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While sea-level rise will generate major reshaping of coasts in the next decades 1,2, 

severe or catastrophic coastal erosion is commonly generated by local to regional 
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factors among which are variations in sediment supply 3, natural or human-

induced subsidence, especially in deltaic areas subject to cyclones 4,5, and tsunami 

6. Here, we confirm the hypothesis of 7 and show from satellite imagery that the 

fluctuations of the 1500 km-long muddy coast of South America between the 

Amazon and the Orinoco rivers have been governed primarily by the lunar 18.6 

year nodal cycle over the last twenty years, with sea-level fluctuations from global 

warming or Niño Niña events being of secondary importance. From now to 2015, 

the predictable 18.6 cycle will lead to an approximate mean high water sea-level 

rise of 6 cm on the Amazon-Orinoco coast, compared to a more than 2 cm rise due 

to global warming, and will generate sixty percent of a projected 150 m shoreline 

retreat in French Guiana. Many of the world’s coasts will experience a tide 

constituent-induced rise in sea-level exceeding ten centimetres over the next 

decade.  

 

The low-frequency tide constituent results from the rotation of the nodal points of the 

lunar orbit and the ecliptic (the solar orbit) with a periodicity of 18.6134 yr 8,9. By 

modifying the tidal amplitude by about 3%, this predictable phenomenon modulates the 

mean high water level by several centimetres. A full investigation of the hypothesis of 7 

requires the periodic update of shoreline positions over significant spatial scales, a task 

greatly facilitated by the development of the monitoring of Earth from space over the 

last several decades. It also requires working on pristine coastlines, a rather rare 

situation worldwide, but one perfectly met by the muddy Amazon-Orinoco coast, 

referred to as the Guyanas coast. This is especially true of French Guiana, which is 

completely devoid of shoreline defences and groundwater or petroleum extraction 

activities that could generate subsidence. Thus, the dramatic changes exhibited by this 

coast are solely under the influence of natural processes, the most significant of which is 
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the migration of 1.0-1.5 108 tons per year of mud that moves as mud banks from the 

Amazon to the Orinoco 10,11,12 (suppl. Info: Fig. 1). Another important attribute in terms 

of shoreline change is the flatness of this coast. With mean intertidal slopes ranging 

from 1:1000 to 1:3000, a mean sea-level elevation of 10 cm can result in flooding of 

thousands of hectares of mangrove forest and may induce a shoreline retreat of 100 to 

300 m. A last important characteristic of this coast is the rapid adaptation to changes. 

Avicennia germinans is the only mangrove species that has developed a strategy of 

colonization that is sufficiently rapid as to take advantage of the substrate provided by 

the migrating mud banks. A. germinans tree communities can be wiped out extensively 

during interbank phases, but can reappear in the same proportions within a period of 

two years. The seaward limit of mangrove swamps makes a reliable ground level 

marker because mangrove seedlings colonize the leading edge of the mud banks, at a 

preferential level controlled by tidal characteristics. It is the best estimate for the 

shoreline position. If the mhwl is fluctuating, the mangrove response should indicate 

this through large-scale progradation and erosion 13. Yet, there are clearly other 

processes than the nodal cycle at work, among which are the sea-level rise due to the 

expansion of the global ocean volume, the sea-level fluctuations under the influence of 

the El Niño Southern Oscillation (ENSO) and the Amazon sedimentary discharge 

fluctuations. These major processes are considered in the present work. 

Sixty satellite images covering 39 dates from October 20, 1986 to January 15, 2006 

were used to assess shoreline dynamics in French Guiana (suppl. Info: Table). 

Following 14, the shoreline boundary was conservatively considered to be the limit of 

mangrove vegetation in order to compensate for the effects of the 2–3 m semi-diurnal 

tide in the area. Data were interpolated linearly, using the method developed by 15,  to 
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provide a data matrix regularly distributed in time and space (Fig. 1a). Cubic and 

nearest interpolators provide similar results (suppl. Info: Fig. 2). To extrapolate our 

approach at a regional scale, we generated three mosaics of the Guyanas coast (black 

box in Fig. 3) for the years 1999, 1995, and 2006. This database is the most 

comprehensive one ever set up to study the coastal processes of the region. 

 

Figure 1. 

 

The shoreline of French Guiana exhibits five alternating sectors of mangrove 

colonization and erosion each 30-40 km long (Fig. 1a). These sectors tend to shift north-

westward and constitute the fingerprint of mud banks in migration from Brazil to 

Surinam (at a rate of 1-3 km y-1). The most dynamic spatial variations are observed 

between 570 km and 650 km from the Amazon. In this region, some areas suffered 

erosion of more than 2 km while others prograded over more than 3 km in twenty years. 

Hot spots of shoreline changes also developed at the river mouths (Fig. 1a, triangles on 

right y axis) as a result of complex geomorphic adaptations to sea-level fluctuations and 

longshore sediment transport 1,16-18. As these river-mouth sectors correspond to only 5% 

of the coastline, we have decided to include them in the calculation of the mean 

shoreline fluctuations over time (Fig. 1b). In the late 1980s, the mangrove fringe was 

wider and corresponded to an average distance seaward of 100-130 m relative to its 

current position. It then suffered severe erosion up to 1999-2000, at a rate of about 30 m 

y-1. This severe erosional phase was then followed by another spectacular period during 

which the coast prograded by about 200 m to attain its current position (Fig. 1b). 

Following the method proposed by 10 and adapted by 14, the quantitative 
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erosion/accretion of mangrove surfaces presented in Fig. 1b can be converted to 

estimates of sediment volumes. Over the 1988-1999 period, the coastal sediment 

balance lacked approximately 37 MT y-1 so that the shoreline retreated. The trend has 

reversed since 2000 with an estimated excess in shoreline sediment  of 35 MT y-1. This 

massive progradation event is not unique and a similar event was observed in 

neighbouring Surinam from 1966 to 1970 19. More generally, it appears that periods of 

erosion and progradation monitored by 20 and 19 and the ones reported in the present 

work indeed correlate with the 18.6 y nodal cycle and emphasise the plausibility of the 

hypothesis of 7 (Fig. 1c). 

Taking the analysis one step further requires examination of the main sources of 

forcing, among which is the Amazon River. Alone, it accounts for 10% of the total 

sediment discharge supplied by the world’s rivers to the oceans 21 and almost all of the 

sediment along the coast of Guyanas 22. Since 2000, the suspended sediment discharge 

of the Amazon has increased by about 18% (as compared to the 1996-99 period of 

reference 23). This increase will probably reinforce the sediment supply along the coast 

of French Guiana in the near future but it is very unlikely to be responsible for the phase 

of colonization under progress since 2000. First, the Amazon sediment inputs are 

usually reworked on the continental shelf and sequestered along the coastal zones of the 

north of Brazil for several years before being transported north-westward 24. Secondly, 

even if the input to the mud bank system was instantaneous, it would have added only 

about 10-15 MT y-1 if we assume a direct and proportional adjustment of the regional 

sediment fluxes 11. This value is five times lower than the 72 MT y-1 that sparked the 

change from erosion to accretion in 2000 (Fig. 1b ; suppl. Info: Fig. 3). Finally, the 

migration rate of mud banks in French Guiana is in the range of 1-3 km y-1. If the 
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increase in the Amazon discharge was the main factor explaining the shoreline 

progradation observed in French Guiana over the last seven years, then major areas of 

pioneer mangroves should have developed to the east closer to the source. This major 

colonisation is not observed in Fig. 1a. Three forcing mechanisms, namely the nodal 

cycle, sea-level rise by global warming, and the El Niño Southern Oscillation interact to 

modulate the mhwl. Considering the mhwl instead of the mwl significantly modifies our 

apprehension of the shoreline dynamics, as shown in Fig. 2a. The mhwl (Fig. 2a, blue 

curve) increases almost linearly up to 1996, and then undergoes strong fluctuations from 

1997 to 1998. These fluctuations are the local signature of the major ENSO 1997-1998 

event. From the end of 1998 to early 2003, the mhwl decreases by about 4 cm. It rises 

again from that date. 

 

Figure 2.  

 

By making the assumption that the horizontal shoreline fluctuations correspond at 

such a timescale to a simple adjustment of the ecosystem to the cross-shore vertical 

fluctuations, and by considering a mean intertidal shoreline slope of 1:2000, we can 

easily compare the measured shoreline fluctuations with those expected from long-term 

mhwl fluctuations (Fig. 2b, pink, green curves and the grey curve, respectively). We 

obtain an overall fit that confirms the predominant role played by the lunar 18.6 year 

nodal cycle, as hypothesised by 7. It appears clearly that the mean sea-level rise 

attributed to global warming (dashed line) contributes to shoreline fluctuations over 

time (coefficient of determination r2=0.24 with a confidence level >99%), but to a lesser 

extent than the nodal cycle (r2=0.68, with a CL >99%). The two effects combined (sea-
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level rise of 2.3 mm y-1 and nodal cycle) are nicely correlated to the French Guiana 

shoreline fluctuations (r2=0.90, with a CL >99%). Results are comparable when 

considering mean intertidal slopes in the range 1:1500 – 1:2500 (relative difference of 

5% and 8%, respectively). At a regional scale, the shoreline dynamics exhibits the same 

trend, as highlighted by the agreement between the data from French Guiana and the 

three mosaics covering the Guyanas coast (circles). 

El Niño phases have also visible impacts on the shoreline, enhancing erosion just 

after the 1997-1998 event and even after the 1991-1993 event, although to a much 

weaker extent (Fig. 2b). The 1997-1998 event caused one of the most severe droughts of 

the 19th century in the Guyanas, with major consequences on the ecosystem 25-27, while 

engendering unprecedented erosion of the few sandy pocket beaches in French Guiana 

28. It is interesting to note that after a time of resiliency of about three years, the mean 

shoreline position resumes the trend defined by the coupled effect of the nodal cycle and 

sea-level rise by global warming. 

 

Figure 3.  

 

This study confirms the hypothesis of 7 that low tidal constituents are a major 

controlling factor in the evolution of the very gently sloping muddy coastal plain and 

shoreface of the Guyanas. While tides have no effect on the long-term sea-level trend, 

they induce important fluctuations of the mhwl, when considering decadal timescales. 

As this timescale is particularly important for shoreline management and for policy 

makers, it is crucial to highlight the shoreline fluctuations associated with the 18.6 year 

cycle. From now to 2015, the coast of the Guyanas, is expected to retreat by about 150 
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metres, 60% of this retreat resulting from the effect of the low-frequency tide 

constituents and 40% from sea-level rise due to global change. The nodal tidal cycle has 

a predictable effect on the tidal amplitude everywhere. It modulates the tidal amplitude 

by about 3% so that regions experiencing macro-tidal regimes are particularly 

concerned. Over the next decade, many coastal areas in Australia, Canada, China, 

England and France will experience a sea-level rise of several tens of centimetres due to 

the 18.6 tidal cycle (Fig. 3). This rise will certainly contribute significantly to coastal 

erosion generated by global sea-level rise. 
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Figures 

 

 

 

Figure 1. Spatio-temporal fluctuations of the shoreline and of the tide levels in 

French Guiana. a, Relative shoreline position (RSP, cross-shore) of the coast of 

French Guiana using the year 2006 as the reference year. Blue and red areas 

are associated with progradation and erosion, respectively. Triangles indicate 

the positions of the main river mouths. Black triangles and dashed lines delimit 

international borders. b, The curve represents the relative shoreline position 

when averaged over the 220 km long area of survey. The thickness is 

representative of the accuracy (±20 m). c, Nodal cycles of the mhwl in Surinam 

and French Guiana. From 1958 to 1978, tidal gauge measurements in the 

mouth of the Surinam river 7; from 1979 to the present, data from the tidal 
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model of the Service Hydrographique et Océanographique de la Marine 

(SHOM, France www.shom.fr/ann_marees) obtained from tidal gauge 

measurements on Devil’s Islands (French Guiana). The corresponding phases 

of overall erosion and colonization reported by previous studies 18,19 and in this 

work are shown as red and green patches. 

 

 

 

Figure 2. Measured and estimated shoreline fluctuations along the Guyanas 

coast. a, Temporal fluctuations of the mean water level (mwl) and of the mean 

high water level as estimated from Ssalto/Duacs © products. b, Measured (pink 

curve = erosional phase and green curve = accretional phase) and expected 

(grey and blue curves) shoreline fluctuations along French Guiana, using 2006 

as the reference year. The white dots indicate the measured regional trend, 

when considering the 1500 km long Guyanas coast. 
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Figure 3. Predicted shifting of the mhwl under the 18.6 year nodal cycle for the 

next decade (adapted from the global map of tidal amplitude proposed by 29 by 

considering a modulation of signal of 3%). Grey areas correspond to locations 

of decrease or negligible rise. The black box (48W-62W-2N-12N) delimits the 

mud bank system of the Guyanas, South America. 

 

 


