
Institut National Institut National 
des Sols du Togodes Sols du Togo

Relating the soil colour variables to WLG. From the Soil Database and a small 
data processing program, we found the SVs corresponding to the spatial coordinates of 
each computed WLG points. T hese connections gave 8  sets of 574 pairs of data relating a 
colour  var iable data with a WLG data. We finally analysed these sets in search of possible 
linear or non linear regression models, and we statistically compared how well the models 
fitted the data.
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Obtaining variables derived from soil colour. The Munsell colours (value V, 
Chroma C and Hue H) of the uncemented phases of each Soil volume (SV) were assessed 
from air dried samples, under constant light conditions, then introduced in our soil 
database (cf. picture 1 .a). Hues were converted into angular  hues H°, in degrees, 
according to their  position in the Munsell colour space (cf. figure 4 ) and equation 1 : H ° = 
36 + (I1 + I2/10) (1) where I1 is the numerical coding of  the Munsell hue segment (eg.  0 for R; 1 
for YR  ;  etc.) and I 2 the number associa ted with the  hue (e.g. 2.5 for 2.5 YR; 5 for 5 YR;  etc.).
Redness ratings RR (Torrent et al., 1980 & 1983) were also calculated following equation 
2 : RR = C.[10-((5 .H°/18)-10)]/V (2).

Finally, four “main colour” var iables were obtained for each SV, from the main 
uncemented phase (Vphase1, Cphase1, H °phase1, and RRphase1); and four “mean colour” variables 
following equation 3 : Mean Color variable = Σ ( αι . Colvi) (3) ,where Colvi are  the values of  
a  color variable for each uncemented phase, and αi the weighted proportions of theses phases.
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Computing mean annual soil waterlogging rate WLG. T he mean soil 
water logging rate WLG at given points in the toposequence was computed from our 
piezometr ic database (cf. picture 1 .b), and equation 4 : WLGxi,zi = 100. [ΣN/(n.365)] (4)
where xi, zi are  the  spatial coordinates of the point, ΣN is the number of  days during which the  
water table reached this po int, and n is the number of years for which measurements were taken 
(here n =3). WLG was calculated at vertical intervals of 10 cm for each hydropedological
stations, which involved more than 1O6 readings of the water table level by a specific 
data-processing program. 
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ABSTRACT
The duration of soil waterlogging by phreatic or perched groundwater is a decisive parameter for agricultural or forestry development on hillsides of the West African granito-gneissic bedrock, as it can 
vary widely over short distance. However, existing methods (eg. piezometer monitoring or remote microwave sensing)  do not give ready access to this parameter, as they involve numerous measurements 
or remain imprecise. On the assumption that soil colour, which depends on the types of soil constituents,  and the waterlogging conditions, could give relatively low cost and low time-consuming indicators 
of the duration of soil waterlogging on these hillsides, we studied the soil and water table variations  on a selected catena in central Togo, during three annual cycles. Data collected allowed to establish 
statistical relationships  between the mean annual rate of soil waterlogging (WLG) and several  soil colour variables. The two most significant relations were those between WLG on one hand, and mean 
angular hue and mean redness rating on the other hand. Within some operational limits, these relationships provided the basis for logistic models predicting the mean annual rate of soil waterlogging.
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granito-gneissic bedrock.
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The study was carried out on a typical hillside of a wide biophysical environment of  West Africa (cf. figure 1) whose 
character istics are i) tropical climate with sharply dry season, ii) bedrock of  granite and gneiss, iii) landform 
consisting of a succession of hillsides and iv) soil mantle organised in catenas with rhodic Ferralsol upslope (red 
ferrallitic soils of  CPCS, 1967), xanthic Lixisol (ferruginous soils) at midslope,  and greenish gleyic Lixisol downslope
(hydromorphic soils). Table 1 gives the main features of the site studied and figure 2 shows the soil catena.

The study was carried out on a typical hillside of a wide biophysical environment of  West Africa (cf. figure 1) whose 
character istics are i) tropical climate with sharply dry season, ii) bedrock of  granite and gneiss, iii) landform 
consisting of a succession of hillsides and iv) soil mantle organised in catenas with rhodic Ferralsol upslope (red 
ferrallitic soils of  CPCS, 1967), xanthic Lixisol (ferruginous soils) at midslope,  and greenish gleyic Lixisol downslope
(hydromorphic soils). Table 1 gives the main features of the site studied and figure 2 shows the soil catena.

19 hydropedological stations were installed on 
the hillside, along a toposequence of 650 m long 
(cf. figure 3). The water table monitor ing 
continued daily through 3  full annual cycles 
(1989-1992). Concurrently, we identified 144 
sub-horizontal elementary soil volumes (called 
SVs) for  the 19 stations, and we recorded their 
vertical boundaries and the proportion of their 
uncemented phase.
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as shown by Figure 5, the mean annual water logging rate (WLG) stayed below 10 % in the 
rhodic Ferrasol domain. It increased at about 1  m depth in the xanthic Lixisol domain, and 
reached its highest values downslope in the gleyic Lixisol domain. Concurrently, the mean hue 
(H°) increased from the rhodic Ferralsol  to the xanthic lixisol domain, while the mean redness 
rating (RR) decreased. The highest hues and lowest redness ratings appeared downslope in 
gleyic Lixisol domain.
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Figure 11. WLG = f(H°) pedotransfer function.Figure 11. WLG = f(H°) pedotransfer function.
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No relationship was found between WLG and the chroma variables (cf. table 2 and figure 6) 
contrary to the value, hue and redness rating var iables. The mean hue H° and the mean redness 
rating RR, which take account of soil mottling, were the best linked to WLG (r  = 0 ,72 for  n = 
574), following logistic regression models.
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Table 2. Relations hips between soi l colour variables  and WLG.Table 2. Relations hips between soi l colour variables  and WLG.
*** = signif icant at 99,9 %

Annual PP :  1138 mm1138 mm

Soil catena   :  cf. figure 2cf. figure 2
Annual T T : 25°C25°C
Annual ETPETP : 1662 mm1662 mm

Localisat ion : DalandaDalanda,,
300 km north of 300 km north of LoméLomé,Togo, ,Togo, 
lat.    8°38’ lat.    8°38’ -- 8°39’N;8°39’N;
long. 1°00’ long. 1°00’ -- 1°01E.1°01E.
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T he [WLG = f(H°)] and [WLG = f(RR)] model curves are sigmoïdal (cf. figures 7 and 8). 
WLG remains very weak below thresholds of H° @ 75 (10  YR-2.5  Y) and RR @ 0,  and  is maximum 
above these thresholds. His maximal uncertainty of prediction is located around these thresholds.
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WLG remains very weak below thresholds of H° @ 75 (10  YR-2.5  Y) and RR @ 0,  and  is maximum 
above these thresholds. His maximal uncertainty of prediction is located around these thresholds.
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Our results show that the mean angular hue (H°) and the mean redness rating (RR) of a soil 
volume, which depend on its colours and mottling, are two potential indicators of his 
waterlogging rate in the 500.000 km2 biophysical environment of this study. As long as no 
recent change occurred in groundwater dynamics, theses indicators could be useful, in this 
case, for fast diagnostics on the soils farming aptitudes.
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