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Abstract 
We consider a two-patch epidemiological system where individuals can move from one patch 

to another, and local interactions between the individuals within a patch are governed by the 
classical SIRS model. When the time-scale associated with migration is much smaller than the 
time-scale associated with infection, aggregation methods can be used to simplify the initial 
complete model formulated as a system of ordinary differential equations. Analysis of the 
aggregated model then shows that the two-patch basic reproduction rate is smaller than the 1 patch 
one. We extend this result to a linear chain of P patches (P>2). These results are illustrated by 
some examples for which numerical integration of the system of ordinary differential equations is 
performed. Simulations of an individual based model implemented with a multi-agent system are 
also carried out. 

Keywords: SIRS model, two-patch system, linear chain of patches, fast migration, 
aggregation of variables, basic reproduction rate, individual based model, multi-
agent simulations. 

1.  Introduction 
 A simple approach for the analysis of the spread of infectious diseases, is the 
classical SIR model initially studied by Hamer (1906), Ross (1911), Kermack and 
McKEndrick (1927). The main assumption of this model is that a population in 
which a pathogenic agent is active, can be divided into three distinct 
compartments corresponding to different epidemiological status. The first 
compartment is made of the susceptible (S), i.e. the healthy individuals who can 
catch the disease and are therefore said to be susceptible to infection. The second 
compartment is composed of infective (I) individuals who are infected and are 
capable of transmitting the infection. The third compartment consists of recovered 
(R) individuals who, after being infected, have recovered from the infection. It is 
important to note that in this model, recovery implies permanent or temporary 
immunity. In the latter case the removed individuals return to the susceptible 
compartment and we obtain the SIRS model illustrated by the transfer diagram of 
figure 1b. In the case where recovery implies permanent immunity, we obtain the 
SIR model illustrated in figure 1a.  In both cases, it is generally assumed that the 
total population is constant. As a consequence, at any time t, the number of 
susceptible S(t), infective I(t) and recovered R(t) are such that S(t) + I(t) + R(t) = 
N. Hereafter, we shall concentrate on the SIRS model. 
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An infection can occur through a contact between a susceptible and an 
infective individual. It is assumed that the various classes of individuals are 
uniformly mixed, i.e. every pair of susceptible and infective individuals has equal 
probability to come into contact. The system of ordinary differential equations 
below describes the time evolution of the population density variables: 
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where 0>β  is the proportion of contacts inducing infection, called the infection 
rate, δ  is the recovery rate and γ  is the rate at which recovered individuals 
become susceptible again.  

For any t, the total population N = S(t) + I(t) + R(t) remains constant. 
Substituting N - S(t) - I(t) to R(t) leads to the following reduced system. 
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It is well known that this couple of ordinary differential equations has two 
equilibriums: the disease-free equilibrium ( ),0N  and the endemic equilibrium 
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A critical threshold for the study of the dynamics of SIRS models is the basic 
reproduction rate which is the average number of secondary infections that can 
arise from a single primary case. For the analytical model introduced above, 

δ
βNR =0 . Moreover, local stability analysis shows that :  

 if R0<1, then the disease-free equilibrium is locally asymptotically stable, i.e. 
starting from an initial primary infection in a host population composed of 
sane individuals, the infection dies out, or equivalently no epidemic occurs.  

 if R0>1, then the endemic equilibrium is locally asymptotically stable, i.e. an 
initial primary infection leads to an epidemic which spreads and persists. 

In this paper, we consider an environment consisting of two patches with 
migration between them. On each patch, local epidemiological dynamics is 
described by the previous SIRS model with the same parameters. Dispersion 
among patches is represented by migration with constant proportions of migrants. 
We shall show that if the migration process is much faster than the 
epidemiological process, i.e. if the time-scales associated with migration and 
epidemics are not of the same order, then aggregation methods can be used to 
derive an equivalent simplified model describing the dynamics of the total sane 
and infective populations. Moreover we show that 2

0 0R R≤ , where 2
0R  is the basic 

reproduction rate of the aggregated model corresponding to the system of two 
patches connected by fast migration, and 0R  is the previous basic reproduction 
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rate which corresponds to the case of a single patch or to a system of two patches 
when the migration are not allowed and the total population is initially present on 
the same patch. To be precise, we shall refer to: 

• 0R  as the single or 1-patch basic reproduction rate, 
• 2

0R  as the 2-patch basic reproduction rate. 
Furthermore, we exhibit situations where 0R  > 1, i.e. an initial primary infection 
can invade and persist in the host population on a single isolated patch, and 2

0R < 
1, i.e. the disease cannot persist when the population extend on two patches with 
fast migration. This result is extended to the case of linearly connected patches. 
Illustrations are given through examples for which numerical integration of the 
systems of ordinary differential equations is performed. We also introduce an 
individual based model implemented with a multi-agent system, which leads to 
simulations that are quite consistent with the numerical results derived from the 
analytical model. 
 

(a) (b) 
 

Figure 1: Transition graph for the SIR (a) and SIRS (b) models 

2. Description of the Model 

2.1  The complete model 

Now, we consider a two-patch system with the same parameters. We assume 
that individuals can move from one patch to the other.  

 
Figure 2: Transition graph in a two-patch system for the SIRS model 

 
We consider the two-patch SIRS model illustrated in figure 2. Each patch 

corresponds to the classical SIRS model with the same parameters ( γδβ ,, ). This 
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is consistent with the fact that in real situations, the characteristics of the disease 
do not depend on the patch. The vertical arrows represent the migration process 
which is assumed to proceed with constant proportions. Let us denote (S1,S2), 
(I1,I2) and (R1,R2) respectively the populations of susceptible, infective and 
recovered individuals, with index indicating the patch number. Assuming that the 
time scales for migration and infection are τ  and t respectively, with ετ=t , the 
combined effect of the two processes involved in the two-patch model can be 
described as follows:  
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In these equations, the first terms represent the migration of individuals 
between the two patches and the second terms represent the infection process, 
where ε is a dimensionless parameter. Hereafter, we assume that the migration 
time-scale is much faster than the infection time-scale, i-e, 1<<ε .  

2.2  The aggregated model 

When the migration process is much faster than the infection process, we can 
use aggregation methods to get a reduced model. This aggregated model describes 
the evolution over time of the total susceptible, infective and recovered 
populations and is obtained in two steps. First, we neglect the infection process 
since 1<<ε  and we study the migration process. This is equivalent to setting 

0=ε in (3). The fast equilibrium is quite easy to compute and is given by the 
following expressions:  
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In these expressions, *
1ν  (resp. *

2ν ) is the proportion of susceptible individuals at 
the fast equilibrium on patch 1 (resp. 2). Similarly, *

1µ  (resp. *
2µ ) and *

1η  (resp. 
*
2η ) are respectively the proportions of infective and recovered individuals on 

patch 1 (resp. 2).  
It is easily seen that  

1*
2
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2
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(4) 
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 Substituting this fast equilibrium into the complete model (3) leads to the 
following aggregated model governing the total susceptible and infective 
densities:  
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This aggregated model corresponds to a SIRS system where )()()( 21 tStStS += , 
)()()( 21 tItItI += , N is the total density of the population  and 
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2.3   Analysis of the aggregated model 

Following the classical results established for SIRS models, the aggregated model 
(6) has two equilibriums: the disease-free equilibrium ( ),0N  and the endemic 
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The basic reproduction rate of the aggregated model is 2
0R Nφ

δ
= . As a 

consequence, as a result of Eq. (8), we always have:   
2
0 0R R≤       (10) 

This shows that in case of fast migration, the 2-patch basic reproduction rate is 
always smaller or equal to the single-patch one. This is an interesting result which 
says that if the migration time-scale is much faster than the infection time-scale, 
then the dynamics of two connected patches with the same parameters is not 
identical to the dynamics of the single patch system. An interesting question 
concerns the existence of some particular parameters leading to an aggregated 
model which exhibits dynamics qualitatively different from the behaviour of the 
single patch system. This question will be answered in the next paragraph. 

2.4 Influence of the spatial distributions of susceptible and 
infective individuals on 2

0R  

In this paragraph, we assume that we have a two-patch system with fast 
migration. The 2-patch basic reproduction rate 2

0R  can be expressed in terms of 
the 1-patch basic reproduction rate and the proportions of susceptible and 
infective individuals on each patch as follows: 
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Let us now consider a particular case where the 1-patch basic reproduction 
rate is bigger than 1, i-e R0>1. In other words, we assume that if the total 
population is initialy located on a single patch and cannot migrate, the endemic 
equilibrium is stable. We shall now look for specific spatial distributions of 
susceptible and infective individuals at the fast equilibrium, that lead to a 2-patch 
reproduction rate which is lower than 1. This will correspond to the behaviour of 
an aggregated system that is qualitatively different from that of the 1-patch model. 
This situation occurs when: 

( )2 * * * *
0 0 1 1 1 1R 1 2 1R ν µ ν µ= − − + <    (12) 

For example, if we assume a fixed spatial distribution for infective 
individuals, in order to have a 2-patch reproduction rate smaller than 1, 
susceptible individuals should distribute among the two patches according to the 
following inequalities: 
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This situation is illustrated in figure 3 where it is assumed that 
2
1

<
β
δ

N
 , i-e 

R0>2. One can distinguish regions where the 2-patch basic reproduction rate is 
either bigger or lower than 1. These regions depend on the proportions of 
susceptible and infective individuals on patch 1. 

 
Figure 3:  R0>2. Behaviour of 2

0R as a function of *
1ν and *

1µ . 
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There are two interesting regions, the upper left and the lower right, where the 

disease-free equilibrium is stable. These regions correspond to opposite spatial 
repartition for susceptible and infective individuals. In the upper left domain, most 
susceptible individuals are located on patch 1 and infective individuals on patch 2. 
As a consequence, the possible contacts between the susceptible individuals and 
the infective are reduced considerably. The lower right region corresponds to the 
inverse situation. Thus, when infective and susceptible individuals are mostly 
located on different patches, the disease-free equilibrium is stable. 

 
Figure 4: 1<R0<2. Behaviour of 2

0R as a function of *
1ν and *

1µ . 

 
Figure 4 shows the behaviour of 2

0R  as a function of *
1ν and *

1µ  when 
1<R0<2. We obtain two regions, lower left and upper right, where the endemic 
equilibrium is stable in the two-patch system. This happens when both *

1ν and *
1µ  

are small or both *
1ν and *

1µ  are close to 1. In the first case, almost all individuals 
are located in patch 2 whereas in the second case, almost all individuals are 
located in patch 1.  

2.5   The case of a system of linearly connected patches 

Let us consider a system of P linearly connected patches, P>2, with fast 
migration between patches. The aggregation technique can be used to show that  
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Where 0
PR  corresponds to the P-patch system. Hence, 0 0

PR R≤ . This shows 
that as for the 2-patch system, the global basic reproduction rate is lower than the 
1-patch one. In the particular case where in the fast equilibrium, the infected as 
well as the susceptible individuals distribute equally among patches, i.e 

Pii
1** == µν  for i=1, …, P, it can be shown that:  

0
0
P R NR

P P
β
δ

= =      (15) 

This shows that,  
• If the total population is bigger, the epidemic is more likely to spread out. 
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• If the number of patches is bigger, the stability of the disease-free state of 
the aggregated model is more likely to occur and the epidemic to vanish.  

As we have seen for the two-patch system, the decrease of 0
PR  as the number of 

patches increases is even accentuated in the case of a fast equilibrium which 
yields a non balanced spatial distribution for susceptible and infective individuals. 
 
This is a general trend in Ecology: the increase of the number of patches can have 
important consequences on the global behaviour of the system. This was shown 
for example in the context of a multi-patch host-parasitoid community. In the 
single patch case, when the Nicholson-Bailey model is used to describe local 
interactions between the two species, the host and parasitoid community cannot 
persist. However, in (Hassell et al. (1991a), (1991b)), the authors have shown that 
when the number of patches is increased, the community can persist. Our work 
shows similar results, i.e. that the number of patches has also an important effect 
on the dynamics of the system of connected patches. When the number of patches 
is increased, the dynamics is more likely to reach a disease free equilibrium. 

3. The Individual Based Model 
As explained in a recent paper (Gregory (2006)), the individual based-model 

is a philosophy that embraces the uniqueness of the individuals in a system. In this 
model, simulations are based on multiple individuals, each having its own set of 
variable parameters. In this way, it is possible to represent characteristics such as 
species, age, infectious status as well as events like movement and contacts 
between individuals. With this definition, SIRS systems appear to be good 
candidates for individual based models. Clearly, in our context here, we don’t 
need the full power of the individual based model because of the simplicity of the 
behaviour of the individuals. However, the system under development is intended 
to be used in more complex epidemiological situations. This is why we have 
decided to develop a simulator based on the well known multi-agent environment 
Cormas (Bousquet et al. (1998)).  

3.1 Description of the simulator 

An agent needs attributes representing its patch number and its infection 
status. At each step, the simulation proceeds in two phases: the infection process, 
followed by the migration process.  

The infection process is simulated by applying to all the susceptible 
individuals, the following procedure: pick a random number r in the interval [0,1]. 
If Ir β≤ , then the corresponding individual becomes infected, otherwise it 
remains susceptible. The transfer from the infective to the recovered and from the 
recovered to the susceptible is treated according to a procedure similar to the 
technique used below for migration. 

For the migration phase, the rate k1 of migration from patch 1 to patch 2 is 
simulated by applying in parallel to all the individuals of patch 1 the following 
procedure: pick a random number r in the interval [0,1] and move the concerned 
individual from patch 1 to patch 2 if 1kr ≤ , otherwise that individual remains in 
patch 1.  
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4. Numerical Results 

A two-patch system is characterized by the following parameters: β ,δ ,γ , k1, 
k2, m1, m2, n1, n2, N.  

Case 1. This case corresponds to table 1 below. It can be shown that  
2
0R <1 and R0>1. 
 
 
 

Table 1 : The parameter values of simulations 
 

Figure 5.a presents the phase trajectories in the susceptible-infective phase 
plane for the aggregated model. It can be seen that the disease-free equilibrium 
(S,I)=(350,0) is stable and this is consistent with the fact that 2

0R <1. Figures 5.b 
and 5.c give the results of IbM simulations starting from (S,I,R)= (100,250,0) for 
the aggregated model and from (S1, I1, R1)=(75, 100, 0) and (S2, I2, R2)=(25, 150, 
0) for the complete model respectively. It can be seen that these curves match with 
the analytical results. 

Figure 5.d presents the phase trajectories in the susceptible-infective phase 
plane for the 1-patch model. It can be seen that the endemic equilibrium 
(S*,I*)=(71,139) is stable and this is consistent with the fact that R0>1. Figure 5.e 
gives the curves of the susceptible and infective for the IbM simulation starting 
from (S,I,R)=(100,250,0) in the 1-patch model. The convergence is not as obvious 
as in figures 5b and 5c. However, the long term evolution presents oscillations 
around the endemic equilibrium point (S*,I*)=(71,139). 

 

 
 

(a) Phase trajectories in the I-S plane for the 
aggregated model 

(b) An IbM evolution of infective and 
susceptible for the aggregated model 

  
  

 

 
(c) An IbM evolution of infective and 

susceptible for the 2-patch complete 
model 

(d) Phase trajectories in the I-S plane for the 
local model 

Parameter β  δ  γ  k1 k2 m1 m2 n1 n2 N ε  
Value 0.005 0.9 0.9 0.2 0.9 0.8 0.1 0.25 0.35 350 0.01 
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(e) An IbM evolution of infective and susceptible for the local model 

 
Figure 5: Analytic and IbM simulations for case 1 

 
Case 2. This case is obtained from case 1 by changing β  to 0.05.  Here 2

0R >1 
and R0>1. 
Figure 6.a presents the phase trajectories in the susceptible-infective phase plane 
for the aggregated model. It can be seen that the endemic equilibrium is stable. 
Figure 6b illustrates the validity of the IbM model. Indeed, the evolutions of 
figure 6b show an example where the IbM simulation leads to the endemic 
equilibrium predicted by the aggregated model. Moreover, figures 6c and 6d 
which give the evolution of the distributions of susceptible and infective in the 
two patches for the complete IbM model, are consistent with the fast equilibrium 
of the analytical aggregated model. Indeed, the sum of the susceptible of patch 1 
(upper curve of figure 6c) and the susceptible of patch 2 (lower curve of figure 6c) 
corresponds to the susceptible in the total population (lower curve of figure 6b). 
Similarly, the sum of the infective of patch 1 (lower curve of figure 6d) and the 
infective of patch 2 (upper curve of figure 6d) corresponds to the infective in the 
total population (upper curve of figure 6b). 
 

 

 

(a) Phase trajectories in the I-S plane for 
the aggregated model 

(b) IbM evolution of infective and susceptible for 
the aggregated model 

  

     
(c) IbM evolution of susceptible in patch 1 

and 2 for the complete model  
(d) IbM evolution of infective in patch 1 and 2 for 

the complete model 
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Figure 6: Analytic and IbM simulations of aggregated and complete model for 2
0R >1  

  
These simulations show clearly that for the examples treated, the IbM Model 

produces numerical results which are consistent with the analytical solutions. 
However, this consistency is more qualitative than quantitative. Indeed, as we 
have seen, analytical convergence can be represented in the IbM model by 
oscillations around the limit value.  

4. Conclusion 
In this paper, we have studied a system consisting of two SIRS patches with 

the same parameters. We have shown that if the time-scale associated with 
migration is much smaller than the time-scale associated with infection, 
aggregation methods can be used to simplify the initial complete model 
formulated as a system of ordinary differential equations. Analysis of the 
aggregated model then shows that the multi-patch basic reproduction rate is 
smaller than the 1-patch one. We have even exhibited examples where the 
endemic equilibrium is stable in the 1-patch model while the disease free 
equilibrium is stable in the multi-patch one. A structural change in the global 
behaviour of a system as one goes from a single to a multi-patch environment has 
also been observed in the Nicholson and Bailey host-parasitoid model by 
Hassell(1997, 2000a,b) and Lett (2003). In the future, we will consider a spatial 
SIRS model with patches distributed on a square lattice. The results of Nguyen-
Huu (2006) indicate that in this context, we may see the emergence of new 
phenomena.  

Another contribution of this paper is the design of an individual based model 
which leads to simulations that are qualitatively consistent with the analytical 
results. It is hoped that in circumstances where analytical results are not available, 
the simulations carried out with an IbM model can guide us in the study of the 
qualitative behaviour of patchy SIRS sytems. 
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