Helicopter Ground Resonance Phenomenon With Blade Stiffness Dissimilarities: Experimental and Theoretical Developments
Résumé
Recent works have studied ground resonance in helicopters under the aging or damage effects. Indeed, blade lead-lag stiffness may vary randomly with time and differ from blade to blade. The influence of stiffness dissimilarities between blades on the stability of the ground resonance phenomenon was determined through numerical investigations into the periodic equations of motion, treated using Floquet's theory. A stability chart highlights the appearance of new instability zones as a function of the perturbation introduced on the lead-lag stiffness of one blade. In order to validate the theoretical results, a new experimental setup was designed and developed. The ground resonance instabilities were investigated using different rotors and the boundaries of stability were determined. A good correlation between both theoretical and experimental results was obtained and the new instability zones, found in asymmetric rotors, were verified experimentally. The temporal responses of the measured signals highlighted the exponential divergence in the instability zones.
Origine | Fichiers produits par l'(les) auteur(s) |
---|