High temperature evolution of interfacial metal film bonding two 4H-SiC substrates - IRD - Institut de recherche pour le développement
Article Dans Une Revue Applied Surface Science Année : 2025

High temperature evolution of interfacial metal film bonding two 4H-SiC substrates

François Rieutord
  • Fonction : Auteur
  • PersonId : 1439138
Didier Landru
  • Fonction : Auteur
  • PersonId : 1147174
Oleg Kononchuk
  • Fonction : Auteur
  • PersonId : 1147175

Résumé

The high temperature behavior of thin metal films (tungsten and titanium) confined between two off-axis single crystal SiC substrates is investigated. Through the application of transmission and scanning transmission electron microscopy, scanning electron microscopy, and X-ray scattering techniques, we examine the phase and morphology changes induced by high temperature annealing in thin layers consisting of these materials, as well as at their interfaces with SiC. Upon high-temperature annealing, a uniform and continuous W film formed by low-temperature deposition undergoes a transition to an array of discontinuous domains surrounded by a direct SiC/SiC interface. In contrast, a Ti film remains continuous with a strong thickness alteration. In parallel to stepbunching process of the internal SiC surfaces, both materials transform into new crystalline phases which contain Si and/or C atoms and achieve an epitaxial relationship with the SiC structures. The experimental findings are discussed in terms of dewetting phenomena and analyzed in light of potential chemical and structural reactions that may occur during interface reconstructions.

Fichier principal
Vignette du fichier
Applied Surface Science_Le Cunff_Cherkashin 2024.pdf (16.79 Mo) Télécharger le fichier
Origine Publication financée par une institution

Dates et versions

hal-04776692 , version 1 (11-11-2024)

Identifiants

Citer

Maëlle Le Cunff, François Rieutord, Didier Landru, Oleg Kononchuk, Nikolay Cherkashin. High temperature evolution of interfacial metal film bonding two 4H-SiC substrates. Applied Surface Science, 2025, 682, pp.161678. ⟨10.1016/j.apsusc.2024.161678⟩. ⟨hal-04776692⟩
0 Consultations
0 Téléchargements

Altmetric

Partager

More