good benchmarking
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Fig. 6. Scatter plot of surface to air temperature difference (Ts � Ta)

vs. Stress Factor (S) and actual to unstressed surface temperature

difference (Ts � Tsp) vs. S simulated by ICARE at midday for the

B123 site dataset.
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estimate of Tsp errors. 100 ‘‘reference’’ simulations

were produced by ICARE for surfaces randomly chosen

according to their physical properties as a deviation to

the simulation shown in Fig. 6; this was achieved by

perturbing the most sensitive parameters using a

randomly chosen set of parameters from a uniform

distribution in the predefined intervals of variation

(Table 2); then a surface temperature in potential

conditions associated to each ‘‘reference’’ run was

computed with a different randomly chosen set of

parameters, using the very simple ‘‘big leaf’’ model

presented in Appendix A (see also Table 2 for the range

of parameters used to generate Tsp with the ‘‘big leaf’’

model); combining the ‘‘reference’’ lE and lEp values

simulated with ICARE provides a ‘‘reference’’ S.

Combining the ‘‘reference’’ Ts and its associated Tsp,

generated with the ‘‘big leaf’’ model, provides an

estimate of Ts � Tsp which can be compared to the

‘‘reference’’ difference Ts � Ta. The correlation coeffi-

cient of the linear regressions between both temperature

differences and the Stress Factor was then computed for

each of the 100 random simulations, i.e. the 100

‘‘reference’’ combinations of lE, lEp, Ts simulated

with ICARE for 100 random sets of parameters and the

100 associated Tsp values simulated with the ‘‘big leaf’’

model for 100 other random sets of parameters. Fig. 7

shows the scatter plot of the correlation coefficient for

one versus the other index (that is, the correlation

coefficients of Ts � Ta versus S and Ts � Tsp versus S

linear regressions). Even when there is a large

uncertainty on modelled Tsp, Ts � Tsp is still a more

accurate indicator of stress than Ts � Ta. It is

graphically evidenced on Fig. 7 by locating most (all

except two) points under the [1:1] line. Linear

regression coefficients are high enough to assume that

even in uncertain conditions Ts � Tsp can be used to

monitor water stress.

1.3. Identification, robustness and generality of the

S ffi (Ts � Tsp)/u relationship

We have previously pointed out the need to look at

time series of stress levels derived from TIR-based

indicators to check their coherence with the irrigation

and rainfall temporal patterns. For that purpose, we

have shown in section A that isolating trends in Ts � Tsp

time series is relevant to stress detection. Moreover, it

has been shown in the section B that Ts � Tsp is almost

always linearly related to S. It is therefore interesting to

check if the empirical value of the slope of the pseudo-

linear relationship obtained for the ‘‘reference’’ run

(S ffi (Ts � Tsp)/10, see Fig. 6) is robust and general

enough to infer S instantaneously. This would provide a

more simple index that could be used in place of a WDI.

We must recall that according to (4) the denominator u
corresponds to the difference between the stressed and

the unstressed theoretical temperatures (Ts0 � Tsp) in

given climatic conditions and for a given surface. Using

an index of the form (Ts � Tsp)/u to infer the Stress

Factor implies that u is effectively stable for the whole

range of S values. To do so, two conditions of the

classical ‘‘split-sample’’ analysis are verified: (1) u can

be identified (i.e. it can be inferred for a given site

during a calibration period), (2) its value must be robust

(i.e. its performances in simulating stress for this site do

not decrease in a validation period).

In order to check the existence of a quasi-constant

u = Ts0 � Tsp value, the slope and offset of the linear

regressions of Ts � Tsp versus S for the 100 simulations

presented in Fig. 7 were analysed; the mean and

standard deviation for the offset are �0.15 and 0.14 8C,

respectively, while for the slope it is 10.2 8C and 1.7 8C,

respectively. These rather small standard deviations

give us confidence in using S ffi (Ts � Tsp)/10 as a rough

but relevant estimate of S. In order to validate this

relationship, a dataset collected during the growing

season 2004 at the B124 field adjacent to B123, was

used. lEp and Tsp time series were calculated with the

‘‘big leaf’’ model presented in Appendix A, and the

middle value of each parameter range as given in

Table 2. It was combined with observed lE and Ts,

respectively, to produce two estimates of S: the first is

computed as S = 1 � lE/lEp, the other is obtained from
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Fig. 7. Correlation coefficients of surface to air temperature differ-

ence (Ts � Ta) vs. Stress Factor (S) and actual to unstressed surface

temperature difference (Ts � Tsp) vs. S linear regressions. Ts and S are

simulated by ICARE while Tsp is simulated by the simple ‘‘big leaf’’

model for the B123 site dataset.
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the empirical relationship S ffi (Ts � Tsp)/10. Note that

the former cannot be seen as an exact ‘‘observed’’ S

since lEp was not adjusted to match observed lE after

rainfall and irrigation (unlike Figs. 1–3) but evaluated

using the average of the parameter range given in

Table 2. Results are shown on Fig. 8 together with daily

amounts of irrigation and rainfall. 2004 is a much wetter

year than 2003, with little stress, and L peaks at about

4.2 around 1-April, while bare soil conditions prevail at

the beginning (1–30 January) of the observation period.

Vegetation is senescent at the end (10–30 May) of this

period. S in bare soil and senescence conditions was

well reproduced, while water status of some phenolo-

gical stages, namely the growing and the end of

maturity were less well reproduced (dotted grey box of

Fig. 8). Several periods of increase in S = 1 � lE/lEp

can be detected for periods of no-rain or no-irrigation

(grey arrows of Fig. 8); they correspond roughly to an

increase in S ffi (Ts � Tsp)/10 with similar slopes, but a

bias appears during early growth. S = 1 � lE/lEp is

possibly overestimated for that stage given the number

of rainfall events between 20-Feburay and 10-April

This can be due to either an underestimation of lE (as

indicated by the poor energy balance closure observed

at that time) or an overestimation of lEp. Note that

Ts � Tsp is always slightly positive, which means that

measurement (Ts) and model (Tsp) errors are either

small or compensate each other. It is an encouraging

result, which would allow us to monitor water status

over wheat in that region using thermal images cross-

calibrated with our network of in situ IRTs.

Eventually, one could assume that the

S ffi (Ts � Tsp)/u index could be used for many other

herbaceous types of vegetation than wheat. In order to

extrapolate this index to other surface types, data

corresponding to Figs. 1–3 as well as two other similar

events mentioned earlier (B123 bare soil and SALSA

senescent vegetation) have been gathered into a single

data frame to produce a scatter of points in the Ts � Tsp

versus S space. This dataset spans a wide range of

surface types and vegetation water status. The

determination coefficient of the S versus Ts � Tsp linear

regression is 0.57; its slope is 12.9 8C which is higher

than the average value found for our wheat site and at

the upper edge of the range of values obtained in the 100

simulations; moreover, there is an offset of 2.3 8C. The

generality of an average u value is thus questionable,

and this last exercise should be carried out with more

data.

2. Conclusion

Data in the thermal infra red spectrum is still

nowadays the most promising data source to monitor

water stress at most scales ranging from the paddock to

the region. The Crop Water Stress Index proposed by

Jackson et al. (1981) expresses the Stress Factor S with

TIR data but is not valid for all surface conditions

because of its simplifications on the energy balance.

More recent methods to study water stress with the help

of TIR data have shifted away from the S concept to

more complex instantaneous diagrams based on surface

cover or complex mathematical methods such as data

assimilation. However, the unstressed limit of latent

heat flux identified by an unstressed temperature can

help the modeller as much as the experimentalist to

detect and monitor water stress. For the modeller, there

are two potential applications of this study:

1. Tsp should be equal to Ts just after a major rainfall

event or large irrigation; adjusting the most sensitive

parameters of the soil–vegetation–atmosphere inter-

face (i.e. the system of equations of the surface energy

balance) in order to reduce the Ts � Tsp difference

during the first stage of evaporation could lead to an

evaluation of several parameters of the energy budget,

including the minimum resistances, or the ratio
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Fig. 8. Temporal evolutions of both estimates of Stress Factor for the

B124 wheat site together with rainfall and irrigation: the observed

Stress Factor S = 1 � LE/LEp (LE is the actual observed evaporation

rate, LEp is the potential evaporation rate computed with the simple

‘‘big leaf’’ model) and the empirical relationship S ffi (Ts � Tsp)/10

(where Ts is the observed surface temperature measured by the

thermoradiometer and Tsp the unstressed surface temperature com-

puted with the simple ‘‘big leaf’’ model). The dashed rectangle shows

the period for which the largest discrepancy between both estimates

could be in favour of the empirical relationship: the low values around

S = 0 are consistent with the number of rain events in that period.
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between the roughness lengths for momentum and

sensible heat, or testing whether in unstressed

conditions the atmosphere is always near-neutral;

this should allow us to get rid of biases in this period

more efficiently than assimilating Ts at any time.

2. Since Ts � Tsp increases sharply when the surface

enters the second stage of evaporation, trend analysis

can be used to assess the starting point of this second

stage. Time-to-stress depends on water diffusion in the

soil; knowledge of the time-to-stress can thus be used

to assess the soil hydrodynamic properties, or the

equivalent parameterization of stress in more con-

ceptual models. In models like SVATsimple (Boulet

et al., 1999), time-to-stress is analytically related to the

hydrodynamical parameters, the initial water content

and lEp. Hydrodynamical parameters can thus be

analytically inverted from time-to-stress, initial water

content and lEp estimates, which saves complex

calibration procedures in a data assimilation prospec-

tive (Demarty et al., 2004): if lEp is correct, then one

can concentrate on hydrodynamical parameter esti-

mation during the second stage of evaporation,

contrarily to classical ‘‘automatic’’ assimilation

schemes, which use Ts directly as an input at all time.

For the experimentalist, the generality of simple

empirical indices of the form S ffi (Ts � Tsp)/u is a

promising research avenue. Simple models such as the

one presented here could be used to derive Tsp. It could

be interesting as well to test its performance for a wider

range of vegetation types, such as clumped grass, or

small shrubs, and to very heterogeneous terrains, prior

to its application at larger scales.

Finally, this proof-of-concept is supporting the

interest for satellite mission proposals such as IRSUTE

(Seguin et al., 1999) that would provide estimates of the

surface temperature with a typical daily revisit period.

Indeed, with current satellite revisit capabilities at the

�100 m pixel resolution (a resolution compatible with

most agronomical applications), successive acquisitions

of TIR images are interspaced with large periods of time

(�15 days) which can include several rainfall events.

Some satellites offer a higher revisit frequency, but for a

much coarser resolution (of the order of 1 km) often

incompatible with the scale of application. Therefore,

using radiation fluxes, albedo, emissivity, and LAI

values deduced from the existing frequent (every 2–3

days) high and low resolution Remote-Sensing data

would help to derive maps of unstressed temperatures

only if it could be combined with series of observed

surface temperature images from a high-resolution IRT

sensor such as IRSUTE. Then, estimates of pixel-to-

pixel water stress levels could be derived with the

proposed method once a proper u value is specified.
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Appendix A

The Simple ‘‘big leaf’’ energy balance model

(Boulet et al., 2000).

Tsp is the solution of the following energy balance

equation:

½ð1� asÞRs þ sesðeaT4
a � T4

spÞ�ð1� jðLÞÞ

¼ rcpz

�
Tsp � Ta

raðT spÞ

�
þ rcp

g

�
e�½T0ðTspÞ� � ea

raðTspÞ þ rsðLÞ

�

where r is the air density, cp is the specific heat of air at

constant pressure, as is the surface albedo, Rs the

incoming solar radiation, es the surface emissivity, ea

the air emissivity, s the Stefan–Boltzman constant, Ta

the air temperature, soil heat flux G is a fraction j(L)

of the net radiation Rn depending on the Leaf Area

Index (L), T0 is the aerodynamic temperature,

z ¼ ðT0p � TaÞ=ðT sp � TaÞ ¼ ðe� 1Þ=ðey=ðy�LÞ � 1Þ
relates T0 to the surface temperature Tsp according to L

and an empirical parameter y (Chehbouni et al., 1997),

ra = ra0(1/(1 + Ri(T0p � Ta)))
h is the aerodynamic resis-

tance relating the aerodynamic resistance without sta-

bility correction ra0 to the Richardson number Ri which

is a function of the Tsp � Ta difference, h = 0.75 in

unstable conditions and h = 2 in stable conditions, e*

is the saturation vapour pressure at a given temperature,

ea is the current air vapour pressure,

rsðLÞ ¼
rcmin

L if L< 1

rcmin
=L if L� 1

�
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is the surface resistance and rcmin
the minimum stomatal

resistance.

One can note that with the above notations lEp ¼
rcp

g
ððe�ðT0ðTspÞÞ � eaÞ=ðraðT spÞ þ rsðLÞÞÞ
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