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This report is a short note supporting my course on linear geostatistics. It is not meant to be
a complete and comprehensive course by itself. It focuses on the preambles of the geostatistical
technique: the meaning of variogram, the basic manipulation of variances, the stationary hypoth-
esis which make random model operational, etc. For the kriging techniques and the associated
geostatistical practice, readers can find detailed information in dedicated textbooks.



SUMMARY

« Geostatistics applies on variables whose spatial averages over different areas are consistent (spatial ”ad-
ditivity”). In particular, the mean over an area must be equal to the the mean of averages of regular
sub-parts of this area.

o Except the mean, all statistics vary with the support of the observations: the variance decreases when the
support increases (regularisation).

o The dispersion variance s?(v|V) quantifies the variability over a given area (V') at a given support (v).
Dispersion variances are spatially compound following: s?(v|V) = s2(v|v) + s2(v|V)

o The variance of a set of n values z;,7 = 1,...,n is also the (semi) average of the square differences between
all pairs of values
1 n n
=g 22
i=1j=1

o It is convenient to apply the above equation for neighboring data only (Geary’s index) or for data h apart
(the variogram).

e The variogram at distance h is the semi average of the square differences between observations h apart

W) = 3 (5= z)?
2np(h) =

o An AR1 is a random process with a stationary spatial covariance C'(h) and we have v(h) = C(0) — C(h).
e A random walk is a random process where the variogram is stationary i.e. only depend on h.

o In general var(}_; \iZ;) = 32, > Midjeov(Zs, Z;).

o For a Stationary Random Function (SRF), var(3_; XiZ;) = 32, > MiAiC(hi ;).

o For an Intrinsic random Function (IRF), var(3_; AiZ;) = — 32, > AiAjy(hi ;) provided that >, A; = 0.
o The best estimator of Z(xg) from Z(z1), ..., Z(x,) is the expected value E[Z(x¢)|Z(21), ..., Z(xy)]

o For a Gaussian RF, it is linear without any approximation E[Zy|Z1, ..., Z,] = Y, A\iZi + Xo

o For other RF, the linear expression of the expected value is postulated and is sub-optimal.

 In Ordinary Kriging , the weights are constraint to ), A\; = 1 to abide the unbiasness. The estimation
error is thus a linear combination where the weights sum to 0. The weights that insure minimum variance
under this constraint are the kriging weights. They are defined by the variogram function through the
following kriging system:

Vi 1 i Vi,0

1 ...]0 1 1
The n x n matrix [7; ;] represents the covariance between observations. The n x 1 vector [v; ] represents
the covariance between the observations and the target. The n x 1 vector [\;] represents the vector of the

unknown kriging weights. The Lagrange parameter p is a mathematical term that takes the constraint in
charge.




1 Three selected references amongst plenty

Three references:

e Chiles, J.-P. and Delfiner, P. 2012. Geostatistics: Modeling Spatial Uncertainty. John
Wiley & Sons, New York. 2nd edition. 731 p.

e Cressie, N., 1991. Statistics for Spatial Data. Wiley, New York, NY, 900 p.

¢ Petitgas, P., Woillez, M., Rivoirard, J., Renard, D. and Bez, N. 2017. Handbook
of Geostatistics in R for fisheries and marine ecology. ICES Cooperative Research Report
No. 338. 177 pp.
http://www.ices.dk/sites/pub/PublicationReports/CooperativeResearchReport (CRR
/crr338/CRR_338_Final.pdf

Software

o RGeostatS : a dedicated R package; free download at http://rgeostats.free.fr/

2 Empirical properties of spatial data without any model

2.1 Basic, but nevertheless important, notions
2.1.1 Notation

e x denotes the position in space. This can be in 1D (distance from a staring point, time),
in 2D (longitude and latitude), 3D (longitude, latitude, depth), or more .... There is no
limitation in theory.

e z denotes the study variable. In multivariate geostatistics (not considered in this short note),
one must specify the number of the variable z*(x).

e z(x) is thus a regionalised variable.

The regionalised variable is sampled at some sampling stations x; for 7 = 1, ..., n so that the sample
values are denoted z(x;) and more simply z;.

2.1.2 Geographical support of the observations and/or of the target

Support refers to the geographical area associated to the recordings or to the target of the estima-
tion.

Samples can be punctual measurements or can be considered as quasi-punctual at the study scale.
However, in some cases, the observations have a support which is not punctual (e.g. pixels of
satellite images, quadrats in agronomy).

The target of the estimation can be punctual (e.g. mapping) but it might not be punctual at all
(e.g. in mine, samples consisted in holes while the estimation concerns blocks ; in epidemiology,
samples consisted in individuals while the estimation concerns counties, etc).

Punctal supports are denoted x, and the corresponding regionalised variable z(z).
Small supports are denoted v, and the corresponding regionalised variable z(v).
Large supports are denoted V', and the corresponding regionalised variable z(V).



http://www.ices.dk/sites/pub/Publication Reports/Cooperative Research Report(CRR)/crr338/CRR_338_Final.pdf
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2.1.3 ”Additivity”

The mean value of z over a spatial domain V is the average of the punctual values at any points
zof V:

1
V)= — d
For a region V' decomposed in non-overlaping sub-regions v;, we get

Yo viz(v;)
D Vi

If all the sub-regions have the same surface area,

2(V) =

vVi=v;=v Vi,j

then
> #(vi)

N
where N is the number of sub-regions, V' = Nwv. This means that the regionalised variables used
in geostatistics are supposed to be spatially ”additive”. Some variables are. Some variables are
not. Amongst the variables that are spatially additive, one can mention:

z2(V) =

o densities of individuals expressed for instance in :‘n—b;

o densities of pollutants expressed for instance in #
o altitude

Amongst the variables that are not spatially additive, we find:
« proportions (the mean of proportions is not the mean proportion)

o mean length of the individuals (the mean length of the population is not the mean of the
mean lengths of its sub-populations)

As a matter of fact, if p(v;) represents the proportions of red balls in cells v;, then the proportion
of red balls in a larger area V is
Zi q(vi)p(v;)

p(V) = > q(v)

where ¢(v;) are the number of balls in cell v;. It is not

Zi Uip(vi)
2o vi

except in the very particular case where the number of balls are the same in all the cells.

p(V) #

The main difference between the "additive” and the "non additive” cases, is that the weights needed
to get consistent overall means are the surface areas in the case of "additivity” but are another
regionalized variable in the "non additivity” case (e.g. the biomass).

2.1.4 Field

The field is the geographical domain where the regionalized variable is positive. In ecology, this
corresponds to the habitat of a species. In epidemiology, this is the infected area. etc

Its definition might not be straightforward.

In particular when crossing one variable whose field is bounded (e.g. the distribution of a wild
species) with an explanatory variable whose field is much larger (e.g. air or water temperature);
or when analyzing the interaction between two species with different habitats/fields.
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Figure 1: Decomposition of the variance so as to exhibit the double summation hidden in the
algorithm. In the example we get four sample points and four sample values. This gives a total of
4% = 16 pairs.

2.2 Revisiting the sample variance with spatial considerations
2.2.1 Rewritting the variance: a simple but a key step
The variance of the sample values z; is defined as:

=2 = e o

i

3\'—‘

Note the simplification of the summation notation; this will be used systematically. So in each
step ¢ of the sum, the sample value z; is confronted to the average value (squared). This means
that each value is, in a way, confronted to the entire set of values contributing to the mean Z
(see Figure 1). So doing, the variance can be re-interpreted as (half) the double sum over the n?
possible squared differences between sample values:

s? = %Z(Zi —-2)?= 27112 ZZ(% — zj)? (1)

Proof:
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Figure 2: Another way of representing the variance.
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2.2.2 Geary Index

Based on Eq. 4, Geary (1954) suggested to decomposed the n? possible pairs into two groups,
one for neighboring observations, and one distant observations. The definition of neighbors is user



and case specific. It corresponds to samples whose geographical distance is smaller than a given
threshold dy. Denoting n(dp) the number of such pairs of neighbors, we get:

1
SQ(dO) = m ; ;(Zi - Zj)Qld(iyj)<do

where

) 1 ifd(i, ) < do
D<o 0 it d(d, ) > do

This variance quantifies the variance that comes from neighboring observations. Geary compared
it to the sample variance to get an evaluation of the existence of spatial autocorrelation. The
Geary Index naturally derived from the above equation is

2
Io=" (do)

52

It is small (respectively large) when the local variability is small wrt the overall variance (respec-
tively large), that is when the spatial structure is strong (respectively small). The Geary index can
be used to test statistically for the existence of short scale autocorrelation. However the sampling
distribution of I is not straightforward and permutation test are often preferred.

2.2.3 The empirical variogram

Generalizing the decomposition suggested by Geary leads to the variogram. As a matter of fact,
instead of decomposing the variance in two parts, i.e. between neighbors versus not neighbors, we
can decompose the overall variance by distance class between pairs of samples.

In the previous example (Fig. 1), the 16 pairs of square differences are associated to either 0, 1
or v/2 unit distance; the number of pairs being respectively 4, 8 and 4. We can thus define the
empirical variogram as (half) the mean square differences between samples h distance apart:

v(h) = Qnth) Z Z(Zi = 2j)1ai j)=h (6)

The variogram is nothing but the variance split into distance classes. It is also (half) the average
of the square differences between pairs of points h apart. Of course, we can recover the
variance by averaging the different variogram values :

o Xl
>_n(h)
In statistics, when considering a set data or the random variable from which these data are supposed
to outcome, the usual practice is to distinguish between the mean and the expected value, both in
wording (mean vs expected value) and notations (m vs E). However, this is not the case for the
variance as one uses the same term (variance) but also the same notation (s?) in both cases. The
same is true in geostatistics as the variogram refers either to the empirical variogram of the data or
to the variogram model of the Random Function. In both case, one uses the same notation y(h).

Here is a first example of empirical variogram

Let us consider a 1D example, where 10 data points are separated by 10 m intervals along a line.
We measure the density of nano-particles in each of these sampling sites and find the following
values:

2-3-1-1-2-1-1-2-3-4

With 10 data points, we get 102 = 100 possible pairs of points. The distances associated to these
100 pairs range from 0 to 90 m. For 0O distance, the variogram is 0. It is (half) of the mean
square difference between each sample value and itself. This happens 10 times. If we first consider
distances of 10 m eastward, we get 9 pairs of observations. Applying the formula of the variogram,
we get that:

(3-22+(1-32+(1-12+2-124+1-224+1-12+2-1)2+(3-2)2+(4—3)?

7(10) = 779
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Figure 3: Empirical variogram.

= 0.56

Looking westward, we get the same result because (z; — 2;)% = (2; — 2;)%. So 7(—10) = v(10). The
next possible distance between samples is 20 m. We know have 8 pairs and:

(1—-224+(1-32+2-12+(1-12+(1-22+(2-1)?4+B3-1)*+(4—-2)*

7(20) = 2% 8 =1

The largest possible distance is 90 m for which only one pair of observations can be built:

_ 9\2
v(90)=(42*21) =2




The graph of the variance as a function of the distance is the vario-gram. It is always represented
in the same way:

the x-axis represents h the geographical distance between sample points
the y-axis represents y(h) the variance of the (sub) set of pairs of points h apart
an horizontal line is added at the level of the sample variance (here s = 1)

a symbol, a number or a third axis can be added to represent the evolution of the number of
pairs n(h)

Some key properties of the empirical variogram can already be listed:

the variogram is (half) the average of the square differences between pairs of points h apart.
Reminding that a variance is the mean of the squares minus the square of the mean (Eq. 3),
if the average of the differences between pairs of points h apart is null, then the
variogram is the semi variance of the differences between pairs of points h apart.

because (z; — z;) = 0, the variance for distance 0 is 0: v(0) = 0.
being sums of squares, variogram values are positive: y(h) > 0, Vh.

because the mean of the variogram values (weighted by the number of pairs) is equal to
the sample variance, because variogram values are all positive, and because v(0) = 0, there
must be some variogram values larger than the sample variance. When the variogram is
represented entirely, some points must be above the sample variance. This does not hold
when representing a sub part of the variogram, either the variogram for distances smaller
than half the dimension of the field as often recommended, either when looking to one
particular geographical direction (see below).

as (z; — z;)? = (z; — 2;)?, the variogram is symmetrical: y(h) = v(—h).

each variogram value is based on a fluctuating number of pairs of points n(h). When this
number increases, the corresponding variogram value represents the mean of a larger number
of pairs of points. Points of the variogram based on the largest numbers of pairs of points are
the points that explain most of the variance. The number of pairs of points usually decreases
with the distance. Decrease is strict in 1D (see the example above). In 2D (see below), it
first increases and then diminishes.

one particular observation is involved in n pairs with many different distance. The vari-
ogram values share common observations (in probabilistic terms we will say that they are
not independent).

when permuting observations in space, their mean and variance do not change. The variogram
at 0 distance does not change. But all the other variogram values change. The mean and
variance are not spatial statistics. The variogram is a spatial statistics.

2.2.4 Dispersion variance and support effect

Let us start with an example.

We consider an exhaustive survey of a field denoted V of 6 m? based on the use of Im x 1m
quadrats (denoted v;,i = 1,...,6). In each quadrat, we measure the density of insects expressed in
ind/m?. In the end of the survey, we get the following measures denoted z(v;),i = 1, ..., 6:

|1

[ 3] 2]4f]2]¢6]

One can check that the mean and variance are respectively 3 ind/m? and & ind?/m*.

10




While the mean over the field is .
1 —
V)= - i) =3
SURFPIED

we will denote the variance of the small support data in the field in the following way:
1= 8
2
2IV) = - 3 (o(o) = 2(V))? = 5
i=1

We now consider that the same survey is done with another support for the measurements. The
densities for double size quadrats of 2 m? denoted with a larger letter v;,i = 1,...,3 would have
been:

2 3 4

While the mean over the field is unchanged,

n=3

2(V) = Z z(V;) =3

=1

the variance of the large support data in the field is smaller:

1= . 2
s*(V|V) = - D (=) - 2(V))? = 3
=1

It happens though that:
s2(V|V) < s*(v|V)

The diminution of the sample variance comes from the absorption of the local variability that
exists between two neighboring quadrats. To quantify this local variance let us consider, the three
variances of two small supports data into their union:

||
[\v]

n

(o)1) = 5 3 (1) — 2(V1)* =1
i=1
1 n=4

*((v3,00)|V2) = 5 ) (2(vi) = 2(Uy))* =1
=3
1 n=>6

s*((vs,v6)|V3) = 5 2 (#(v) = 2(V3))* =4
1=5

The mean of these local variances is s?(v|v) = 2. And we get, the following combination of the
variances

s2(v|V) = s2(v|V) + 2 (V|V)
the variance of the small support in the field is the variance of the small supports in the medium

ones + the variance of the medium support in the field (the size of the notation being important
here).

This equation is indeed general and explains the effect of the support on the variances: the latter
decreases when the former increases.

Practical consequences:

e one must not mix data with different supports (e.g. counties with regions monitoring data,
large with small quadrat counts, large with small pixel satellite data, etc)

¢ looking for properties at a support larger than the sample support needs a model to quantify
the variance reduction

11



Note: s%(v|V) is not sensitive to permutation of quadrats, but s?(v|v) and s?(v|V) are and can be
considered as spatial statistics.

2.2.5 Conclusions

Without any model, i.e. without specifying any probability distribution for the data, we have
been able to set some relevant properties of raw statistics, and in particular of the variance of region-
alized variables. The following chapters will transport observations into a probabilistic framework
useful to go further.

3 Variance of linear combinations of random variables (re-
minder)

This subsection is a reminder on general formula in statistics. We now consider random variables.
We no longer consider observations, i.e. data, if they exist, are considered as outcomes of a random
variable(s).

Let us start by considering two random variables Z; and Zs.

var(Zy + Zs) = var(Zy) + var(Za) + 2cov(Zy, Zs)
CO’U(Zl, ZQ) = E(leg) — E(Zl)E(ZQ) = CO’U(ZQ, Zl)
cov(Z1, Z1) = var(Zy)
CO’U()\1Z1, /\QZQ) = )\1/\2(30’[)(Z17 ZQ)
var(MZy) = Mvar(Z,)

S0
var(Zy + Zs) = cov(Zy, Z1) + cov(Zy, Za) + cov(Za, Z1) + cov(Za, Zs)

and the variance of the sum of Z; and Z5 is the double sum of the covariances between all possible
pairs between (Z1, Zs) and itself

2 2
var(Zy + Zs) = Z Zcov(Zi, Z;)
i=1 j=1

This can be generalized into the very important following equation which is the core of kriging:

n n

var (i: )\1Z1> = Z Z )\i)\jCOU(Zi, Zj) (7)

i=1 j=1

This equation is totally general. It makes a covariance function a particular mathematical function
namely a positive definite function.

4 Random processes with stationary covariance or variogram

In this section, we build two different random processes (in 1D). These two random processes are
meant to show examples of random processes getting a stationary variogram. The first one is an
auto-regressive process of order 1, with a stationary spatial covariance. The a second one, a ran-
dom walk, introduces random processes without stationary spatial covariance but with stationary
variogram. From now one, we will considered that Z(z) is a Random Variable located at x in the
geographical space. A Random Function is a set of such variables located everywhere in space:
Z(x),x € R%. Characteristics of Z(x) that do not depend on x are said to be stationary. The
stationarity is a property of the Random Function.

12
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Figure 4: Auto-regressive process of order 1. Simulation of one realisation of such random process
showing that there is a tendency not to move to much away from the mean.

4.1 ARI1

Auto-regressive processes of order 1 are such that

Z(x+1)=pZ(x)+/1—p?Ugs1 p€l0,1]

where U; are independent and identically distributed (i.i.d.) random variables or, at least, inde-
pendent random variables with identical expected values and variances. Here we will just specify
that E(U;) = 0 and that var(U;) = 1.

Setting Z(1) = Uy, we get E(Z(1)) = E(Uy) = 0. If we assume that E(Z(z — 1)) = 0, then

B(Z(x)) = pE(Z(z — 1)) + V1= E(U,) = 0
So by induction,
E(Z(z)) = 0,V
Similarly, var(Z(1)) = 1. If we assume that var(Z(x — 1)) = 1, then, Z(z) and U(x) being
independent, we get that
var(Z(x)) = p*var(Z(x — 1)) + (1 — p*)var(U,) =1
So by induction,
var (Z(x)) =1,Vx

The expected value (moment of order 1) and the variance (moment of order 2) are constant in
space and independent of z. They are thus stationary.
The spatial covariance can also be deduced by recursion

cov(Z(x), Z(x+1)) = cov (Z(w),pZ(x) ++/1-— pQUIH)

p-cov (Z(2), 2(x)) + /T pPeov (Z(x), Ussn)
p-var(Z(x))+0

= p

Assuming that cov(Z(z), Z(x + h)) = p", then it comes that

cov(Z(xz), Z(x + h+1))

cov (Z(:E%pZ(x +h)++/1- p2U1+h+1)

p-cov(Z(z), Z(x + W) + /T = eov (Z(x), Ussnsn)
p-p"+0

h41
p

So, cov(Z(x), Z(z+h)) = p",Vh. The spatial covariance is thus stationary. It does only depend on
the distance h between the two points and not on the location . The ARI1 is stationary random
process of order 2, that is:



Intrinsic Random Function (IRF) Stationary Random Function (SRF)

Random walk AR1
y(h) C(h) y(h) = C(0) — C(h)
()N T Variance
Distance - Distance i

Figure 5: Covariance and variogram for random walks and auto-regressive processes.

The variogram is

v(h) = %var(Z(m) — Z(x + h))
= %(’Ua?"(Z(:L‘)-I—Z(:L‘—I—h)—200’0(Z($),Z(1‘+h)))>

= C(0)—C(h)

An ARI random process is thus a stationary random function SRF where
cov(Z(x), Z(z + h)) = C(h)

and

Note that the pdf of U and by consequence of Z has not been specified. In case Z(z) is Gaussian,
the knowledge of its expected value and its spatial covariance fully characterizes the model. This
is not the case for all other pdf.

4.2 Random walk

Let us consider a random variable U taking values +1 or -1 with equal probability. We will consider
a series of independent and identically distributed (i.i.d.) such variables U;,i = 1,...n. They will
be used to simulate a random walk. Starting at point 0, a walker gets up or down at each step of
his walk according to realizations of the Uj.

EU;) =) prur = (1/2).(1) + (1/2).(-1) = 0
k=1
var(U;) =Y pruy = (1/2).(1)° + (1/2).(-1)* = 1
k=1

The altitude at which the walker is at point x depends on the number of up and down moves. Let
us denote this altitude as Z(z) = Y7, U;. This is a random process in 1D.

14



From 0 to 10.0

From O to 100.000

Figure 6: Random walk. Representation of one realization of a 4+1/-1 random walk over the first
10 000 and 100 000 steps of the walk.

The expectation is a linear operator. So

which means that on average, after = steps, the walker will be at floor 0. This is true whatever x.
The expected value does not depend on x and is thus stationary.

Let us now compute the variance of the random walk. The random walk is the sum of i.i.d. random
variables. So in the following equation

var(Z(z)) = var(z U;) = ZZCOW(Ui,Uj)

all the cases where i and j are different correspond to the covariance between two independent
variables, which is equal to 0. The only cases where the covariance is not null is when the two
indices are the same which happens z times and which corresponds to cov(U;, U;) = var(U;). The
U; being identically distributed they have the same variance var(U;) = 1,Vi. Finally we get

var(Z(z)) =«

This means that the altitude reached by the walker after x steps is as variable as = increases. The
variance of Z(z) depends on . It is thus not stationary.

Let considers the random walk at points = and x + h. As the random walk is build step by step,
Z(z) and Z(z + h) get the segment [0, z] in common, and we can write:

x
Z(@+h)=2(@) + Upp1 + Ui+ o+ Uppn = Z(@) + Y Ui
i=x+1

The U; being iid, this means that

cov(Z(x), Z(x + h))

cov <Z(x),Z(x)+ Z Ui)
1=z+1

= COU(Z(l‘), Z(x)) + Z COU(Z($)7 Ui)
i=x+1
= war(Z(x)) ==
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So the spatial covariance is not stationary. But

var(Z(x) — Z(x + h)) = wvar(Z(z)) +var(Z(z+ h)) — 2cov(Z(x), Z(x + h))
= z4+x+h—-22
h

indicating that the variance of the increment var(Z(z) — Z(x + h)) = h does not depend on z and
is thus stationary.

While
E(Z(x)—Z(xz+h)=0
we have
var(Z(z) — Z(z + h)) = E ((Z(z) — Z(x + h))?)
and finally

var(Z(z) — Z(x + h)) = 2v(h)

so that the random walk gets a stationary variogram.

The random walk is an instance of an intrinsic random function (IRF). An IRF is a random function
whose increments are order 2 stationary, i.e. whose expected value and variance are stationary:

E(Z(x)— Z(x+h)) =0 independent of x

var(Z(z) — Z(x + h)) = 2y(h)  independent of x

Surprisingly, while the process gets no drift (E(Z(z)) = 0,Vz), the particular realization repre-
sented if Figure 6 shows a clear decreasing trend.

In practice, this means that:

e« The choice of a random function model should be based on the behavior of several real
(seldom possible) or virtual (normal case) realizations of the model.

e A real trend in the data, is mot incompatible with a model without drift.

4.3 Stationarity makes inference possible in case of single realization

The two above paragraphs start from known models and look at their properties. In practice, this
is reverse: one gets data and try to infer a possible model compatible with these observations. How-
ever, one usually gets only one realization and inference become impossible. Ideally, the variogram
should be obtained from several realizations of the random function z;(x),7 = 1, ..., Ryeatization DY
taking the average of the square differences obtained over several realisations at two particular
points h apart:

1 Nrealization

v(h) = (2i(x) — zi(z + 1))”

2nrealization i—1
But this is not applicable in practice. Assuming that the data are outcomes of one of the two
random processes above, we can argue that the mean square difference between data does not
depend on their locations but only on their distance. The pairs of observations h apart
everywhere in space are thus also repetitions of what is expected between = and x+ h

for a given point in space z in the model:

{(Zi(I)7Zi(I + h)),i = 1...,nmalimtion} = {(z,%),d(@,j)=h,,i=(1,..,n),j =(1,...,n)}

Thanks to the stationary assumption, the estimation of the variogram becomes again possible in
practice following Eq. 6.
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5 (Intrinsic) Random Functions: a probabilistic framework
to model and use variograms

5.1 Definitions

A random function (RF) Z(z) is an infinite family of random variables. It is mathematically
defined by its spatial probability law, that is the generalization of the density function of random
variables:

Fyp noom, (21,22, ey 2n) = P(Z(21) < 21, Z(22) < 22, ..., Z(2n) < 2Zn), VN

This spatial law includes all the monovariate probability density distributions i.e. the traditional
pdf
F.(z)=P(Z(z) < 2)

but also all the bivariate probability density distributions
Fy as(21,22) = P(Z(21) < 21, Z(x2) < 22)

and all the upper ones i.e. the trivariates distributions, the quadrivariates distributions, and so
on. A spatial law is extremely rich and is not operational in practice when one must parameterize
it from data. In order to be able to use RF in practice, one must restrict the definition down to
some reasonable level of parametrization. First, we will consider only moments of order 1 and 2 of
the bivariate pdf that is, E(Z(z)) and cov(Z(x), Z(x + h)). Note that these two elements are far
from being equivalent to the full bivariate distribution. Second, we will consider that these two
moments are stationary, i.e. that they do not depend on x:

E(Z(z1)) = E(Z(22)) = E(Z(z)) =m

and
cov(Z(x), Z(z + h)) = C(h)

Such an RF is called a stationary RF of order 2 and is hereafter referred to as a stationary random
function (SRF). In the particular case of a SRF, the covariance only depends on the distance h
between x and x + h, the general formula 7, reduces to the very important following equation

SRF:var (Z /\1Z1> = Z Z Az/\JO(hLJ) (8)

We have seen that there are cases where the variance is not stationary but the variogram is
stationary (e.g. random walk). These cases correspond to intrinsic random function (IRF), that
is RF such that

E(Z(z) — Z(z + 1) =0

and

(var(Z(z) = Z(z + h) = 2y(h) |

An increment Z(x) — Z(x+ h) is a linear combination with weights +1 for the first variable and —1
for the second. The sum of the weight is thus 0 and the variogram allows computing the variance
of this linear combination. This can be generalized to any linear combination whose sum of weights
is 0. The variogram allows computing the variance of any linear combination of an IRF provided
that Zi )\i =0

i

IRF: UGT(Z AzZl) = —ZZ)\i)\j’y(hi)j),ifZ )\1 =0 (9)

The variogram model is the engine to process the variance of any linear combination of data
(provided that the weights sums to 0). It only needs to know the geographical distance between
points.

An SRF is an IRF, but an IRF is not necessarily a SRF : SRF = IRF but IRF % SRF. The
kriging equations will thus be developed with variograms which is more general than covariances.
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Figure 7: Stationarity: repetitions and statistics over several realizations are replaced by real-
izations over space over one particular realization, i.e. over the regionalized variable. Here, we
illustrate the stationarity of the order 2, i.e. the stationarity of the covariance of the RF.

A Gaussian random function (GRF) gets gaussian pdf, bigaussian distributions, trigaussian laws,
etc. It is a very particular model which gets very particular properties. In particular a stationary
GRF is fully defined by its spatial covariance. SGRF is THE only case where knowing the first 2
moments amounts to knowing the entire model.

5.2 Stationarity of the RF and statistics over a single realization

The stationarity is a property of the random function. It states properties possibly observed
under several realizations of the RF. In particular one could verify that over several independent
realizations of the same RF, the averages obtained at points x and x + h are the same, or that the
covariance computed between realization at points x and x 4 h is similar than that between y and
y+h.

However, once the stationarity is stated (or speculated), it means that the statistics computed over
realizations at a given point or for a given pair of points can be access to through repetitions over
space. This is particularly important since in the real world, no RF Z(x) exists but only a single
regionalized variable z(z), and even more, most of time, only a discrete version of it z;,4 = 1, ..., n.
Based on a regionalized variable considered as a realization of a RF, stationarity assumptions are
thus key to access to the parameters of an SRF or an IRF through spatial averages.

Note: Pooling all the data into a single histogram and fitting a pdf to it, amounts to a full
stationarity hypothesis. As a matter of fact, not only moments of order 1 and 2 are considered
stationary, but the full distribution. This is a much stronger hypothesis than the usual one made in
linear geostatistics where only the first two moments are concerned by the stationarity hypotheses.

5.3 Variogram properties

We can now update the list of the variogram characteristics already listed in subsection 2.2.4.

5.3.1 Positive definiteness

The variance is a positive quantity. The mathematical function used to model variogram must
then be such that Equation 9 never generates negative values. A variogram is thus a mathematical
function such that —vy(h) is conditionally positive definite.
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Figure 8: relationship between the behavior of the variogram near the origin and the spatial
continuity of the random function.

Not all the functions fulfill this condition and a variogram must be selected amongst a family of
allowed functions.

5.3.2 Behavior at the origin

The mathematical behavior of the variogram at the origin is connected to the behavior of the the
RF Z(z)
Z(z) continuous and differentiable < (k) ~ h? when |h| — 0

Z(x) continuous and not differentiable < ~(h) ~ h when h — 0

Z(x) not continuous and not differentiable < ~(h) - 0 when h — 0 (Nugget effect)

The choice of the behavior of the variogram at the origin should be made with considering the
physics of the regionalized variable considered as a realization of the random function.

The behavior of the variogram at the origin is also the part of the model that most impacts the
kriging.

5.3.3 Measurement errors and nugget effect

In case the regionalized variable z(x) is sampled with unsystematic measurements errors, the RF
associated to it could be the following RF

Y(z) = Z(z) + e(x)

where e(x) is a white noise independent of Z(z) (i.e. the measurement errors are not auto-correlated
and are not correlated with the target variable).
The variogram of Y (z), for h # 0, would be

vw(h) = %var(Y(x) —Y(x+h))
= %var(Z(x) +e(x)—Z(x+h)—e(x+h))
= %var(Z(x) —Z(x+h))+ %var(e(m)) + %var(e(m +h))
= vz(h)+o?
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Nugget effect of Y

Nugget effect of Z o

Figure 9: Impact of a random unsystematic measurement error on the variogram. If the re-
gionalized variable z(z) is measured with an unsystematic errors not related to the value of z(x)
itself and independent from one location to the other, the new regionalized variable is indeed
y(x) = z(x) 4+ €(z). The nugget effect of Y (x) includes the nugget effect of Z(z) (if it exists) and
the variance of the measurement error. The variogram of the white noise is a pure nugget effect.

o The variogram of a noisy version of Z(z) is thus nothing but the variogram of Z(z) plus a
nugget effect equal to the variance of the measurement errors.

e The nugget effect is thus a not disentangling mixture of measurement errors and spatial
structures that exist at small scales.

e The nugget effect is a key parameter of the behavior of the variogram near the origin.

e Any time the variable is noisy, a nugget effect should be integrated in the model.

5.4 Variogram fitting

In the same way that the choice of a pdf is a crucial point in statistics, the choice of a vari-
ogram model is central in geostatistics. Despite all the cautious required to variogram fitting, this
subsection is relatively succinct.
By default, one proceed by minimizing square differences between the empirical variogram and the
model:

& = ’Yempirical(lagi) - ’Ymodel(lagi)

1 nb of lags
in| ——— 2
argmen (nb of lags Z EZ)

i=1
This can be weighted by i) the number of pairs associated to the values of the empirical variogram

(n(lag;)) and ii) the distance from the origin 0 (lag;):

o, — n(lag;)
lag;

nb of lags

2
> gwi
aromin | —=L
9 nb of lags

> Wi

i=1
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Some (non exhaustive) elements to keep in mind:

e the behavior at the origin is key. Nugget effect is expected anytime there are measurement
errors and/or small scale structures that are not resolved at the sampling scale

e a trend in the data does not necessarily translate into a drift in the model
e a structure in the variogram should be based on 4 points at least
e in case of directional empirical variogram, model must be based on all directions together

e given a model, one can simulate several realizations under this model and compute the
variogram of each realization. The fluctuations of these variograms around the model can be
large (as large as the range is large wrt to the size of the simulated field)

¢ only use functions that are allowed

o the validity of the model is linked to the number of lags used in the fitting. This is in
interaction with the futur use of the model i.e. local versus global estimation.

o statistical testing of the fittings is confronted to the fact that the variogram values are not
independent. Alternatively cross validation procedure can help choosing bieween several
models.

6 Estimation and kriging

6.1 Limits of the classical method

In sampling theory, estimating the mean from samples that are considered as N outcomes of n
random variables independent and identically distributed (iid) leads to an estimation variance of
the form

o} =

2%

The precision of the estimate increases when the estimation variance decreases, i.e. when the
variance of the random process decreases and/or when the number of samples increases. This
makes sense.

However, this formula is only accessible when the samples can be considered as iid. This amounts
to consider the three following things:

o data are outcomes of random variables. This is not straightforward. Random variables are
mathematical entities. They do no exist in the field. Data are real.

¢ the random variables are independent. This is a very strong constraint which can be achieved
when the sampling scheme is strictly random. However there exists many cases where this is
not the case (e.g. systematic, regular, and stratified schemes; see figure 10).

e the random variable have the same pdf. This is also a very strong constraint. This corre-
sponds to a strict stationarity assumption, i.e. all moments are stationary (and not only the
first two ones).

If autocorrelations exist which is the vast majority of the practical cases, this gets two opposite
consequences:

¢ First, the variance of the sum increases due to the covariances that must now be considered
var(X +Y) = var(x)+var(Y)+2cov(X,Y) and redundancy in the data reduces the effective
number of samples in hand. This is detrimental to the precision of the estimate.

e Second, autocorrelation means that some links exists between the data. Such links enable a
better interpolation between the data than when no structure between the data exists. The
structure is an additional information useful for the inference. This goes towards an increase
of the precision of the estimate.
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International Bottom Trawl Survey
Courtesy of CIEM

Barents sea bottom trawl survey (1993)

Courtesy of IMR-Norway
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Figure 10: Examples of surveys where the samples are not collected under a strict random
protocol. Left: A random stratify survey where one sample is located at random in each sampling
square independently from the other squares. All together the samples are not located at random.
Right: A systematic survey design where samples are located on a regular grid (the projection
produce a deformation). Samples are not located at random.
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Figure 11:  Correlation cloud, conditional and marginal pdf, expected value. In black, the ex-
planatory variable X. In blue, the target variable Y. In red, conditional properties.

So, due to autocorrelations, one gets less information than the one provided by N independent
observations (the effective sample size is smaller than N) but one gets a spatial structure to help
interpolating in between the data. The balance between these two contradictory aspect in terms
of gain or loss in precision of the estimation is not known in advance. It depends on the strength
of the spatial structure and on the geographical location of the samples and of the target of the
estimation.

6.2 Conditional expectation and linear regressions

6.2.1 Definitions

In statistics, the analysis of the relationship between two random variables leads to concept the
conditional expectation (figure 11). One must distinguish between:

e the random variable Y which gets its own pdf fy (blue marginal distribution in the scatter
plot)

e the random variable Y'|X = z; which gets a particular pdf (fy|x—z,) and whose average is
expectation of Y conditional to the fact that X = z;: E[Y|X = z]

o the random variable E[Y|X] called the conditional expectation of ¥ knowing X. It cor-
responds to the former expression when X is randomized according to its pdf (fx). This
random variable gets its own pdf which is different from the pdf of ¥ (red in the figure).
Despite its name, i.e. conditional expectation, this is not a real value. This is a random
variable.

« the average value of the conditional expectation is the expected value of Y (the blue and the
red pdf get the same average): E (E(Y|X)) = E(Y)

Parallel to this graphical definition, the conditional expectation is key in the theory of estimation.
As a matter of fact, the best approximation of Y by a function of X, best in terms of the mean
square, is the E(Y|X). This means that
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E(Y-[Y]X])?*) < B(Y—¢(X))?),¥¢
Assuming no bias, in both case, this means that
var((Y—=[Y|X])) < var(Y —¢(X))),V¢

In the very particular case of Gaussian random variables (X Gaussian, Y Gaussian, and (X,Y)
biGaussian), the conditional expectation is linear.

EY|X)=MX+X  (Gaussian case)

In Gaussian cases, the best approximation of Y by a function of X is linear without approximation;
but only in Gaussian cases. In all other cases, the linear expression of the condition expectation is
an approximation, but can still be used

EY|X)~=AMX+ X  (non-Gaussian case)
which can be generalized to several explanatory variables

Y*=EY|Xy,..,X,) = Z AiX;+ Ao (Gaussian case)

Y*=EY|X1,..,X,)~ Z AiXi+ X (non-Gaussian case)

Even though the linear expression of the conditional expectation is an approximation, we can still
search for the Best Linear Unbiased Estimator (BLUE). We know that it is not the optimal one
in the general case. But it will be the best one in the linear framework.

One must not mix up the estimator E(Y|Xq,...,X,), a random variable, and the estimation
EY|X; =z1,....,Xn = x,), a real value.

6.2.2 Reminder on the parameters estimation

Let us start with the monovariate case.
We observe independent pairs of (z;,y;). Unknows are then chosen to minimise the mean square
difference between the observations and their estimations:

1 1
- Z(yz —y)? == (4 — \imi — Ao)? = F(Xo, A1)

n =
i

which is a function of the two unknown parameters.
Minimization is obtained when the two partial derivatives equal 0:
OF (Xo, A1) OF (Ao, A1)
0o N O\

=0

After some developments, we get the following two well known equations solving the system with
the two unknowns:

X = §-ME
I Ty — 2y  cov(X,Y)
VT2 var(X)

In the bivariate case, the developments become a bit more complex but, for A\; we get that

00X, PY, X1 — PX1,X2PY,X>
2
gy 1- PX1,X2

A =
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geographical locations. explanatory variables.

Figure 12: Revisiting the nature of the variables used for a regression.

Beside the exact formula, what is key is that:

o the parameters of the BLUE estimation of Y* are only dependent on the knowledge of all
the covariances between explanatory variables and of all the covariances between the target
variable and the explanatory ones.

o the parameters of the BLUE estimation of Y* does not need any assumption on the pdf of
X and Y. No parametric assumptions are required to estimate \;. They are only needed to
perform statistical testings (not considered here).

e X; and X3 do not need to be independent (their correlation is incorporated in the above
formula). However, the realizations (1,;, %24, y;) have to be independent outcomes.

6.2.3 The spatial re-interpretation of the multivariate linear regression: the kriging

Traditionally, X1 and X5 represent two different random explanatory variables or covariates. How-
ever, nothing precludes from considering that they correspond to the same (regionalized) variable
measured in two different locations. Without loss of generality, they can be denoted Z(x1) and
Z(x2) (see figure 12). This can be generalized one step further by considering that the Y-variable
of the regression is also concerning the RF Z but in a third location Z(z3). So doing, we look at
a regression explaining Z(x3) by a linear combination of Z(x;) and Z(x2).

The traditional way of representing a regression in a Cartesian space can then be revisited by
implementing the axes of the regression in the geographical space (see figure 13). While an obser-
vation (1, Z2,,Y:) is represented by a point in the 3D Cartesian space, it is now represented by
a triangle (z(z1), z(z2), z(x3)).

Traditionally, one gets several observations on which the regression is based (see figure 14). In
spatial statistics, we usually gets only one realization to play with. The covariances used in the
regression (see above) are thus not available in practice and one will need a model of spatial
covariance to replace them.

The situation is even worth. As a matter of fact, the kriging objective is not to estimate the
parameters that insure the BLU-Estimate of Z(z3) but to insure the BLU-Estimate of an un-
sampled location, denoted zy to underline the difference between a sample point and a point
where we want to make the estimation (see figure 15). In other words, there is no observation y;
(respectively zp) to be compared with ¢} (respectively z3); and thus no possible square error to
minimize. Here again, a model of spatial covariance is needed to replace the empirical covariance
used in the regression.
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Figure 13: From a Cartesian to a geographical representation of a (bivariate) regression.
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Figure 14: Graphical representation of the sample data on which the regression could be based
in a Cartesian and in a geographical representations.
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Figure 15: Regression: estimating the parameters of the regression to best explain Y by a linear
combination of X; and X,. Kriging: choosing the parameters of the linear combination of Z(x1)
and Z(z2) that allows a BLUE estimation of Z(x)
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¢ One key difference between the regression in the Cartesian space and the kriging is geograph-
ical space is the number of available realizations.

e While Z; is also not observed, the regression in praxi can not be built from the minimization
of the square difference between Zj and Z,. However, the principle of minimization of the
variance to get a BLU-Estimate of Z; by a linear combination of Z(z;) applies, and kriging
is based on a model which provides the (spatial) covariances between all pairs of covariates
and between covariates and the target.

o The key step of a geostatistical analysis is thus the definition of a model of spatial covariance
(or equivalently of variogram). Then after, kriging is nothing but regression techniques.

6.3 (Ordinary) Kriging in theory

All the sections above are, I thing, not really available in usual textbooks. On the contrary, there
exist plenty of textbook presenting kriging. I thus restrict myself to the basics.

6.3.1 Ponctual (ordinary) kriging

We denoted g the point where the estimation is performed. To get a kriging map, one has to
replay the procedure for each point of a regular grid.

Kriging is the BLU-estimate of z(zo) = zo based on the values of the RF at some known points
Z(z1) = 2(x1), ..., Z(zNn) = z(xn). The kriging estimator is:

zl = zn: \iZ;
i=1

without loss of generality the intercept of the regression is not considered here. This allows to get
homogeneous notation where all O-subscripts concerns the target point.

When all the sample values are used (n=N), this is called kriging with unique neighborhood. When
only the values of the samples belonging to a restricted neighborhood around zg are used, this is
called kriging with moving neighborhood.

While the framework of IRF is more general than that of SRF (the variogram is more general than
the spatial covariance), we solve the equations for IRF.

The bias is:

E(Zé(—Zo):E<§n:)\iZ¢—Zo> :mzn:)\i—m:m<§n:)\—1>
i=1 i=1 i=1

where m is the unknown expected value of the IRF. As a matter of fact, an IRF is such that
E(Z(x) — Z(x + h)) = 0, which amounts to consider that E(Z(x)) = m but with undefined value
for m. Note: in the vast majority of cases, the objective of the estimation is to estimate m. So,
considering it is unknown, is (more than) relevant.

To insure no bias whatever the value of m, one must insure that

=1

So the kriging estimator can be rewritten is the following manner:
n n
i=1 i=1

The weights are to be chosen to insure the minimum estimation variance:

U%K = var(Z{ — Zy) = var <Z NiZ; — Z0> = var (Z )\¢Zi>

i=1 =0
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with
n n
D> Ai=1 and Ag=—1 sothat » A =0
i=1 i=0
The linear combination in the estimation variance is a linear combination where the sum of the
weights sum to 0. So Equation 9 applies and we get

0'2EK = — ii)\lA]’%J with i)\z =0

=0 j=0 =0

In mathematics, minimizing the estimation variance under the constraint that > . A; = 1,

amounts to minimizing
n

K
op" —2p(>_ Ni—1)

i=1
where p is called the Lagrange parameter. As in the regression, this is done by getting the partial

derivatives equal to 0. In the end, the kriging weights are solution of the following system of n 4 1
equations:

n

Z AVik + =0, 1=1,..,n
k=1

n

d =1
k=1

The matrix version of this system is

Vi, I Y Yi,0

— e |5 |5
This presentation makes it clear that a kriging system involves the spatial structure for:
o distances between data points 7; ; (a n x n matrix)
o distances between the data points and the target point ;0 (a n x 1 matrix)

Finally, the kriging weights are obtained by inverting the left hand side matrix:

AR _ | 7ig 1] | 7o
uk 1 0 1
and the kriging estimator is simply
Z5 =Y Nz
i

with the corresponding estimate

K _ K,
ZO—E)\izZ
i

and the estimation variance is X
2 K K
Op = E Ap Yio —
i

Note;: while the representation of a kriging map is pixelized, what is estimated and represented
is indeed a point value, not the mean of the regionalized variable over each pixel. This later case
corresponds to block kriging (see below). While for small grid cells or pixels (small wrt the field
size) this is not a major issue, one must not confuse the two.
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Notes: the range of the distances over which the model is used are determined by the size of the
neighborhood. A model is, for sure, not solicited at distances larger than the largest diagonal of the
neighborhood. So the quality of the model matters only for h € [0, max(diagonal(neighborhood))].
For small neighborhood, only the behavior of the spatial covariance/variogram at the origin mat-
ters. For unique neighborhood, the model is solicited over all the distances. The quality of the
model fitting must be considered accordingly.

Notes: Filtering out the mean m leads to a constraint on the weights and thus on the fact that we
have to estimate n+1 parameters (A1, ..., A, and p). This necessarily means that the estimation
variance is larger than the one we would have obtained without the constraint on the weights if
we had knew the mean.

6.3.2 Non-ponctual kriging (block/polygon/global kriging)

When the objective is to estimate the regionalized variable over a non-punctual area, say z(v)
where v can be any geographical zone, the previous equations get a direct generalization. We still
consider a linear estimator based on the observed points

ZW)X =3 "Nz, with Y A\ =1

This means that the left member of the kriging system is unchanged. The only modification con-
cerns the right side of the kriging system where one considers the variogram between observations
and the target. The target being a polygon, the v; ¢ are replaced by +; , which is the mean value
of the variogram between the point z; and (all the points of) v

1
Yijo = 7/7i,xdx
U Jy

the kriging system is thus

and the solutions are now

)\f{ _ | Mg 1 71. Vi
uk 1 0 1

In practice, the ;. are evaluated by the discretization of v. The finer the resolution, the better
the numerical approximation.
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Figure 16: Non-ponctual kriging: block, polygon or global kriging. To perform such kriging, we
need to know all the spatial covariances between the sample points and the target area.

7 Supplementary materials

7.1 Impact of the 0 and of field delineation on the variance

Very often the vector of the observations gets 0, and eventually many 0, modifying the mean and
the variance of the observations. This happens when surveying a wider area than the one where
the phenomenon exists. This is the normal situation in ecology and any time you do not know in
advance the area of presence.

It is convenient to split the vector of the n observations into the ng null data and the n positive
ones: z = ¢(0, z4) with n = ng + n4. In the double sum of the variance, one can distinguish the
cases when the two points get null data, when one is null and when the two are non-null (Figure
17):

0+2n033; 23 + 20 (24 — 24,5)°
2(ng +n4)?

52 =wvar(c(0,2y)) =

If we denote si the variance of the positive data we get:

2 2 .2
2 _ non4 2y +nisy

(no +n4)?
Given that si = E — mi, this becomes:
2 _ nony (s3 +m%) +n3s?
(no +n4)?

It is convenient to introduce two ratio, the ration between ng and ny (rg) and the coefficient
of variation of the positive data CVy = si/my. In most natural system, there exists a mean
to variance relationships showing that the variance increases together with the mean. It is thus
relevant to survey the various possible cases with variable coefficient of variations. The above
equation finally writes:
2 82 ro + (1+?"0)CVE

Tt OVE(L41)?

S
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Figure 17: Impact of the 0 when computing the variance.

which indicates how the variance of data with 0 observations changes with the number of 0 (with
regards to the number of non-null data and for some given coefficient of variation of the positive
data).

The result (Fig. 18) is, somehow, counter intuitive: For data with high variability wrt the mean
(i.e. with large C'V'), which is the standard situation in practice, adding 0 decreases the variance
monotonically. On the contrary, when the C'V of positive data is small, adding null data first
increases the variability, but after some sufficient number of null data, the variance goes down

towards 0.

This result holds whatever the geographical location of the 0, either in a sub-region homogeneously
full of 0 or distributed everywhere in space.

Non available data are not 0 data!
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Figure 18: Impact of the null data on the variance. The ratio between the number of null and
no

positive data is ro = 7>. The proportion of null data in the data set is 33%, 50% and 66% for
ro = 0.5, 719 = 1, and r¢y = 2 respectively.
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