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ABSTRACT 
__________________________________________________________________________________ 
A fishery is simulated in which 20 artificial vessels learn to make decisions through an artificial neural 
network in order to search for schools of fish among the available fishing grounds. Three scenarios 
with different degree of variability, including uncertainty in the searching process, are considered. The 
simulation model accounts for the main features commonly observed in a purse seine tuna fishery in a 
time and a space scales. Vessel strategies are chosen by the artificial neural network, on the basis of 
the following decision criteria: information concerning time searching in a specific area, previous 
performance in this area, knowledge of the quality of surrounding fishing grounds, presence of other 
vessels fishing actively and trip length. An analysis of the effects of sharing information between 
vessels is done and this was compared to individual artificial fishing vessels. In general a group of 
fishing vessels shows higher performance than individual vessels. A convex performance comparison 
curve for several group sizes is found in all scenarios considered. The optimum group size differs 
according to the variability of the artificial world. At bigger group sizes performance decreases, 
probably due to competition and depletion effects of some fishing grounds.   
______________________________________________________________________________ 
Key words: artificial neural networks, individual based model, yellowfin tuna, fishery performance, 
information-sharing.  
 
1. Introduction 
 
Because fishing effort magnitude and distribution is closely related to fishing mortality, recognizing 
the fleet dynamics as a responsive component of the fishery system is a key issue in stock assessment 
studies. Nevertheless most fishery models lack the strength to include human behavior, particularly 
learning as a way to adapt the response strategy and, consequently a fundamental factor in the 
modeling process. Most models include fishing effort in order to build specific rules for moving to 
nearby areas but only as an aggregate variable and in response to local changes in abundance  (Mangel 
and Clark, 1983; Allen and McGlade, 1986; Hilborn and Walters, 1987).  

Several studies intended to understand fishermen behavior at sea with the aid of observer data 
(Gillis et al., 1993; Gaertner et al., 1999) or using simulated data in an individual based modeling 
approach (Millischer, 2000). However, excepting the study by Dreyfus-Leon (1999), learning has not 
commonly been considered in fishery studies.  

It must be emphasized that for fishery management it is important to know how the fleets will 
adjust to changing circumstances because fishermen adapt to regulations in ways that managers cannot 
predict. Another important aspect in several search-based fisheries, such as tuna purse-seine fisheries, 
is communication and sharing information between groups of fishermen (vessels).  
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In this study we present a framework for analyzing the efficiency of information sharing in 
distributed-search process such as a tuna purse seine fishery. We use this model to compare search 
success between vessels with and without information sharing under several regimes of resource 
variation. The decision-making behavior of the vessels is simulated with the aid of an artificial neural 
network (ANN) which seems an ideal tool to represent fishermen behavior at sea as well as the 
decision making process when searching for the resource. The artificial fishermen, “fishermat”, 
hereafter in relation to the term animat used frequently in behaviour-based artificial intelligence field 
(Maes, 1993), decide independently in which area or fishing ground they will allocate their effort. A 
comparison of the performance between a group that share information and independent artificial 
fishermen is performed in three scenarios with fishing grounds differing in variability in two terms: 
location and fish density. These two factors create different levels of uncertainty in fish searching 
operations.  
 
2. Methodology 
 
2.1 Simulated world 
 
A simulated world (Fig. 1) with 25 areas of 50 x 50 pixels is used for the analysis. Some of those areas 
can be potential fishing grounds. Fish recruitment is considered at the beginning of each simulated 
year. Areas of high, medium and low fish density receive each 25%, 16.66% and 8.33% respectively 
of the total annual recruitment.  

 

 
Fig. 1. Simulated world. 

 
Three scenarios with different degrees of recruitment variability among the fishing grounds 

are simulated. In scenario I, only fish density among 2 of the 6 potential fishing grounds changes over 
time with a 0.2 probability. In scenario II the probabilities of recruitment levels are the same than 
those for scenario I, except that recruitment disappears from one of the fishing grounds to appear in a 
nearby area (0.2 probability level). Scenario III has a mixture of the attributes of scenarios I and II, 
therefore presents more variability (0.2 probability level). The attributes of each scenario are described 
in table 1. 

Tuna schools are considered as individual entities of 8 tons each that can move at random 
within a fishing ground without the possibility of moving elsewhere. Since each pixel represents 6 x 6 
nautical miles, according to previously reported tuna speed (Edwards and Kleiber, 1989),  schools 
move every 6 hours in the simulation process.  

Twenty vessels are considered in each simulated scenario, some fish independently and others 
form a group that share information. They all depart from the same port (upper left corner in Fig. 1). 
Vessels stay in port a time assigned at random (between 10 and 20 days, as observed in tuna fisheries). 
Movement is performed in an hourly basis and trip duration is fixed at 45 days. Day and night are also 
considered in the model. If a vessel searching (only during daytime) has the same position of a tuna 
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school, the vessel detects this and the fishing is performed (it is assumed that the school is caught by 
the vessel). This means that vessels stay in the same position for 3 hours (to take this into account the 
setting time) as observed in real fisheries. When a vessel is searching in a particular area, movement is 
at random.  

 
Table 1. Fishing grounds considered in the three scenarios. H (high fish density), M (medium fish 
density), L (low fish density). Column A presents fish density levels in the fishing grounds due to the 
amount of recruitment with a 0.8 probability of occurrence. Columns B, C and D show conditions in 
the three scenarios respectively with a 0.2 probability of occurrence. 
_____________________________________________________________________ 
 Fishing 0.8 probability Scenario I  Scenario II  Scenario III 
 ground in all scenarios  0.2 probability  0.2 probability  0.2 probability 
_____________________________________________________________________ 
 Area 3  H  M  H  M 
 Area 6  L  L  L  L 
 Area 9  M  H  M  H 
 Area 17  M  M  M  M 
 Area 19  H  H  -  - 
 Area 21  L  L  L  L 
 Area 25  -  -  H  H 
_____________________________________________________________________ 

 
When night periods start, and if the vessel has been searching during daytime at least for 12 

hours, fishermat decides whether to move to a different area or stay in the present one. This decision is 
done by an ANN, which has been previously trained. If the fishermat decides to keep searching in the 
same area it stays at a fixed position, but if it decides to move elsewhere, it keeps moving day and 
night until the vessel enters the selected area.  
 
2.2 Artificial neural network  
 
Fishermen behavior in terms of movement decision (i.e., when and where to move) is modeled with 
the aid of an ANN. Factors affecting the decision to move constitute the input layer of the ANN (Fig. 
2). All the knowledge used by the ANN is measured with ordinal variables (i.e., categorical variables 
with ordered levels): its performance in economic terms and the time spent searching. The ANN also 
uses his knowledge of the length of the fishing trip for decision-making, as well as an update at each 
time step of the fishermat own perception about the richness of the area visited. The ANN compares 
this information with its knowledge of all the other fishing grounds and updates the information of the 
quality of the fishing grounds. Notice that this factor is the only variable, which differs at the input 
layer of the ANN, used to simulate the decisions taken by the two categories of fishermat compared in 
this study (individual vs. group). Consequently, the judgment of individual fishermat about the 
suitability of each area results only from their own history in the fishery. In contrast, at each time step 
fishermat forming a group exchange information and share knowledge on the richness of different 
locations. The decision to move can be seen as an opportunity cost and closely depends on the 
duration of the running time (that is, the time devoted to move from an area to another without 
actively searching for fish signs). In this simulation, fishermats were not allowed to catch fish if found 
during the navigation time between areas. Memory of the last three decisions was also kept as 
information for the fishermat. The input layer is completed by a factor indicating the presence (yes/no) 
of other vessels fishing in the same area. Purse-seine observers commonly describe this “spying” 
activity and we assume that this attitude has an influence on fishermen decisions to move. Table 2 
summarizes the factors involved in the decision to move as well as how they were encoded in the 
ANN. 

The size of the hidden layer with six neurons was chosen during training runs of the model 
based on vessel performance. At the output layer, four neurons predict benefits or costs of each 
possible decision: stay in the same area or move to the best one nearby, mid-distant or far away area. 
The decision-action taken is the one with higher predicted benefits (or less costs). 
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Fig. 2. Artificial neural network architecture. 
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Table 2. Factors affecting the decision to move (input layer) and codification. 
_____________________________________________________________________________________________ 
 Input Variable  Values 
__________________________________________________________________________________________ 
Performance in the present fishing area. Losses or gains (7 categories) 
Time searching in the present fishing area. Starting the search, …to long time searching in the area (4 categories) 
Duration of the fishing trip.  Starting the fishing trip, …to final days of the fishing trip. 
Richness of the present fishing area.  Very bad,…to very good quality (5 categories) 
Richness of the best nearby area.  Very bad,…to very good quality (5 categories) 
Richness of the best mid-distant area.  Very bad,…to very good quality (5 categories) 
Richness of the best far away area.   Very bad,…to very good quality (5 categories) 
Movement decision t-1.  Stay in same area or move to another fishing area (4 categories) 
Movement decision t-2.  Stay in same area or move to another fishing area (4 categories) 
Movement decision t-3.  Stay in same area or move to another fishing area (4 categories) 
Presence of other vessels fishing in the area. Yes/no 
_____________________________________________________________________________________________ 
 

Neural networks have not commonly been used in fishermen behaviour studies. One exception 
is the study by Dreyfus-Leon (1999), which is devoted to the analysis of fishermen search behaviour. 
This model was built with two neural networks which mimic two separate decision-making processes 
in fishing activities: (a) the decision to move to a new fishing ground or to stay in the same area and 
(b) the search for fish schools within the fishing area. Our approach differs from this latter study. 
Since our goal is to analyse communication and information exchange related to decisions of moving 
between fishing grounds, using another neural network for local movement could have an effect on 
performance. Instead, search movement within a fishing ground is considered a random search. For 
the same reasons, fish schools move at random, avoiding the clustering of fish in relation to particular 
habitat conditions. By these means we tried to ensure that “luck”, while searching in an area would not 
be a factor affecting performance, thereby misleading the results.  
 
2.3 Learning 

 
The ANN is trained with standard backpropagation methodology and reinforcement learning, which 
seems to be a good strategy to mimic human behavior when combined with the rewarding actions of 
neural networks that promote higher fitness (Bonarini, 1997). Reinforcement learning is tantalizing 
because learning occurs through trial and error experimentation within the environment. Feedback is a 
scalar payoff, hence no explicit teacher is required, and little or no prior knowledge is needed 
(Whitehead and Lin, 1995). Besides, learning is the essential adapting tool for humans and, in 
complex and variable environments; learning allows the possibility of prompt adjustment (Dreyfus-
Leon, 1999). Reward and punishment are scalar values related to benefits and costs of fishing 
operations of the purse seine tuna fishery in the Eastern Pacific Ocean. One hundred runs were 
performed in search for the optimum artificial neural network. The best one is used to compare 
performance without further learning. 
 
3. Results 
 
Twenty replicate runs, with group sizes composed with 2-12 artificial vessels each, were performed in 
all scenarios. The rest of the vessels (to add up to 20) were fishing on their own. The major difference 
in the replicate runs is due to random fish abundance and distribution variations. Fig. 3 depicts the 
difference between the mean trip performances, measured as the number of tuna schools caught per 
trip of the two types of artificial vessels (group versus individual). 

The relative performance increases with group size, reaching an optimum at the 10-vessels 
group size in scenarios I and II. Beyond this threshold, increasing the group size leads to a decline in 
the efficiency of the grouped fishermen. In the case of scenario III, the group  performance  increases 
even at a group size of 12 artificial vessels. An increase in performance of grouped fishermats as 
compared to individual fishermats is seen at all group sizes from scenario I to scenarios II and III. A 
“t” student test between grouped and individual fishermats shows significant differences in 
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performance (P < 0.01) starting at a group size of 8, 6 and 4 fishermats respectively in scenarios I, II 
and III. 
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Fig. 3. Performance difference between group sharing information with respect to the cpue of 
individual artificial vessels.  

 
An example of the minimum time needed to sample all fishing grounds by artificial vessels 

belonging to the group (sizes 2,4,6,8,10 and 12) is shown in Fig. 4. As the group size increases, the 
time to explore all areas decreases exponentially.  

2 4 6 8 10 12

0
20

0
40

0
60

0

N
um

be
r o

f d
ay

s

Group size  
Fig. 4. Number of days needed to explore all fishing grounds in relation to group size. 

 
With an optimum size of 10 vessels for the group sharing information, an account of vessels 

fishing in an area is done. In Fig. 5, data are taken from an area with sporadic high fish density in 
scenario III.  
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Fig. 5. Fishing effort in an area with sporadic high recruitment. Fish school abundance (dotted line), 
fishing effort by vessels sharing information (black line), fishing effort by independent vessels (gray 
line). 
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As recruitment occurs, vessels belonging to the group start moving in and profit from higher 
fish abundance, while as density decreases the opposite occurs. With independent artificial vessels 
there is no particular trend in the number of vessels in the fishing area. 

Catch per unit effort (CPUE) was calculated for all scenarios and a group-size of 10 artificial 
vessels. Days searching are used as a measure of fishing effort and CPUE is used as a performance 
index. In scenario I there is a similarity in performance over the 11-year series (Fig. 6a) and fishing 
efficiency (defined as the CPUE ratio of individual to information-sharing  vessels) is close to 1. In the 
other two scenarios CPUE tend to be different and the fishing efficiency is lower than one, marking a 
higher difference in performance between the two types of artificial vessels (Fig. 6b and 6c). 
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Fig. 6. Individual and group CPUE, as well as fishing efficiency for an 11-year run in scenario I (Case 
a), II (Case b) and III (Case c). 
 

The time spent searching by artificial vessels in the three scenarios (Fig. 7) shows different 
patterns between individual and group vessels in scenarios with higher variability. There is a general 
tendency to search closer to port in all scenarios. Nevertheless it can be seen that the group sharing 
information profits from areas far from port, although costs could increase, when high fish abundance 
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was present in those areas. This was also true for low level recruitment areas, since less fishing effort 
increased over time fish density,  (i.e., scenario III, area 21). 
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Fig. 7. Fishing effort distribution of individual fishermats (a) and grouped fishermats (b) among the 
fishing grounds in the simulated scenarios. 
 
4. Discussion and conclusion 
 
The input data used in this work seems a major improvement in fishermen behavior modeling with 
ANN compared to Dreyfus-Leon (1999), since memory of decisions and knowledge of the area quality 
was taken into account, as well as performance, time searching in a fishing ground, duration of the 
fishing trip  and presence of other vessels were also considered. 

In previous models, fishing grounds were considered independently of the location of the 
vessel (Dreyfus, 1999; Dreyfus and Kleiber, 2001) whereas in this model the position of the areas are 
considered in relative terms to the current position of the artificial fishing vessel. This variation allows 
for a generalized model that does not require a change in the ANN to be used in different 
environments and has more input variables that are considered important in the decision process by 
knowledgeable fishermen. 

Care was taken to consider real fishing practices and to calibrate model parameters to reflect 
reality wherever possible. 

Although the capacity of exchanging information between fishermats appears as a relevant 
factor for search decision-making, other variables could be considered in future analysis, such as 
diesel availability and awareness of some type of regulation (for example, time-area closure). This 
implies that a time (year-station) perception would need to be incorporated as a new input to the ANN. 

Future developments of this approach would require that temporal variations of the resource 
knowledge, and the way fishermats handle information coming from other vessels be also studied in 
detail.  Fuzzy logic can be incorporated as a mean to achieve that. 

One limitation of our approach is due to the fact that the decision-making framework is the 
same for all individuals belonging to the same type of fishermen. For this reason searching behavior, 
which embodies fishing customs, traditions, folk knowledge, appears more societal than individual. 
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Another interesting aspect for research would be to model different type of fishermen, risk-prone and 
risk-averse, explorers or exploiters. 

From this study it appears that the advantages of belonging to a sharing information group in 
the real world would be high, especially under some degree of uncertainty related to the distribution 
and density of fishing resources at sea as seen particularly in scenarios II and III. In these simulations 
this was also evident as shown by the fact that many of the group vessels exploited high fish density 
areas close to a peak in fish abundance and several of those vessels started to move elsewhere when 
fish density decreased. Individual fishing vessels never get concentrated in those high-density areas. 

In scenario I the difference in performance between the two types of fishermat was evident 
only when the group was composed of at least 8 artificial vessels. Nevertheless, the differences were 
small in that scenario, as confirmed by the fact that the CPUEs were similar and the fishing efficiency 
close to 1. 

Since sharing information reduces the time to sample all potential fishing grounds and the 
acquisition of some knowledge of actual conditions of the resources, belonging to a group can also be 
considered a risk-averse strategy of fishermen. The optimum group size seems to depend on 
uncertainty levels, fish density and the extent of fishing grounds. 

The decline in performance of groups with more than 10 grouped vessels in scenarios I and II 
may be due to a depletion of a local biomass, competitive interference among fishing vessels, or both. 
Such a “depletion-competition effect” has been commonly observed in the real world, specifically in 
the analysis of the non-linear relationship between local biomass and catch rates in tuna purse seine 
fisheries (Fonteneau et al., 1999), in trawler fisheries (Gillis et al., 1993; Rijnsdorp et al., 2000) or 
taken into account in simulation studies (Mangel and Beder, 1985).  

Notice that CPUE is traditionally used in fisheries as an abundance index, but the effects or 
possible biases in CPUE due to communication between fishermen has to be evaluated (e.g., vessels 
belonging to a group tend to concentrate in higher fish density areas although total fish abundance can 
be low, thus creating a bias in CPUE estimates). 

The search preference in fishing grounds closer to port in this model has been described 
previously in ANN models (Dreyfus-Leon, 1999), in bio-economical model accounting for fishing 
costs (Sampson, 1991), as well as in real fisheries (Eales and Wilen, 1986; Salas, 2000; Van 
Oostenbrugge et al., 2001). 

Fishermen decision-making is a fundamental characteristic that has not been studied 
substantially and that must be incorporated in fishery models specially related to fishing effort 
distribution in order to study regulatory impacts on the fishing resources as well as to the industry. 
Artificial neural networks are some of the tools that allow this possibility. 
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