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Abstract 
 

In semiarid southwestern Niger, most of the groundwater recharge is indirect 

and occurs through endoreic pools. Elsewhere in the landscape, there is no evidence 

of deep infiltration, with the possible exception for gullies and alluvial fans on sandy 

slopes. In order to verify this hypothesis, a detailed geophysical and geochemical 

survey was conducted on a large, representative mid-slope fan (6 ha). At this site, 

distributed hydrological modelling conducted over the encompassing endoreic 

catchment (190 ha) showed high losses of runoff water by infiltration. 

Electromagnetic mapping and 2-D electrical imaging survey were used to investigate 

the 35 m deep vadose zone; in addition, 8 boreholes were drilled following the 

geophysical survey to constrain the interpretation. Variations in apparent electrical 

conductivity measured in boreholes appear to be mainly linked with changes in the 

soil solution mineralization. An extrapolation throughout the area shows that apparent 

electrical conductivity of the ground is systematically lower below channels; this 

suggests localised leaching through the unsaturated zone. A physically-based, 2-D 

distributed hydrological model was used to estimate the amount of surface water loss 

by infiltration for the 1992-2002 period. Depending on year, infiltrated volumes range 

from 1 000 to 24 000 m3. This represents between 5 and 16% of the runoff that 

reaches the final outlet of the basin, an endoreic valley bottom pond where recharge 

to the aquifer has been shown to occur. Because leaching of the vadose zone is 

observed down to a depth of 10 m below channels, episodic groundwater recharge 

through sandy mid-slope fans is highly probable during rainy years. 

 

 

keywords Niger; Semiarid area; Infiltration; Local recharge; Alluvial fan; Geophysical 

survey; Unsaturated zone chemistry 
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1. Introduction 
 

In southwestern Niger, since the early 1990s, hydrodynamics and 

geochemical methods have been applied at a regional scale (4000 km2) to estimate 

natural groundwater recharge to the unconfined aquifer (Leduc et al., 1997; Favreau 

et al., 2002). In arid and semiarid Niger, studying groundwater recharge is of 

paramount importance for sustainable development, as most of the population 

depends upon this single permanent water resource for its own consumption. In this 

environment, most of the groundwater recharge is indirect and occurs through 

endoreic ponds, natural outlets of a mosaic of catchments of the order of a few 

square kilometres (Desconnets et al., 1997; Martin-Rosales and Leduc, 2003). 

Elsewhere in the landscape, infiltration deeper than 5 m below the soil surface, 

estimated by neutron probe and soil moisture surveys, has not been evidenced and 

has only been suggested as possible under specific locations such as narrow banded 

vegetation on the plateaux (Galle et al., 1999) and gullies in the sandy hillslopes 

(Peugeot, 1995; Peugeot et al., 1997; Esteves and Lapetite, 2003). Surprisingly, 

whereas rainfall decreased by about 20 % since the 1950-60s, hydrodynamics 

investigations have revealed a continuous increase in groundwater reserves of about 

4 m for the last four decades, a phenomenon explained by the intense land clearing 

that has induced crusting of the top cm of the soil; as elsewhere in the Sahel, soil 

crusting has enhanced Hortonian runoff, thus increasing both the number of endoreic 

ponds and the amount of surface water reaching the ponds (Leduc et al., 2001; 

Seguis et al., 2004). Increased runoff may also have enhanced deep infiltration at 

some runoff collecting sites other than ponds, but those have not been identified yet. 

 

The main objective of this study is to investigate the possibility of deep 

infiltration (i.e. typically deeper than 5 m) below the drainage network on the sandy 

slopes of this area. In semiarid areas, deep infiltration producing groundwater 

recharge is very localized in time and space and difficult to estimate; combining 

various methods is often the key to obtain reliable results (Scanlon et al., 1999a; 

Simmers, 2003). Our approach is based upon a combination of sub-surface and 

borehole geophysics, vadose zone chemistry and physically-based hydrological 

modelling. 
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Subsurface geophysics used in this study is aimed at mapping differences in 

electrical conductivity that could be linked to variations in water content and/or 

conductivity of the pore water and/or soil texture within the unsaturated zone, both 

laterally and vertically. Such differences are expected in the study site (Fig. 1), a 

densely braided sandy channel area where infiltration is supposed to occur 

(Cappelaere et al., 2003). When correlated with unsaturated zone profiles of 

geochemical tracers, electrical conductivity mapping can provide reliable 

extrapolation of punctual estimate of recharge; subsurface geophysics can also help 

to spatially better constrain hydrological models of surface/subsurface flows. 

Previous investigations in semiarid areas have shown that geophysical methods 

based on electrical conductivity measurements are often well suited to delineate 

electrical properties of the subsurface. Among the methods measuring electrical 

conductivity at various depths, the more suitable are: (i) Direct Current (DC) resistivity 

mapping or sounding (e.g. Descloitres et al., 2003) and 2D-DC electrical imaging 

when the ground can not be approximated by a 1D model (e.g. Beauvais et al., 

2004), (ii) Frequency-Domain Electromagnetics (FEM) mapping (e.g. Cook et al., 

1989; Scanlon et al., 1999a; Scanlon et al., 1999b), while (iii) Time-Domain 

electromagnetic method (TDEM) is also considered as a suitable tool in some 

situations as deep aquifers and mineralised waters (e.g. Guérin et al., 2001). Within 

the scope of this study, the main objective was to map the heterogeneities in 

electrical conductivity down to depths exceeding 30 m below a large mid-slope 

alluvial fan. FEM mapping was carried out at the site-scale; in addition, a 2D DC 

electrical imaging was performed on a representative cross-section of the fan. 

 

Vadose zone geochemistry is a widely used approach in semiarid areas to 

infer mean groundwater recharge rates and estimates of its temporal changes (e.g. 

Edmunds et al., 1991). This approach has also been frequently used as a 

supplementary tool in regional groundwater balance studies (e.g. Wood and Sanford, 

1995). Because it provides only point-scale estimates, more representative results 

are obtained when it is used with complementary approaches, including sub-surface 

resistivity mapping (Cook et al., 1989; Scanlon et al., 1999a; Scanlon et al., 1999b). 

In southwestern Niger, data on the deep unsaturated zone are limited. In the study 

area, previous data were limited to the first upper metre (e.g. Wezel et al., 2000), and 
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for a single study, to a depth of up to few metres (Nagumo, 1992). However, tracking 

deep infiltration requires getting information down to several tens of metres (ideally, 

to the water table). In this study, vadose zone chemistry is used, along with other 

parameters (water potential, texture, water content), both to interpret the measured 

differences in electrical conductivity and to better estimate the solute and water 

balance in the studied area. 

 

In semiarid regions, the difficulty in obtaining good quality data records of 

ephemeral and episodic floods is widely recognized (e.g. Lange et al., 1999). 

Physically based, spatially distributed hydrological modelling is a way to overcome 

these difficulties, and can be used to generate data for ungauged parts of a 

catchment. This approach was chosen for the catchment that includes the studied 

mid-slope alluvial fan (Fig. 1; Peugeot et al., 2003; Cappelaere et al., 2003). For the 

present study, the water balance of the fan was computed at the rainfall-event scale 

through the 1992-2002 decade, thus providing consistent values of annual surface 

water loss by infiltration. From this set of data, a hydrological functioning of the deep 

unsaturated zone under sandy slopes is proposed. 

 

 

2. Study site 
 

The study site is located in the Sahelian southwestern Niger, at 60 km east of 

Niamey (Fig. 1). The climate is semiarid, with a mean annual temperature of 29°C, a 

mean potential evapotranspiration near 2500 mm.yr-1 and a yearly mean precipitation 

of 567 mm (Niamey, 1908-2003; Niamey Airport, pers. com.); these values are 

considered to be representative for the study site. The rainy season from June to 

September (90 % of the annual rainfall) consists in intense rainfall events of 

convective origin. These short duration events produce Hortonian runoff that rapidly 

(within 1-3 hours) concentrates in temporary ponds, natural outlets of endoreic 

catchments of a few square kilometres. In this environment, all hydrological data 

indicate that most of the unconfined aquifer recharge is indirect and occurs by deep 

infiltration below the ponds (Desconnets et al., 1997; Leduc et al., 1997; Martin-

Rosales and Leduc, 2003). The geological context is sedimentary and shallow 
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formations belong to the Continental terminal (Tertiary) made up of loosely cemented 

clays, silts and sands of continental origin; this formation outcrops over a surface 

area of 150 000 km2 in southwest Niger. Dating from drier periods of the Quaternary, 

aeolian sand deposits occur in some places and can reach a few metres in thickness. 

The water table elevation exhibits a classical pattern for semiarid areas: a 

continuous, smooth surface (hydraulic gradients < 1 ‰), with transient potentiometric 

fluctuations of up to few metres below temporary ponds during the rainy season 

(Leduc et al., 1997; Favreau et al., 2002). Depending on the topography, the depth to 

the water table varies between 75 m below the lateritic plateaux to less than 10 m 

below the dry valleys. The natural vegetation of the region is a wooded savannah but 

under increasing clearing much of the area is now a patchwork of fallow and millet 

fields. 

 

The Wankama catchment (Fig. 1) has been intensively studied since 1992; 

details about the hydrological survey and data analysis are available elsewhere 

(Desconnets et al., 1997; Peugeot et al., 2003). To summarize, the catchment area is 

of 190 ha, with a mean slope gradient of 1.5 % from west to east. At the lower end, 

the endoreic, elongated temporary pond acts as the natural outlet of water runoff of 

the basin; the gully reported in Fig. 1 represents its main tributary. According to runoff 

simulations for the 1992-2002 period, surface water reaching the pond varies 

between 23 000 and 149 000 m3
.yr-1 (Table 1). Most of this water (about 90 %) 

infiltrates and creates a temporary mound below the pond. At mid-slope a large 

sandy alluvial fan ("spreading zone") acts as a natural collector of most of the surface 

runoff from the upstream basin (Cappelaere et al., 2003). Such large alluvial fans are 

a common feature in the landscape (D’Herbes and Valentin, 1997). Hillslope soils of 

the catchment are mainly sandy, weakly structured and can be classified, according 

to Soil Taxonomy, as a sandy siliceous isohyperthermic psammentic Haplustalf 

(Bielders et al., 2000). Organic carbon content is less than 0.5%, with fine particle 

content typically within the range of 5-20 % (Nagumo, 1992; this study). 

 

Within the catchment, this study focused on the alluvial fan of about 6 ha (3% 

of the catchment area) occurring at mid-slope; this fan represents the main outlet of 

the upper part of the drainage basin (Fig. 1). Its main characteristics are as follows: 

mean slope of 1.6 % (close to the one of 1.5 % for the whole catchment); water table 
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depth between 32 to 41 m; land surface occupied by shrub fallow (mainly Guiera 

senegalensis), millet fields and sandy channels (17% of the area in 2002). Whereas 

the main gully is narrow and reaches few metres in depth in the upper part of the 

catchment, the braided channels are typically large and shallow (< 0.5 m) within the 

alluvial fan. Consequently, this results in possible changes of the channel patterns 

after exceptionally high flooding years. 

 

 

3. Methods  
 

3.1. Electrical conductivity  

 

Ground electrical conductivity (ECg) is a complex function of the soil 

characteristics (mineralogy, texture, and structure) and of its water and solute 

contents. The well-known Archie's law (Archie, 1942) originally expressed for 

saturated formations can be transformed for the unsaturated zone as follows (Keller, 

1988): 

 

mn
ww .S.EC.

a
1EC φ=g     (1) 

 

where ECg is the ground electrical conductivity (S.m-1), ECw is the conductivity of the 

pore water (S.m-1), Φ is the porosity (dimensionless), Sw is the pore space saturation 

(dimensionless, L3/L3), a is the saturation coefficient (dimensionless), m is the 

cementation factor (dimensionless), and n the saturation exponent. For the sandy 

formation, Keller (1988) proposes the values of 0.88, 1.40 and 2 for a, m and n 

respectively. This empirical law is valid for sandy formations; when present, clayey 

particles could play a role in increasing the value of the ground electrical conductivity, 

because of their possible high cation exchange capacity (CEC). As a consequence, 

the ground electrical conductivity ECg can vary over a wide scale of values, ranging 

from more than 1000 µS.cm-1 for clayey saturated material to less than 10 or even 

1 µS.cm-1 for dry sand. The ECw and Sw variables are difficult to obtain in the field. In 

this study, these parameters are estimated by surrogates obtained in the laboratory, 
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respectively the experimental conductivity ECwe produced with the usual lixiviation 

protocol, and the gravimetric water content θw (moisture weight/total weight). From 

equation (1) it is shown that the ground electrical conductivity ECg given by 

geophysical methods is highly dependent on the saturation, the porosity and the 

electrical conductivity of the water in the soil. 

 

 Electromagnetic (EM) mapping was performed using a Geonics EM-34 

electromagnetic device to survey the watershed with three intercoil spacings, 10, 20 

and 40 m. The operating frequencies are respectively 6400, 1600 and 400 Hz. For 

practical reasons, the coils were aligned vertically (horizontal dipole mode), providing 

a stable reading of the ground electrical conductivity at three depths of investigation. 

This survey design provides a good sensitivity to the upper surface layer conductivity, 

and an investigation depth that can be roughly comparable to the intercoil spacing. 

The ratio of secondary to primary magnetic field over a uniform earth is directly 

proportional to the ground electrical conductivity ECg 
(Mc Neill, 1980). In the case of 

an electrically layered ground (1D case), the reading is given as an apparent 

electrical conductivity ECa, which is a function of the respective conductivities of each 

layer. Two measurement campaigns were performed. In August, 2002 the entire 

catchment was covered using the 40 m intercoil spacing (Fig. 2). Then the survey 

was dedicated to a preliminary mapping of the fan area using the intercoil spacings 

10 and 20 m, with measurement every 40 m (Fig.3a and b). In March, 2003, a map of 

the whole alluvial fan (425 x 400 m) was performed using the 20 m intercoil spacing, 

with measurement every 10 m. For each campaign, a base station was monitored 

every 2 hours to overcome any problem due to instrumental drift. 

 

A 2D electrical imaging survey was conducted in March 2003 along the profile 

AA’ (Fig. 1) using a Syscal R2 resistivity-meter with 64 electrodes (IRIS Instruments). 

A couple of electrodes (A and B) was used for current injection and the resulting 

potential difference was measured with a second couple of electrodes (M and N). 

The basic field procedures, electrode arrays and interpretation technique are 

described in Loke (2000). For our survey, the electrodes were laid out every 4 m 

allowing a spacing of 252 m, that was repeated once to perform a profile of 508 m 

(Fig. 4). Due to the very dry sandy surface, the contact resistance was decreased by 
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digging 20 cm deep pits, filled with a salty clayey mud. The acquisition was 

performed combining 2 arrays, the Wenner and Dipole-Dipole, taking advantage of 

their different sensitivity to 2D distribution of the ground resistivity. The Wenner and 

Dipole-Dipole data sets have been interpreted jointly using the RES2DINV inversion 

software (Loke, 2000). 

 

Electrical conductivity logging was performed in the vadose zone using an 

inflatable logging tool (Descloitres and Le Troquer, 2004) in each of the 8 drilled 

auger holes (Fig. 1); the acquisition was done using the "normal" pole-pole array. 

This quadripole involves two inner electrodes A and M and two remote surface 

electrodes B and N at 150 m away from the drill hole. The AM spacing was 0.25 m. 

The measurements were done every 0.5 m down the hole. The short spacing 

between electrodes A and M allows measurements of the ground electrical 

conductivity ECg within an estimated radius of 20 cm around the sampling point. 

 

3.2. Vadose zone chemistry 

 

For this study, 8 boreholes of 50 mm of diameter were drilled without any fluid 

to depths between 5 to 25 m in August, 2002 (drill holes 1 and 2) and March, 2003 

(drill holes 3 to 8) with a power engine drillmite auger (locations are shown in Fig. 1). 

At surface, soil samples were collected each 0.5 m and rapidly poured using plastic 

gloves into 335 cm3 aluminium tins to preserve samples from evaporation and 

contamination. For this study, gravimetric water content, water potential 

measurement, particle-size analyses, experimental conductivity of the pore water, 

major ion chemistry and pH were measured. Analyses were performed in Montpellier, 

France, within a few months of sampling. Random duplicates showed good 

reproducibility. On selected samples, X-ray diffractions were also performed to 

determine the soil mineralogy. 

 

Gravimetric water content (θw) was measured after drying an aliquot of about 

100 g of each sample in an oven for 24 hours at 105°C. Water potential was 

estimated for some duplicate samples by the filter-paper method described in 

Hamblin (1981), using Whatman-42 filter paper, with an uncertainty of about 20%. 

Solute content was obtained after elutriation of 20 g of dry sediments in 50 ml of 
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double-deionised water (<1 µS.cm-1) during 30 min; experimental conductivity of the 

pore water (ECwe) was subsequently measured on a 0.45 µm filtered aliquot with a 

commercial conductimeter (WTW, Tetracon). On an unfiltered aliquot, pHH2O and 

pHKCl (1 mol.L-1 KCl) were measured with a commercial pH-metre (WTW, Sentix). 

Major ions were analysed on 0.45 µm filtered aliquots by capillary ion analyser 

(precision of about 5%). Particle-size was analyzed by sedimentation on 25 selected 

samples from drill holes 1 and 2 using the pipette-method with an automatic particle-

size analyser. 

 

3.3. Hydrological model 

 

The physically based, 2D-distributed hydrologic model of Cappelaere et al. 

(2003) was used for the present study. This model was built using the abc-rwf 

generic model developed by these authors from the original r.water.fea model of 

Vieux and Gaur (1994). In this model, time and space are discretized consistently 

and finely enough to represent the water flow dynamics of individual storm events 

over the whole catchment (grid resolution of 20 m). Infiltration, runon/runoff 

production and routing functions (kinematic-wave with Green-Ampt and Manning 

equations) are fully coupled, and solved concurrently using finite elements in space 

and finite differences in time. The model was calibrated and validated for the 

Wankama catchment based on the rainfall events that occurred from 1992 to 2000 

and reproduced the observed catchment behaviour satisfactorily (Cappelaere et al., 

2003). The alluvial fan is represented in the model by a 7.6 ha area with the normal 

DEM slope. 

 

 

4. Results 
 
4.1. Electromagnetic mapping 

 

Electromagnetic mapping was used to delineate relative differences in vadose 

zone conductivity. In Fig. 2 are presented the EM34 40 m-spacing mapping results at 

the catchment scale. Apparent electrical conductivity values range from 10 to 
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200 µS.cm-1 (1000 to 50 Ω.m respectively) and show a general increase from 

upslope (west) to downslope (east). This trend is explained by a decreasing 

thickness of the vadose zone with decreasing elevation: when going downward, the 

thickness of the resistive (unsaturated) ground decreased from more than 60 m down 

to less than 20 m, thus raising the measured apparent electrical conductivity value. 

On the sandy fan area (Fig. 2), the values lay between 36 at the north and 83 µS.cm-

1 at the centre (between 280 and 120 Ω.m, respectively). The two deeper drill holes 

(1 and 2, Fig. 2) were installed to explain this contrast: drill hole 1 was located at a 

higher apparent electrical conductivity anomaly near a large channel, whereas drill 

hole 2 was located in a low apparent electrical conductivity spot, corresponding to a 

small-slope fallow plot (Fig. 2). 

  

Results from the shallow sub-surface were obtained using shorter intercoil 

spacings. Fig. 3 presents the results of the EM mapping focusing on the sandy fan 

area, using intercoil spacings of respectively 10 (Fig. 3a) and 20 m (Fig. 3b, 3c). The 

10 m spacing map shows apparent conductivities lying between 11 and 50 µS.cm-1 

(from 900 to 200 Ω.m respectively). The distribution of the poorly conductive zones 

appears complex: in the centre, it could be linked with the dense channel distribution. 

Except for the middle part of the northern gully, large spots of higher apparent 

electrical conductivity occur away from the main gullies. The 20 m spacing map 

shows the same range of values, from 11 to 50 µS.cm-1 (Fig. 3b). The less 

conductive spots (below 17 µS.cm-1) are distributed at the centre and in the 

northeastern part of the area, and higher apparent conductivities are observed in the 

southern and nortwestern parts. In details, significant differences appear with the 

10 m intercoil spacing map; this may be due to the time-lag between the two field 

measurements (~1 month) and to subsequent surface water infiltration (see §4.4) 

and/or to locally heterogeneous distribution of apparent conductivities with depth. 

  

In March, 2003 a larger EM-34 survey of the fan (18 ha, intercoil spacing of 

20 m, north-south tracking, measurement each 10 m) confirmed the observations 

obtained in the lower part of the fan (Figs. 3a and 3b); in particular, (i) though the 

measurements took place by the end of the dry season, the same range of values 

was observed and (ii) large spots of higher apparent electrical conductivity occurred 

around the fan, with, in details, a more complex zonation (Fig. 3c). 
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In order to compare methods, EM-34 measurements with intercoil spacing of 

20 m were performed simultaneously to the 2D electrical imaging on a single profile 

(AA’ in Fig. 1; Fig. 4). In accordance with EM-34 mapping results, relatively lower 

apparent electrical conductivity was observed below the main gullies. 

 

4.2. 2D electrical imaging 

 

A two dimensional (2D), 508 m-long electrical imaging profile was performed 

perpendicularly to the fan area (Fig. 1). In Fig. 4 is reported the calculated ground 

electrical conductivity versus depth obtained by joint inversion of the Wenner and 

Dipole-Dipole 2D data sets. The number of iterations was limited to three because 

there was no significant decrease of the RMS criteria for further inversions. As the 

inversion has to comply with two sets of data, the corresponding RMS is relatively 

high (19%). The conductivities range from 1.25 to 330 µS.cm-1 (8 000 to 30 Ω.m, 

respectively). From the surface down to 2-3 m a resistive layer is noted, and 

corresponds to a dry sandy layer (March 2003, dry season); from 3 m to 10 m, a 

conductive layer is observed. Its conductivity ranges from 60 to more than 

300 µS.cm-1 in a discontinuous way, forming patches with higher conductivity 

separated by lower conductivity ones. Below this level, from 10 down to 35 m 

(maximum depth of investigation), the vadose zone is mostly resistive. Its 

conductivity mostly ranges from 1.25 to 3.3 µS.cm-1 with at some places, some more 

conductive patches. 

 

4.3. Electrical conductivity logging and vadose zone analysis  

 

 Results of electrical conductivity logging are shown on Figs. 5a and 6a for the 

two deepest drill holes (1 and 2) and on Fig. 7a for the others. Each of the two drill 

holes 1 and 2 represents a distinct pattern of electrical conductivity change with 

depth. For the drill hole 1, ground electrical conductivities are ranging from 0.8 to 

15.3 µS.cm-1 (12 500 to 650 Ω.m). Those values are typical for an unsaturated sandy 

formation, with low water content. Drill holes 3, 6 and 8 display the same behaviour 

as the drill hole 1 with ground electrical conductivity below 20 µS.cm-1 (500 Ω.m) all 

along the logging profile (Fig. 7a). For the drill hole 2, the range is wider, from 1.6 to 
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200 µS.cm-1 (6250 to 50 Ω.m). Ground electrical conductivity rapidly increases from 

surface to 4 m deep. From 5 to 10 m depth, the ground is more conductive, values 

are over 150 µS.cm-1 (below 65 Ω.m) with a maximum at 8 m depth. These higher 

values typically indicate that the formation is either more clayey, contains more water 

or presents an increase in the water solute content. Drill holes 4, 5 and 7 have the 

same behaviour as the drill hole 2 with ground electrical conductivity over 100 µS.cm-

1 (below 100 Ω.m) when reaching 4 m depth (Fig. 7a). 

 

Grain size distribution analysis shows that sedimentary formations are 

homogeneous between the drill holes 1 and 2 (Fig. 5d, Fig. 5e). Grounds are 

essentially sandy (33 to 90%) to silty (3 to 28%) with variable content of clay (3 to 

41%); pebbles occur between 5 and 10 m in small proportion (< 10%). Two stratums 

are more clayey and occur at depths from 5 to 7 m and 10 to 12 m for the two drill 

holes. For these layers, X-ray diffractions confirm the abundance of quartz (sand) 

and show that clay fraction is made almost exclusively of kaolinite (goethite is also 

present). For the whole profiles, such a similar grain size distribution suggests that 

porosity could be the same for the two drill holes. Consequently, the influence of 

porosity Φ in Equation (1) may be similar for the two drill holes. Because kaolinite is 

known to have a low CEC, influence of the clay content on the apparent electrical 

conductivity is expected to be low. 

 

Matric suction measurements were performed on dedicated duplicates for drill 

holes 1 and 2. For both profiles, deeper than 4 m, values are high and lie between 25 

to 75 bar; around 2 to 3 m, matric suction is even higher and can reach 150 bar 

(Fig. 5b). At surface, it displays a rapid decrease, down to 0.05 bar at 0.1 - 0.7 m 

below the soil surface, followed by a steep rise in the top cm for drill hole 1 (Fig. 5b). 

Considering that sampling occurred during the rainy season (August, 2002), such a 

typical "S" shape can be explained by recent infiltration of rain water at shallow 

depth, followed by incomplete re-evaporation. However, though the two holes are 

located at various distances from gullies (Fig. 1), very similar water potential profiles 

are obtained and no noticeable difference in infiltration at the time of sampling can be 

inferred. This can be explained by the low amount of rainfall and runoff that occurred 

in 2002 (see below, §4.4), thus preventing any significant infiltration through gullies. 
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Gravimetric moisture content profiles are similar in drill holes 1 and 2 (Fig. 5c). 

The measured θw range from 1.8 to 11.3% and are closely related to the grain size 

distribution (Fig. 5d and 5e). Except for the top metre where θw partly represents 

recent infiltration (as shown by matric suction values), higher values systematically 

correspond to increases in clay content, and conversely lower values to decreases in 

clay content. Almost the same range of moisture (0.6 – 10.7%) is observed for drill 

holes 3 to 8 that present a single pattern of increasing moisture with depth (for these 

holes, the lower moisture content near the soil surface can be explained by sampling 

during the dry season; Fig. 7c). Consequently, the influence of the saturation 

parameter Sw in Equation (1) could be considered as invariant in time, space and 

depth (>2 m). 

 

 Experimental conductivity of the pore water (ECwe), pH and ionic contents 

profiles are reported in Fig. 6 for drill holes 1 and 2 and in Fig. 7 for drill holes 3 to 8 

respectively. For each profile, ECwe appears to be well correlated to ground electrical 

conductivity (ECg). As for ECg profiles, two distinct families of ECwe change with 

depth can be distinguished, being respectively represented by drill holes 1 and 2 

(Fig. 6b; Fig. 7d). For profiles of the first group (drill holes 1, 3, 6, 8) ECwe is rather 

constant with depth (except for the first top four metres) and ranges from 4 to 

24 µS.cm-1; this implies a low ion content. For profiles of the second group (drill holes 

2, 4, 7), the maximum ECwe lies within the range 46 to 276 µS.cm-1. Drill holes 5, 

though related to high ECg values, display relatively low ECwe at depth and 

represents an exception (Fig. 7d); this may be due to local small-scale heterogeneity 

at the sampling location, the ECg value representing a larger ground volume. 

 

ECwe represents an integrated value of the ionic water composition. In order to 

determine the chemical composition of the solute content, major ion analysis (Ca2+, 

Mg2+, Na+, K+, for cations, SO4
2-, NO3

- and Cl- for anions) were performed for each 

sample; pH-H2O and pH-KCl measurements were also performed to determine free 

and exchangeable H+ respectively. For these two parameters, values range between 

4.6 and 8.8 pH units (pH-H2O) and between 3.9 and 8.2 pH units (pH-KCl), the 

positive difference ranging between 0.1 and 2.4 pH units (Fig. 6e; Fig. 7f). Ion 

contents are reported graphically on Fig. 6c and 6d for drill holes 1 and 2 and on 
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Fig. 7b and 7e for drill holes 3 to 8. Increases in ECwe appear to be mainly linked with 

increases in NO3
- for anions, and in Ca2+ for cations; for the highest solute contents 

(drill hole 4), NO3
- and Ca2+ reach respectively 1.86 meq.L-1 (288 ppm) and 1.05 

meq.L-1 (53 ppm). Mg2+ appears to be highly correlated with Ca2+ and follows the 

same variations with a lower content. Some higher levels in Ca2+ and Mg2+ 

correspond with increases in pH values up to 8.6 or 8.8 pH units (drill holes 2 and 4 

respectively), thus suggesting the presence of carbonate minerals. SO4
2- content is 

always low (nearly 2/3 of the analyses are below the detection threshold) and never 

exceed 15% of the anion content. Cl- and K+ contents are always low (< 0.1 meq.L-1, 

i.e. < 9 ppm) and do not correlate with the bulk mineralization. In details, the vadose 

zone chemistry changes in chemical composition with depth, with Na+ for cations and 

Cl- for anions being dominant for some drill holes at discrete depths (Fig. 6; Fig. 7). 

These results are in good agreement with previous findings in the same region of an 

important small scale chemical heterogeneity within the first upper metres of the 

ground (Nagumo, 1992). 

 

4.4. Hydrological modelling 

 

The Wankama catchment model was run on an event basis from 1992 to 2002 

(Table 1). Rainfall input was recorded with rain-gauges located on the basin. The 

hydrological balance was computed for each cell of a 20 m resolution grid. According 

to the fully distributed model, for the whole period, all of the incoming flow was lost in 

the alluvial fan by infiltration. Runoff volumes (V∆) computed at point ∆ (the point of 

inflow for the alluvial fan, see Fig. 1) are compared with runoff volumes computed at 

the downslope endoreic pond (Vp), where recharge has been shown to occur 

(Desconnets et al., 1997; Leduc et al., 1997). V∆ ranges between 5 to 16 % (mean 

13 %) of the total surface flow production computed in the pond; this represents 

between 1000 and 24 000 m3 of surface water infiltrating through a sandy channel 

area estimated near 1 ha (17% of the active part of the alluvial fan). Compared to the 

surface of the pond, the infiltrating fan area appears smaller (the maximum surface of 

the pond is near 9 ha). However, as reported in Table 1, the maximum annual V∆ 

entering the fan (24 000 m3) exceeds the minimum Vp value (23 000 m3), for which 

groundwater recharge was indeed observed. Therefore, all other things being equal, 
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it could be concluded that groundwater recharge may have occurred through the 

alluvial fan for the 1992-2002 period, at least for the highest computed yearly runoff. 

 

Two other points inferred from the hydrological modelling approach lie (i) in the 

relative importance of V∆ vs. Vp depending on years and (ii) in the non-linear 

relationship between rainfall and runoff. According to computed values reported in 

Table 1 (and beyond the logical observation that high V∆ are positively correlated 

with high Vp) the relative contribution of V∆ increases with total runoff (V∆ + Vp); in 

other words, the higher the runoff, the more (in relative part) the fan area may 

contribute to deep infiltration. In Fig. 8a are displayed computed V∆ as a function of 

time for respectively a wet (1995) and dry year (2002). Fig. 8b displays total rainfall 

events for the same two years. Though rainfall in 1995 (513 mm) is only 1.8 times 

higher than in 2002 (291 mm) both the number of runoff events (7 vs. 3) and the 

runoff volumes V∆ reaching the fan (24000 vs. 4000 m3) vary in greater proportion 

(respectively by a factor of 2.3 and 6.0; Table 1; Fig. 8a). This further emphasizes the 

fact that depending on years, larger changes in runoff and eventually deep infiltration 

can be expected than simply inferred from changes in rainfall (Table 1). 

 

 

5. Discussion 
 

5.1. Ground electrical conductivity (ECg) interpretation 

 

In the study area, direct measurements in drill holes have shown a good 

relationship between ECg and ECwe (Fig. 6a and 6b; Fig. 7a and 7d). In our case, 

ECwe is relatively high compared to the contribution expected from a solid matrix 

made of quartz and kaolinite with low CEC (estimated about 7.5 meq / 100 g; 

Nagumo, 1992). Other matrix terms involved in ECg values, such as porosity Φ and 

granulometry do not seem to act significantly upon its observed changes (Fig. 5). 

Assuming that the relationships between the Archie law variables ECw and Sw on one 

hand (Eq. 1), and their experimental surrogates ECwe and θw on the other hand, can 

be acceptably approximated by some linear or power functions (i.e., of the general 
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form y = k1.xk2 , with constant k1 and k2 for a given soil), then the transformed Archie 

empirical law, Eq. (1), can be reformulated as: 

 

log log logg we wEC K EC θα β= + +   (2) 

 

where K, α and β are new unknown constants (K incorporates in particular the effects 

of Eq.(1)’s a, m and Φ) . These parameters in Eq. (2) can be estimated from the drill 

hole data by applying linear regression of Equation (2) from the drill hole data, 

yielding K = 0.89, α = 1.3 and β = 0.87 (Fig. 9). The resulting R² is 0.82 with a 

contribution by ECwe and θw to the expressed variance respectively of 63% and 19%. 
This simple analytical model confirms that ECwe values play a prominent part on the 

ECg measurements; this observation is valid for the whole scale of ECg 

measurements, with no significant change in the determination coefficient with the 

ECg range considered. 

 

In the study area, the quasi-exclusive ECg / ECw relationship is in accordance 

with (i) the large, two order in magnitude change in ECwe (Fig. 6b; Fig. 7d), (ii) the 

kaolinic nature of the clay fraction, with consequently very low CEC and (iii) the lack 

of any deep infiltration during the 2002 rainy season (Fig. 5b; Fig. 8). Elsewhere in 

the landscape, such a simple correlation between ECg and ECw may not be 

observed, particularly in clayey valley bottoms (shallow water table, higher θw, 

smaller range of ECw and presence of vermiculite / smectite within the clay fraction; 

Nagumo, 1992), and for more humid periods of measurements (possibly high and 

transient θw signal). Within the investigated alluvial fan area, ECg changes measured 

by sub-surface geophysics (EM-34, DC) are interpreted in terms of changes in ECw. 

 

EM-34 mapping at 40, 20 and 10 m intercoil spacing show significant changes 

at small scale within the studied fan area (Fig. 2 and 3). Even if the EM34 device 

measures only an apparent electrical conductivity ECa in a non uniform ground, the 

apparent conductivity variations measured with EM34 can be roughly related to ECg 

calculated from 2D electrical imaging inversion along the DC profile (Fig. 4). The 

EM34 apparent electrical conductivity variations are a representation of various 

vadose zone leaching intensities. Because the resolution is decreasing with depth, 
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these differences are probably more related to leaching of the upper part of the 

investigated zone (depending on the intercoil spacing considered). Higher leaching 

may be observed below the densely braided channel area, whereas lower leaching is 

observed at distance, below fallow and millet fields (Fig. 3c). Although complex in 

details, the generally lower conductivity observed within the fan area expresses its 

hydrological functioning as a deep infiltration area. In the upper part of the fan, 

shifting braided channels from year to year makes difficult a detailed interpretation. In 

Fig. 3a and 3b, small changes in ECa can be noticed within the fan and could be 

linked with transient changes in θw; however, in most parts of the fan, the general 

distribution of ECa remains constant for the survey period and expresses a stable 

leaching pattern. 

 

2D DC electrical imaging (Fig. 4) highlighted the spatial extent of changes in 

solute contents already characterized by EM-34 and drill holes measurements. At 

surface, a leached sandy layer of about 2 to 3 m in thickness is observed throughout 

the transect, and could represent the mean annual depth of rain water infiltration. 

More in depth, a high solute content layer is mostly present between 4 to 10 m. 

Different hypotheses about this solute accumulation are developed in conclusion. To 

the best of our knowledge, no previous evidence of a high mineralized vadose zone 

layer had been reported before in the region, as soil studies were restricted to the 

first top metres of the ground. This deep mineralized layer is interrupted at discrete 

places, below the main sandy channels (Fig. 4); this denotes occasional deep 

leaching, down to depth of at least 10 m (for minor channels, this relationship is less 

obvious, due to lower runoff and/or more recent functioning). Between this depth 

down to more than 25 m (the maximum drilling depth, at hole 1), the vadose zone 

displays lower solute contents, as reported in DC modelling (Fig. 4). A calculation of 

model uncertainty (not shown here) using RES2DINV software displays an 

uncertainty percentage ranging between 20 and 30% below depth of 20 m. This 

uncertainty remains probably underestimated: for the drill hole 1, the inversion 

displays a value of 900 Ω.m, while the resistivity logging displays a value of 

1250 Ω.m, indicating a 38% difference. However, those uncertainties remain 

relatively low and it can be concluded that the 2D electrical imaging provides a 

reliable estimate of the bulk conductivity down to 30 m. 
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5.2. Dynamics of deep infiltration 

 

One of the main challenges when dealing with groundwater in semiarid areas 

is to determine the main process in play for deep infiltration and eventually 

groundwater recharge (Simmers, 2003). The results from this study, using sub-

surface geophysics and vadose zone chemistry, confirm previous conclusions 

obtained with other methods in southwestern Niger: deep infiltration and groundwater 

recharge follow an indirect process, occurring only where surface runoff concentrates 

(Leduc et al., 1997; Desconnets et al., 1997; Favreau et al., 2002). For the studied 

fan area, hydrological modelling shows that runoff and deep infiltration are largely 

discontinuous, both at an intra-seasonal and inter-annual scale (Fig. 8); annual runoff 

and deep infiltration vary by about one order of magnitude for the investigated 

decade (Table 1). This result is consistent with previous studies (e.g., Cappelaere et 

al., 2003) that showed that runoff is more dependent on rainfall events distribution 

and magnitude than on annual rainfall amount. 

 

Next to the study area, infiltration capacity of sandy gullies was reported in 

Peugeot et al. (2003) at 450 mm.h-1. Considering the 1 ha surface of sandy channels 

in the alluvial fan, the infiltration capacity could reach 4500 m3.h-1 and therefore 

easily infiltrate the mean runoff event of 1600 m3 computed at point ∆ for the studied 

decade. 

 

A changing pattern of deep infiltration has also to be considered for the fan 

area, considering its long-term dynamics. Following land clearance for the last 

decades, a general runoff increase by a factor close to three has been computed at 

the catchment scale (Seguis et al., 2004). This increase in runoff has led to an 

upslope shifting of the ∆ point (Fig. 1) due to the progradation of sandy deposits. 

Aerial photographs from 1950, 1992 and 1998 show that it moved westwards by 

about 143 m between 1950 and 1992, and of 79 m between 1992 and 1998. In 

Fig. 3c, the large, low conductive area, interpreted as being the most leached zone of 

the fan, appears to be located downslope of the densely braided gully zone, where 

the most active infiltration is supposed to occur. Considering the westwards 

movement of the fan for the last decades, the downslope location of the most 
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leached zone within the study area can be interpreted as an integrated result of past 

leaching and deep infiltration in the downward part of the fan. 

 

5.3. Solute content of the vadose zone  

 

Chemical analyses of the vadose zone solute contents were performed in 

order to decipher their possible origin. A comparison with the dry and wet deposition 

reported for the area (Ca and N dominated; Drees et al., 1993; Freydier et al., 1998; 

Galy-Lacaux and Modi, 1998) show that the chemical composition of the most 

mineralized part of the vadose zone (Ca, Na and NO3 dominate, in various 

proportions) could only partly be explained by a simple rainfall infiltration – re-

evaporation process. On the other hand, the matrix mineralogy is mostly made of 

quartz and kaolinite and its incongruent dissolution could not lead to the observed 

vadose zone chemistry. Considering that all of the solute content stored in the 

vadose zone originates from atmospheric deposits (dust deposits and rainfall events), 

calculations based on published inputs (Drees et al., 1993; Freydier et al. 1998; Galy-

Lacaux and Modi, 1998) show large discrepancies for the timescale required for 

accumulation, depending on the element considered. For instance, for the most 

mineralized part of drill hole 2 (the vadose zone between 5 and 11 m, representing 

75% of the solute content of the profile; Fig. 6), the equivalent timescale for the 

accumulated solute content would range from about 100 years for Cl, up to 1200 

years for Na (marine constituents), while of about 300 years for Ca (terrigenous 

constituent). Obviously, other sources and processes may be involved. 

 

Within the study region, in cultivated areas and fallows with the same 

dominant shrub species (Guiera senegalensis) Wezel et al. (2000) described an 

important small scale variability of the chemical properties of the top 0.10 m of the 

soil; they showed that the chemical composition of the shrub litter seems to influence 

the degree of soil enrichment. In southwestern Niger, another possible source of 

nutrients lies in the nitrogen fixing process, either by leguminous woody plants 

(Acacia sp.) or by microbial crusts at the soil surface (Malam Issa et al., 2001). All of 

these sub-surface processes can contribute to the complex, nitrogen-rich solute 

content observed at depth within the unsaturated zone. A detailed study of the deep 

unsaturated zone, that could include isotope analysis for the biogenic constituents 
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(15N-NO3, 14C/13C of organic C) or transient neutron probe measurements would be 

necessary to determine whether processes having led to this deep accumulation of 

solute are still active (e.g. by occasional deep infiltration followed by transpiration 

through deep rooting) or represent paleo-conditions dating back to the humid periods 

of the late Quaternary. Though deep rooting can not be ruled out, most studies have 

shown that Guiera senegalensis mostly extract water from the top two metres of the 

soil (Brunel et al., 1997; Gaze et al., 1998). The well known deep rooting Faidherbia 

albida is also present on the site but its today’s density is too low to explain the 

observed high solute content within the deep unsaturated zone. Further analyses are 

obviously needed to better interpret the vertical distribution and solute fluxes within 

the deep vadose zone. 

 

 

6. Conclusion 
 

This local scale study of an alluvial fan in southwestern Niger combines sub-

surface geophysics, vadose zone analysis and hydrological modelling. Two main 

conclusions can be outlined: 

 

(1) Channels in the alluvial fan act as preferential pathways for deep 

infiltration. By exploring the deep part of the unsaturated zone, our results confirm the 

occurrence of leaching down to 10 m below sandy channels. On the basis of 

hydrological modelling at the catchment scale for the decade 1992-2002, 

computations show that infiltration through the fan range from 1000 to 24 000 m3, i.e. 

between 5 and 16% of surface water reaching the final outlet of the basin, an 

endoreic pond where recharge to the aquifer occurs annually. In the study area, deep 

infiltration and eventually groundwater recharge was reported to occur only through 

endoreic ponds, where surface runoff concentrates (Desconnets et al., 1997; Martin-

Rosales and Leduc, 2003). This study demonstrates that deep infiltration can also 

occur episodically through alluvial fans on sandy slopes, thus representing additional 

potential sites for groundwater recharge. This result confirms previous hydrological 

investigation in nearby catchments that showed important surface water losses 

through sandy gullies for intense runoff events (Peugeot, 1995; Esteves and Lapetite, 
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2003). However, our conclusion differs from a similar study in Burkina-Faso (granitic 

context with very clayey regolith), where surface water was reported to infiltrate not 

deeper than 0.80 m below main gullies (Descloitres et al., 2003). As outlined by 

Poesen et al. (2003), further studies are needed to better understand how gullies 

interact with hydrological processes and to determine their importance in hydrological 

balances. 

 

(2) Next to recharge areas, there is a continuous layer, approximately located 

between 5 and 10 m below the soil surface, where the vadose zone displays high 

solute contents. This second conclusion is of much interest for the hydrological and 

geochemical balance of soil studies. To the best of our knowledge, the presence of a 

(quasi) continuous mineralized soil layer at depth between about 5 and 10 m below 

the soil surface was unknown in the area. Buerkert and Hiernaux (1998) have 

emphasized the complex pattern of nutrient transfers in the West African Sahelian 

zone. Considering the possibility for some Sahelian trees to reach several ten metres 

below the soil surface (e.g., Faidherbia albida; Canadell et al., 1996) there is 

obviously the need to take into account a deeper part of the vadose zone to balance 

hydrological and nutrient cycles for the Sahelian biome. 

 

For groundwater recharge and salinity, the existence of a nitrate-rich layer at 

depth within the vadose zone appears as a key information to explain some observed 

changes with time. In southwestern Niger, some seasonal and long-term changes in 

groundwater chemistry have been observed near infiltrating ponds (Elbaz-Poulichet 

et al., 2002); these changes have been explained by seasonal recharge and leaching 

of the thick unsaturated zone. Our results, by identifying an important source of 

solute for the hydrological cycle, confirm and clarify this interpretation. In particular, 

some important increases in nitrate content that occurred during exceptional 

recharge events, at distance from any usual source of pollution (Favreau et al., 

2003), could be explained by leaching of nitrate-rich layers of the vadose zone by 

massive infiltration of surface water.  

 

From a methodological point of view, the absence of any relationship between 

chloride and bulk mineralization is another puzzling observation. In semiarid areas, 

the Chloride Mass Balance (CMB) method has been widely used to infer groundwater 
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recharge rates, assuming that the Cl content closely represents the bulk salinity of 

the vadose zone under piston-flow recharge process (e.g., Bromley et al., 1997). 

However, in our study area, considering deep infiltration and groundwater recharge 

as a steady piston-flow process is probably not relevant. As for soil studies, a better 

description of the deep unsaturated zone appears as a basic prerequisite for 

groundwater recharge studies in semiarid areas.  

 

This study has shown the importance of combining various methods to obtain 

reliable results on deep infiltration through a thick unsaturated zone. In our zone, a 

simple relation between soil solution conductivity (deduced from soils samples) and 

an apparent electrical conductivity measured by geophysics has been evidenced. As 

outlined in other semiarid areas (Cook et al., 1989; Scanlon et al., 1999a; Scanlon et 

al., 1999b) apparent electrical conductivity mapping used to delineate changes in 

recharge rates and process appears as a powerful method that should be used more 

systematically for groundwater recharge studies. When adding more sophisticated 

geophysical tools such as 2D electrical imaging or vadose zone electrical logging, 

quantification between electrical conductivity and other pertinent parameters 

becomes a definite advantage to better understand the processes of deep infiltration 

and groundwater recharge. 
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Table 
 

Table 1. Computed runoff at the point of inflow for the alluvial fan (V∆) and at the 

pond (Vp) for the 1992-2002 period (rainfall is reported as the sum of the recorded 

events used for hydrological modelling). 

 

Year rainfall (mm) V∆ (103 m3) Vp (103 m3) V∆ / Vp (%) 
1992 485 17 117 15 
1993 474 21 129 16 
1994 541 8 75 10 
1995 513 24 149 16 
1996 537 10 91 11 
1997 353 13 84 15 
1998 510 18 127 14 
1999 489 12 84 14 
2000 433 16 107 15 
2001 247 1 23 5 
2002 291 4 36 10 
Mean 443 13 93 13 
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Figure captions 
 

Fig. 1. The Wankama watershed with zoom in on the alluvial fan area and drill holes 

(small inset); the thin black lines refer to the watershed Digital Elevation Model and 

the white network to the main gullies recorded by GPS survey in March, 2003. Inset: 

AA’: location of the 2D electrical profile (cf. Fig. 4). Numbers refer to the drill hole 

locations and ∆ indicate the inlet of the alluvial fan where hydrological runoff 

estimations were computed. Aerial photographs of November, 1992 (IGNN, Niamey, 

Niger). 

 

Fig. 2. EM-34 mapping at the catchment scale, intercoil spacing 40 m (August, 2002); 

measurement locations are indicated by black dots. The white network refers to the 

main gullies. Inset: zoom in on the apparent electrical conductivity changes at the fan 

scale; drill holes 1 and 2 are located on high and low conductivity anomalies, 

respectively. 

 

Fig. 3. EM-34 mapping in the lower part of the fan area, W to E direction, intercoil 

spacing 10 m (a) and 20 m (b), August 2002. c): EM-34 mapping, intercoil spacing 

20 m, N to S direction, March, 2003. Measurement locations are indicated by black 

dots. The white network refers to the main gullies. Background: microlight aircraft 

photograph of the fan area, August, 1998 (J.L. Rajot, IRD, Niamey, Niger). 

 

Fig. 4. Joint analysis of Wenner α and β profiles (mutual inversion) by Res2Dinv; unit 

electrode spacing 4 m, iteration 3, RMS error 19.1%. A higher conductivity layer is 

displayed (blue colours) between 5 and 10 m depth; below most sandy channels this 

conductive layer is interrupted. Upper part of the figure: apparent electrical 

conductivity measured by EM-34 survey (intercoil spacing 20 m, measurement each 

4 m). 

 

Fig. 5. Physical parameters measured in drill holes 1 and 2; a) ground electrical 

conductivity ECg, b) matric suction, c) water content and d), e) grain size distribution 

for drill holes 1 and 2, respectively. The soil surface is respectively at 226.84 and 

227.05 m a.m.s.l for drill holes 1 and 2. 
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Fig. 6. Chemical parameters measured in drill holes 1 and 2; a) ground electrical 

conductivity (reported from Figure 5), b) experimental conductivity of the pore water, 

c) anions, d) cations; e) pH and pH-KCl. 

 

Fig. 7. Physical and chemical parameters measured in drill holes 3 to 8. a) ground 

electrical conductivity ECg; b) anions; c) water content; d) experimental conductivity 

of the pore water; e) cations; f) pH. Because both Ca vs. Mg, and pH-H2O vs. pH-KCl 

appeared to be well correlated (r2 of 0.98 and 0.87, respectively), Ca and pH-H2O 

were chosen to represent their changes with depth for drill holes 3 to 8. 

 

Fig. 8. a) Runoff volumes computed by hydrological modelling at the point of inflow 

for the alluvial fan in 1995 (wet year) and 2002 (dry year). b) Measured event rainfall 

for these two years; vertical arrows (1 to 5) indicate dates of measurements for 2002: 

1: EM-34 with 40 m intercoil spacing mapping, 2: EM-34 with 10 m intercoil spacing 

mapping, 3: drilling of hole 1, 4: drilling of hole 2, 5: EM-34 with 20 m intercoil spacing 

mapping. 

 

Fig. 9. ECg computed as a function of ECg measured for the 127 measurements of 

the 8 drill holes with ECg = 10K.ECwe
α.θw

β and K=0.89, α=1.3 and β=0.87 (the 

measured ECg are reported as a function of depth in Figs. 5a and 7a; for drill holes 1 

and 2, the first two metres of measurements were excluded from the data set, the 

ECg being impossible to be correctly measured due to broadening of the upper part 

of the hole during the drilling). 
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